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Abstract—An l0-norm constraint Lorentzian (L0-CL) algorith-
m is proposed for adaptive sparse system identification to combat
impulsive noise. The L0-CL algorithm is derived via exerting an
l0-norm penalty on the coefficients in the cost function, which
is equivalent to add a zero-attractor in the iterations. The zero-
attractor attracts the coefficients to zero during the iterations.
By the way, the L0-CL algorithm can achieve lower mean square
error (MSE) for estimating the sparse systems. The simulation
results presented in this paper demonstrate that the proposed
algorithm has superior performance in both convergence rate
and steady-state behavior by identifying the sparse systems in
the impulsive noise environment.

Index Terms—Sparse adaptive filtering, lorentzian norm, l0-
norm, impulsive noise.

I. INTRODUCTION

Among the wide range of adaptive filtering (AF) appli-
cations like echo cancellation, system identification, noise
cancellation and channel estimation, more and more AF al-
gorithms have been developed over past decades [1], [2].
The least mean square (LMS) algorithm, normalized form
(normalized LMS, NLMS) and their variants are popular
methods for many applications owing to their low implementa-
tions [3-11]. However, their performance may be deteriorated
in non-Gaussian environments [12]. To solve the mentioned
problem above, the sign algorithm (SA), which is derived from
the cost function of the absolute value of the error, shows
robust performance against impulsive noise [13]. Since the SA
algorithm has a slow convergence rate, the affine projection
sign (APS) algorithm has proposed to offer both the faster
convergence and better robustness [14].

Furthermore, the maximum correntropy criterion (MCC)
algorithm and its variants have been presented within the AF
framework for non-Gaussian environments [15-18]. Though
the MCC algorithm can give a resistant in impulsive noise
environments, it cannot take advantage of the sparsity of sparse
natural channels that only small percentage of the impulse
response coefficients have significant magnitudes while the
rest are zero or very small. The zero attracting based sparse
AF algorithm has been proposed based on the MCC algorithm,
which is derived by incorporating an l1-norm penalty into
the cost function of the MCC. As a result, the zero attractor
appears in its iteration and it is known as zero attracting (ZA)
MCC (ZA-MCC) algorithm [19]. Simultaneously, a reweight-
ed ZA-MCC (RZA-LMS) algorithm has been promoted to

further improve the filtering performance [19].
Motivated by Lorentzian adaptive filtering (LAF) [20], [21]

and l0-norm constraint LMS (l0-LMS) [22] algorithm, a new
Lorentzian algorithm with l0-norm constraint is proposed to
identify a sparse system in the impulsive noise environment.
The idea is to introduce a penalty that exploits sparsity in
the cost function and to use a gradient descent search on
the cost function. The proposed method will accelerate the
convergence of near-zero coefficients for identifying sparse
systems. Simulation examples show that the L0-CL algorithm
performs well for sparse system identifications

II. REVIEW OF THE LAF ALGORITHM

In this paper, the desired signal from an unknown system
wo ∈ RN×1 is d (n) = uT (n)wo + v (n), where u (n) =
[u (n) , u (n− 1) , . . . , u (n−N + 1)]

T is the input signal
vector. The variable v (n) is the measurement noise and (·)T
is the transpose operator. Let w (n) be an estimation of wo at
iteration n, and w (n) = [w1 (n) , w2 (n) , . . . , wN (n)]

T . The
estimation error is defined as

e (n) = d (n)− uT (n)wo. (1)

The input matrix is defined as U (n) = [u (n) ,u (n− 1) ,
. . . ,u (n−M + 1)] and the estimated error vector can be
expressed as e (n) = [e (n) , e (n− 1) , . . . , e (n−M + 1)]

T .
Then, the update equation of LAF [19] can be presented as

w(n+ 1) = w(n) + µLAFU(n)G(n)e(n), (2)

where µLAF is the step-size of adaptation and G (n) =
diag (gn (1) , gn (2) , . . . , gn (M)) is an M × M diagonal
matrix with

gn (k) =
γ2

γ2 + e (n− k + 1)
, k = 1, 2, . . . ,M (3)

in which γ > 0 is a small constant. G (n) provides the
weight factor gn (k) which decreases as the magnitude of the
error increases. Denote Ru as the covariance matrix of the
input matrix U(n) and λmax as its maximum eigenvalue. The
convergence condition for the LAF is

0 < µLAF <
2

Mλmax
(4)
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III. THE PROPOSED L0-CL ALGORITHM

The studies on compressed sensing reveal that the sparsest
solution can be obtained using l0-norm, which shows that a
penalty of AF based on l0-norm can be integrated into the cost
function when the unknown system is sparse. Thus, the cost
function for the proposed is expressed as

J(n) = ‖e (n)‖LL2,γ+α‖w(n)‖0, (5)

where ‖·‖0 denotes l0-norm which exploits the sparsity infor-
mation of the unknown system, ‖·‖LL2,γ is Lorentzian norm
given by

‖x‖LL2,γ =
M∑
i=1

log

[
1 +

(
xi
γ

)2
]
, (6)

and α > 0 is a parameter to balance the penalty and the
estimation error. Using a gradient descent search on (5), the
update equation can be obtained as follow:

w(n+ 1) = w(n)− µ′ ∂J(n)
∂w(n)

= w(n) +
µ′

γ2
U(n)G(n)e(n)− µ′α

∂‖w(n)‖0
∂w(n)

.

(7)
A popular approximation for l0-norm constraint [23] is

defined as

‖w(n)‖0 ≈
N∑
j=1

(1− exp (−β |wi (n)|)) (8)

where β is the parameter to balance the expansion and the
l0-norm constraint. Then, the corresponding derivatives of
fβ(wi (n)) are expressed as

fβ(wi (n))
∆
=
d‖w(n)‖0
dwi (n)

. (9)

Then, we set

fβ(wi (n)) ≈ βsign (wi (n)) exp (−β |wi (n)|) . (10)

Thus, the gradient of ‖w(n)‖0 with respect to w(n) can be
given by

∂‖w(n)‖0
∂w(n)

= fβ (w(n))

∆
= [fβ(w0 (n)), fβ(wi (n)), · · · , fβ(wN−1 (n))]

T
.

(11)
The update equation is presented as

w(n+ 1) = w(n) +
µ′

γ2
U(n)G(n)e(n)− µ′αfβ (w(n))

= w(n) + µU(n)G(n)e(n)− λfβ (w(n)) ,
(12)

where µ = µ′/γ2 is considered as the step size and λ = µ′α is
a parameter to control the zero attractor. Comparing the L0-CL
algorithm in (12) to the LAF in (2), the L0-CL algorithm has
an additional term −λfβ (w(n)). The convergence condition
of the L0-CL algorithm is provided herein.

Theorem 1: With a zero-mean input u (n), the L0-CL
algorithm produces stable w(n) which approaches to wo at
infinity if the step-size µ satisfies equation (4).

Proof: we define the weight error vector as follows:

w̃ (n) = wo −w (n) . (13)

From the iteration equation (12) and the definition in (13), we
have

w̃ (n+ 1) =
(
I− µU(n)G(n)UT (n)

)
w̃ (n)

− µU(n)G(n)v(n) + λfβ (w(n)) ,
(14)

where v (n) = [v (n) , v (n− 1) , . . . , v (n−M + 1)]
T .

Taking expectations on both sides of (14), yields

E [w̃ (n+ 1)] =
(
I− µE

[
U(n)G(n)UT (n)

])
E [w̃ (n)]

+ λE [fβ (w(n))] ,
(15)

where E [v (n)] is zero because v (n) is zero mean and is
assumed to be statistically independent of U(n)G(n). From
the definition of fβ (w(n)), it can be clearly seen that there
is a limitation of E[f(w(n))]. Therefore, the condition for
guaranteeing the convergence is that the maximal eigenvalue
of
(
I− µE

[
U(n)G(n)UT (n)

])
is less than 1. Considering

0 < gn (k) < 1, k = 1, 2, ...,M and assuming that G(n) and[
U(n)UT (n)

]
are statistically independent, we have

λmax(E
[
U(n)G(n)UT (n)

]
)

= λmax(E
[
UT (n)U(n)G(n)

]
)

= λmax(E
[
UT (n)U(n)

]
E [G(n)])

< λmax(E
[
UT (n)U(n)

]
)

=Mλmax.

(16)

Thus, the condition for guaranteeing the convergence is

0 < µ <
2

Mλmax
. (17)

We can find that the convergence condition for the L0-CL
algorithm and LAF algorithm is same.

IV. SIMULATION RESULTS

Several experiments are established to evaluate the behav-
iors of the proposed L0-CL algorithm. The unknown channel
is a one-group channel whose active coefficients are set in
[257,288]. In all simulation experiments, the length of the
channel (N ) is set to be 1024. Two input signals, white Gaus-
sian noise (WGN) and colored noise, are used to investigate
the performance of the L0-CL algorithm. The colored noise is
obtained from WGN filtering through a first-order system with
a pole at 0.8. For each simulation, all the results are obtained
by taking the ensemble average of the mean square deviation
over 20 independent Monte Carlo runs. To illustrate the robust
performance of the proposed algorithms, the alpha-stable noise
is chosen to construct the non-Gaussian environment which
may occur in practice. The characteristic function of the alpha-
stable process is expressed as

ϕ (t) = exp
{
jδt− η|t|θ [1 + jξsign (t)ω (t, θ)]

}
(18)
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in which

ω (t, θ) =

{
tan πθ

2 ifθ 6= 1
2

π
log |t| ifθ = 1

, (19)

where 0 < θ ≤ 2 is the characteristic index which deter-
mines the strength of the alpha-stable distribution impulse,
−1 ≤ ξ ≤ 1 is the symmetry, −∞ < δ < +∞ is the
location factor which controls the location of the alpha-stable
distribution center and η > 0 is the dispersion factor. Herein,
θ = 1.2, ξ = 0, η = 1, and δ = 0 are selected to construct
the impulsive noise. The power of the input signal is set to be
1 and the impulsive noise is added to the background of the
unknown channel at a signal-to-noise ratio (SNR) of 10 dB in
the following experiments. For all the experiments, M is set
to be 8 and the scale parameter γ is set as follows

γ =
d2/3 (n)− d1/3 (n)

2
, (20)

where dq (n) denotes the q-th quantile of d (n) (d (n) =

[d (n) , d (n− 1) , . . . , d (n−M + 1)]
T ). The performance

metric chosen to evaluate the proposed algorithm was the
normalized misalignment (in dB) of the coefficient vector,
given by 10 log

(
‖w (n)−wo‖22 / ‖wo‖22

)
.

A. Performance of the L0-CL algorithm with different param-
eters
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Fig. 1. Effects of β on L0-CL algorithm.

The experiments are constructed to investigate the effects
of the parameters β and λ on the performance of the L0-CL
algorithm. Since β and λ are key parameters for the proposed
L0-CL algorithm. Different β and λ are chosen to examine
the L0-CL algorithm with the colored input signal. The step
size of the proposed L0-CL algorithm is set 0.0005.

In Fig. 1, the results are obtained by varying β from 5 to 30
and keeping λ = 6×10−7 as a constant, whereas in Fig. 2, the
results were obtained by varying λ, and β = 5. The simulation
result presented in Fig. 1 indicates that the performance of
the L0-CL algorithm decreases as β increases. In Fig. 2, the
steady-state misalignment improves with the increase of λ, and
decreases when λ is greater than 6× 10−7.

Iterations

N
o

rm
al

iz
ed

 M
is

al
ig

n
m

en
t 

(d
B

)

× 10
4

0 1 2 3 4
-30

-25

-20

-15

-10

-5

0 L0-CL λ =6×10-10

L0-CL λ =6×10-9

L0-CL λ =6×10-7

L0-CL λ =6×10-8

L0-CL λ =6×10-6

Fig. 2. Effects of λ on L0-CL algorithm.

B. Performance of the L0-CL algorithm with different input
signals
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Fig. 3. Performance of the L0-CL algorithm with WGN input signal.

According to the previous discussion, the parameters β
is set to be 5 and λ = 6 × 10−7 to get lower steady-
state misalignment. In this subsection, the performance of the
L0-CL algorithm is compared with the NLMS, MCC, ZA-
MCC, RZA-MCC, APS and LAF. To guarantee the same
initial convergence rate, µNLMS = 0.2, µMCC = 0.0016,
µZA−MCC = 0.0017, µRZA−MCC = 0.0016, µAPS = 0.005,
µLAF = 0.0005 and µL0−CL = 0.0016 are selected for WGN
signal. And, µNLMS = 0.4, µMCC = 0.0015, µZA−MCC =
0.0016, µRZA−MCC = 0.0015, µAPS = 0.0045, µLAF =
0.0005 and µL0−CL = 0.0005 are selected for colored signal.
Further, the kernel size is chosen as 0.9 for MCC and its
variant algorithms, ρ is 610-7 for ZA-MCC and RZA-MCC
algorithms, ε is 30 for the RZA-MCC algorithm.

The performance comparisons of the L0-CL algorithm un-
der different input signals for unknown channel analysis are
presented in Figs. 3 and 4, respectively. Fig. 3 and Fig. 4
show that the performance of the LAF algorithm outperforms
all the other algorithms except the L0-CL algorithm in WGN
signal, but gets worse performance than the APS algorithm
for the colored input signal. The proposed L0-CL algorithm
achieves the lowest normalized misalignment compared with
the mentioned algorithms in two different input signals for
identifying the sparse systems.
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Fig. 4. Performance of the L0-CL algorithm with colored input signal.

Next, to get the tracking performance of the L0-CL algorith-
m, we consider a two-group channel with active coefficients
distributed in [257,272] and [769,784]. The input signal is
chosen as colored noise, and the set-up of this experiment is
the same as considered earlier. The tracking performance of
the proposed L0-CL algorithm is investigated by one-group
and two-group channels mentioned above. Simulation results
are described in Fig. 5. It is found that the proposed L0-CL
algorithm outperforms others by producing lesser steady-state
misalignment and the faster convergence rate for tracking the
sudden changed sparse systems.
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Fig. 5. Tracking performance of the L0-CL algorithm with colored input
signal.

CONCLUSION

In order to improve the performance of sparse system
identification in impulse environment, the L0-CL algorithm
is proposed to exploit sparsity by introducing l0-norm to the
cost function as an additional constraint. The proposed method
can accelerate the convergence of near-zero coefficients in the
impulse response of sparse systems. Simulation results demon-
strate that the L0-CL algorithm accelerates the identification
of speed, and outperforms the mentioned algorithms in term
of the misalignment. The effects of parameters for the L0-CL
algorithm are also shown in the experiments.
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