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Abstract—Many i-vector based speaker verification use linear
discriminant analysis (LDA) as a post-processing stage. LDA
maximizes the arithmetic mean of the Kullback-Leibler (KL)
divergences between different pairs of speakers. However, for
speaker verification, speakers with small divergence are easily
misjudged. LDA is not optimal because it does not emphasize
on enlarging small divergences. In addition, LDA makes an
assumption that the i-vectors of different speakers are well mod-
eled by Gaussian distributions with identical class covariance.
Actually, the distributions of different speakers can have different
covariances. Motivated by these observations, we explore speaker
verification with geometric discriminant analysis (GDA), which
uses geometric mean instead of arithmetic mean when maximiz-
ing the KL divergences. It puts more emphasis on enlarging small
divergences. Furthermore, we study the heteroscedastic extension
of GDA (HGDA), taking different covariances into consideration.
Experiments on i-vector machine learning challenge indicate that,
when the number of training speakers becomes smaller, the
relative performance improvement of GDA and HGDA compared
with LDA becomes larger. GDA and HGDA are better choices
especially when training data is limited.

I. INTRODUCTION

Speaker verification aims to verify a person’s identity from
voice characteristics. I-vector based speaker verification sys-
tem [1] provides a method to map a variable length utterance
into a low dimensional fixed length i-vector in total variability
subspace. An i-vector is able to retain the essential information
of an utterance, such as speaker, language [2], and age [3].
Thus, it can be viewed as a front-end feature for further back-
end classifiers.

The state-of-the-art back-end classifier for i-vector
based speaker verification is linear discriminant analysis-
probabilistic linear discriminant analysis (LDA-PLDA) [4].
LDA transforms i-vectors to a lower dimensional space to
eliminate the undesired information in the total variability
subspace. Such a transformation attempts to maximize the
between-class scatter and minimize the within-class variation
[5]. Theoretically, it is equivalent to maximize the arithmetic
mean of the Kullback-Leibler (KL) divergences between
different classes’ distributions under the assumption that
these distributions are Gaussian with different means but an
identical covariance [6]. However, LDA faces two problems.
1), For speaker verification, non-target speakers which have
small divergences with target speakers are more easily
misjudged. Arithmetic mean treats all divergence equally and
does not emphasis the pair of speakers with small divergence.
LDA may merge two speakers with small divergence to

preserve large divergence. 2), the speakers’ i-vectors are not
necessary Gaussian distributions with an identical covariance.

To solve the first problem, some algorithms have been
proposed. One is weighted LDA (WLDA) [7], [8]. When cal-
culating the between-class scatter matrix, it adds a weighting
function to speaker pairs. The weighting function is defined
to weight the speakers with small distance more heavily. It
can increase the influence of speakers with small divergence
and reduce the speaker confusion. Another approach is local
pairwise LDA (LPLDA) [9]. It builds local confusable data for
each class and uses the pairs to compute between-class scatter
matrix. A third approach is locality preserving projection
(LPP) [10], [11]. LPP only focuses on the local data structure
of each i-vector with its K nearest within- and between-
speaker i-vectors. It attempts to ensure that nearby within-
class i-vectors are kept closer, while nearby between-class i-
vectors are mapped farther apart. Such a design can reduce
the influence of speakers with large divergence because the
i-vector pairs with large distance are ignored. All these three
methods emphasis distinguishing the confusable i-vectors from
different speakers with small distance. But ignore the con-
fusable i-vectors from the same speaker with large distance.
Considering this, distance-dependent metric learning (DDML)
[12] is proposed. When the i-vectors have small distance, it
focuses more on expanding the negative pairs. When the i-
vectors have large distance, it focuses more on shrinking the
positive pairs. Nevertheless, all the above methods need to
calculate the distance between i-vector pairs and increase the
computation complexity.

For the i-vector distribution, in [13], heavy-tailed distribu-
tion in place of Gaussian distribution is used to diminish the
effect of outlying data. The resulting better performance pro-
vides evidence for non-Gaussian behavior of i-vectors. Based
on this non-Gaussian behavior, nonparametric discriminant
analysis (NDA) [14], [15] calculates both within and between
class scatter matrices on a local basis using a nearest neighbor
rule. Non-Gaussian behavior make the i-vector modeling more
complex. Therefore paper [16] performs a non-linear transfor-
mation (length normalization) of the i-vectors and finds that
length normalized i-vectors can be approximately modeled as a
Gaussian distribution. For short utterance speaker verification,
paper [17] propose short utterance variance normalization
(SUVN) technique and an utterance variance (SUV) modelling
to improve system performance. Even though, the covariances
of different speakers are still different.
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In this paper, we propose to investigate a new discriminant
analysis technique, named as geometric discriminant analysis
(GDA), for i-vector based speaker verifiaction. It is based on
geometric mean instead of arithmetic mean used in LDA.
Geometric mean is introduced in subspace selection in [6].
It amplifies the effects of small divergences and reduces
the effects of large divergences. We further extend GDA
to heteroscedastic version to take the influence of different
speaker covariances into consideration.

The remainder of this paper is organized as follows. Section
2 gives a brief review of LDA. Section 3 presents the motiva-
tion of this paper, and proposes GDA and heteroscedastic GDA
algorithms. Section 4 describes the experiments and discusses
the results. In section 5, a conclusion is made.

II. LINEAR DISCRIMINANT ANALYSIS

LDA aims to find a low-dimensional subspace, in which
different classes are well separated. Suppose the sth class
contains ns samples {xs,k}ns

k=1 and has an expected mean of
µs. The between-class scatter matrix and within-class scatter
matrix are defined as [5], [18]:

Sb =
1

n

S∑
s=1

ns(µs − µ)(µs − µ)t,

Sw =
1

n

S∑
s=1

ns∑
k=1

(xs,k − µs)(xs,k − µs)
t,

(1)

where n =
∑S

s=1 ns is the size of the training set, S is the total
class number, µ = 1

n

∑S
s=1

∑ns

k=1 xs,k is the overall sample
mean. LDA can be formulated as an optimization problem to
find a subspace that maximizes the ratio of the between-class
scattering to the within-class scattering, as

W = argmax
W

tr
(
(WtSwW)−1WtSbW

)
(2)

Theoretically, maximizing the ratio of the between-class
scattering to the within-class scattering is equal to maximizing
the arithmetic mean of the KL divergences between different
classes under the assumption that different class data distri-
butions are Gaussian distributions with different means but
identical covariance. It is proved in [6] and simply described
below.

Proof: Suppose the ith class data follows Gaussian dis-
tribution pi = N (x;µi,Σ) and the data after projection is
y = Wtx. Then the KL divergence between two projected
classes can be calculated as

DW(pi||pj) =
1

2
tr
(
(WtΣW)−1(WtΣijW)

))
+ c (3)

where Σij = (µi − µj)(µi − µj)
t, c represents a constant.

To maximizing the arithmetic mean of the KL divergences
between different classes, the projection matrix can be found
by solving the object function:

W = argmax
W

∑
1≤i6=j≤S

qiqj∑
1≤m6=n≤S

qmqn
DW(pi||pj), (4)

where qi = ni/n. It can be further transformed into:

W = argmax
W

∑
1≤i6=j≤S

qiqjDW(pi||pj)

= argmax
W

∑
1≤i6=j≤S

qiqj tr
(

(WtΣW)−1WtΣijW
)

= argmax
W

tr
(

(WtΣW)−1Wt(
S−1∑
i=1

S∑
j=i+1

qiqjΣij)W
)
.

Submit Sb =
∑S−1

i=1

∑S
j=i+1 qiqjΣij [19] and Sw = Σ into

the above equation, we can get (2). Thus, it is proved that LDA
is to maximizing the arithmetic mean of the KL divergences
between different classes under the assumption that different
classes have a same covariance.

III. GEOMETRIC DISCRIMINANT ANALYSIS

A. Geometric Mean

Fig. 1. Compare LDA projection with optimal projection.

1) Motivation: LDA maximizes the arithmetic mean of the
KL divergences between different pairs of speakers. As shown
in Fig. 1, it may preserve large divergence and neglect small
divergence to obtain the arithmetic mean maximization. Then,
speaker 2 and speaker 3 merge with each other in the projected
subspace and introduce mistake. In fact, when more attention
is payed to expand the speakers with small divergence, this
mistake can be avoided, such as the optimal projection in Fig.
1. The effect of speakers with small divergence should be
emphasized.

2) Realization: To solve the this problem, when maximiz-
ing the KL divergences between different speakers, we use
geometric mean [6] instead of arithmetic mean.

W = argmax
W

∏
1≤i6=j≤S

DW(pi||pj)
qiqj∑

1≤m6=n≤S
qmqn

(5)
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where DW(pi||pj) is the same as (3). To simplify the calcu-
lation, we apply a log function, which is a strict monotonic
real-valued increasing function, to (5). Then obtain the loss
function:

L(W) =− log
∏

1≤i6=j≤S

DW (pi||pj)
qiqj∑

1≤m6=n≤S
qmqn

=−
∑

1≤i6=j≤S

qiqj∑
1≤m6=n≤S

qmqn
logDW(pi||pj)

(6)

Compared (6) with (4), we can find that, in (6), the diver-
gence DW(pi||pj) is handled with an additional log function.
As shown in Fig. 2, function log(x) has the characteristic
that the larger x is, the smaller its derivative becomes. When
x is large enough, the increase of x will bring little in the
increase of log(x). That means, increasing a small DW(pi||pj)
will bring more benefit to minimizing the loss function than
increasing a large DW(pi||pj). Therefore, the effect of large
divergences is reduced and the effect of small divergences is
amplified.

Fig. 2. Log function and its derivative when x > 0.

The projection matrix W can be trained by gradient descent
algorithm with the derivative computed as

∂L(W)

∂W
= −

∑
1≤i6=j≤S

qiqjD
−1
W (pi||pj)∑

1≤m6=n≤S
qmqn

∂DW(pi||pj)
∂W (7)

where

∂DW(pi||pj)
∂W

= DijW(WtΣW)−1

−ΣW(WtΣW)−1WtDijW(WtΣW)−1.
(8)

B. Heteroscedastic Extension

1) Motivation: Given a speaker s, its GMM supervector
ms can be represented as:

ms = mubm + Txs (9)

where mubm is the universal background model (UBM) su-
pervector. T is the total variability matrix. I-vector xs and its
posterior covariance matrix Λ−1s can be estimated as:

xs = Λ−1s TtΣ−1ubmF s

Λs = I + TtΣ−1ubmNsT
(10)

where Σubm is the covariance matrix of UBM. Ns and F s

are the zero and first Baum-Welch statistics of speaker s,
respectively.

For each speaker, Ns is different, resulting in different
covariance matrix Λ−1s . However, both LDA and GDA algo-
rithms assume that different speakers have the same covariance
Σ. This assumption loses speaker information and degrades
system performance.

2) Realization: We extend the GDA to its heteroscedastic
version (HGDA). The loss function of HGDA is the same as
GDA in (6), but the representation of DW(pi||pj) is different.
In HGDA assumption, the ith speaker follows Gaussian distri-
bution pi = N (x;µi,Σi). That means different speakers have
different means and covariances. The KL divergence between
two speakers after projection is

DW(pi||pj) =
1

2

(
ln |WtΣjW| − ln |WtΣiW|

+ tr
(
(WtΣjW)−1(Wt(Σi + Σij)W)

))
(11)

The derivative of KL divergence with respect to W is also
different from (8) and computed as

∂DW(pi||pj)
∂W

= ΣjW(WtΣjW )−1 −ΣiW(WtΣiW)−1

+ (Σi + Σij)W(WtΣjW)−1

−ΣjW(WtΣjW)−1Wt(Σi + Σij)W(WtΣjW)−1

(12)
Submit (11) and (12) to (7), we can get the derivative of

the loss function and carry out the gradient descent algorithm.

IV. EXPERIMENTS

A. Dataset

The proposed methods are evaluated on the i-vector machine
learning challenge [20]. This challenge takes i-vectors instead
of speech as input to examine the backend of speaker verifica-
tion system. The enrollment set contains 1306 speakers, each
of which is enrolled with 5 i-vectors. There are totally 9634
test i-vectors and 12582004 trials. The trials are randomly
divided into a progress subset and an evaluation subset. In
addition, a development set containing 36572 labeled i-vectors
and totally 4958 speakers are also provided. All the i-vectors
have 600 dimensions.

B. Configuration

The cosine system is one baseline system with the following
processes: 1) Use the development data to estimate a global
mean and covariance. 2) Center and whiten all the i-vectors
based on the estimated mean and covariance. 3) Do the length
normalization for all the i-vectors. 4) For each model, average
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its five i-vectors and then do the length normalization for the
resulting average-model i-vector. 5) Compute the inner product
between all the average-model i-vectors and test i-vectors.

PLDA system has the same processes of cosine system,
except in step 5), it uses PLDA instead of inner product to
make scores. The dimension of PLDA is 100.

LDA/GDA/HGDA-cosine and LDA/GDA/HGDA-PLDA
systems are the same as cosine and PLDA systems, respec-
tively. Except that before step 5), all the 600-dimensional i-
vectors are reduced to 200-dimensional by LDA/GDA/HGDA
and then their length are re-normalized. The covariance matrix
in GDA is set to be full. While in HGDA, the covariance
matrix of each speaker is diagonal. Mini-batch gradient de-
scent with momentum is used to train GDA and HGDA. The
batch size is 128 and the weight of last gradient is 0.8. As
the concavity of L(W) cannot be guaranteed, we randomly
initial the transform matrix 5 times and select the one with
best performance. It should be noted that, after the training of
GDA and HGDA, W needs to be orth-normalized.

Performance is evaluated using the equal error rate (EER)
and minimum decision cost function (MDCF) defined in [20].

C. Results Analysis

Three groups of experiments are carried out in the i-vector
machine learning challenge. Each group explores the effect
of LDA, GDA, and HGDA dimension reduction methods in
combination with cosine or PLDA scoring method. In the
first group, all the data in development and enrollment set,
totally 6264 speakers, are used to train LDA, GDA, HGDA,
and PLDA. In the second group, only 3000 speakers in
development set are chosen as training data. For the third
group, only 1500 speakers in development set are used for
training.

TABLE I
EXPERIMENT RESULTS OF DIFFERENT SYSTEMS. ALL DATA ARE USED AS

TRAINING DATA.

Methods Evaluation Set Progress Set
EER[%] MDCF EER[%] MDCF

cosine 4.49 0.378 5.16 0.386
LDA-cosine 3.61 0.310 4.14 0.319
GDA-cosine 3.52 0.304 3.78 0.315

HGDA-cosine 3.39 0.301 3.67 0.310
PLDA 2.92 0.299 3.22 0.308

LDA-PLDA 2.44 0.280 2.56 0.292
GDA-PLDA 2.35 0.274 2.50 0.286

HGDA-PLDA 2.34 0.272 2.47 0.285

The results of these three groups are list in Table I, II, and
III, respectively. From each of the three tables, we can see
that, with a same cosine or PLDA scoring method, GDA has
better performance than LDA. We think the reason for the
improvement is that LDA may merge two speakers with a
small divergence in the projected subspace so that large diver-
gences can be preserved as much as possible to meet the goal
of arithmetic mean maximization. In contrast, GDA focuses
on maximizing geometric mean, which emphasizes enlarging
small divergence, and can better separate easily-confused

speakers. HGDA further improves the system performance.
This demonstrates the effectiveness of modeling different
speakers with different covariances. The relative performance
improvement of HGDA-PLDA compared with LDA-PLDA
is smaller than that of HGDA-cosine compared with LDA-
cosine. It maybe because PLDA also models different speakers
with a same covariance. Its assumption is in contradiction with
that of HGDA.

TABLE II
EXPERIMENT RESULTS COMPARISON. ONLY 3000 SPEAKERS IN

DEVELOPMENT SET ARE CHOSEN AS TRAINING DATA.

Methods Evaluation Set Progress Set
EER[%] MDCF EER[%] MDCF

cosine 4.49 0.378 5.16 0.386
LDA-cosine 3.80 0.326 4.23 0.337
GDA-cosine 3.63 0.309 3.84 0.324

HGDA-cosine 3.49 0.304 3.76 0.318
PLDA 3.37 0.329 3.53 0.345

LDA-PLDA 2.98 0.318 3.07 0.333
GDA-PLDA 2.86 0.301 2.95 0.318

HGDA-PLDA 2.81 0.297 2.86 0.315

TABLE III
EXPERIMENT RESULTS COMPARISON. ONLY 1500 SPEAKERS IN

DEVELOPMENT SET ARE CHOSEN AS TRAINING DATA.

Methods Evaluation Set Progress Set
EER[%] MDCF EER[%] MDCF

cosine 4.49 0.378 5.16 0.386
LDA-cosine 3.97 0.335 4.41 0.352
GDA-cosine 3.74 0.316 3.91 0.329

HGDA-cosine 3.55 0.308 3.79 0.324
PLDA 3.40 0.345 3.73 0.363

LDA-PLDA 3.03 0.331 3.34 0.346
GDA-PLDA 2.89 0.305 3.10 0.320

HGDA-PLDA 2.82 0.306 3.02 0.323

Fig. 3. The Variations of EER with Speaker Number.

In order to compare the effect of different dimension re-
duction methods more intuitive, the variations of EER with
training speaker number of LDA-PLDA, GDA-PLDA, and
HGDA-PLDA systems in progress set are given in Fig. 3. It
can be seen that when the training speaker number becomes
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smaller, the performance of LDA degrades more severely
than GDA and HGDA. The relative performance improvement
of GDA and HGDA goes larger. We suspect that when the
speakers number is smaller, the speakers tend to distribute in
the space more sparsely. And the situation in Fig. 1 occurs
more often. Thus, GDA and HGDA are more effective.

V. CONCLUSION

In this paper, we explore the application of geometric
discriminant analysis (GDA) to i-vector based speaker veri-
fication. It maximizes the geometric mean of KL divergences
instead of the arithmetic mean used in LDA. Thus it can
put more emphasis on separating the speakers with small
KL divergences. GDA is further extended to heteroscedastic
version (HGDA). HGDA can model the i-vector distributions
of different speakers more precisely. Experiment results indi-
cate that, when the training speaker number becomes smaller,
the relative performance improvement of GDA and HGDA
compared with LDA becomes larger. GDA and HGDA are
better choices especially when training data is limited.

In our future work, we will explore the performances
of GDA and HGDA for x-vector based speaker verification
system.
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