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Abstract—The linear canonical transform (LCT) provides a
general mathematical tool for solving problems in optical and
quantum mechanics. For random signals, which are bandlimited
in the LCT domain, the linear canonical correlation function
and the linear canonical power spectral density can form a
LCT pair. The linear canonical translation operator, which is
used to define the convolution and correlation functions, also
plays a significant role in the analysis of the random signal
estimation. Firstly, the eigenfunctions which are invariant under
the linear canonical translation and the unitarity property of it
are discussed. Secondly, it shows that all of these connect the
LCT sampling theorem and the von Neumann ergodic theorem
in the sense of distribution, which will develop an estimation
method for the power spectral density of a chirp stationary
random signal from one sampling signal in the LCT domain.
Finally, the potential applications and future work are discussed.

Index Terms—Linear canonical transform, Random signal,
Power spectral density, Ergodicity, Quantum mechanics

I. INTRODUCTION

The linear canonical transform (LCT) provides a general
mathematical tool for solving problems in nonstationary signal
processing, radar, sonar, optical and quantum mechanics [1-
4]. It is a four parameter (a, b, c, d) class of linear integral
transform and many well-known signal processing operations
are its special cases, such as the Fourier transform (FT),
fractional Fourier transform (FRFT), Fresnel transform and s-
caling operations. The deterministic signal analysis in the LCT
domain has had a researchful study, such as the convolution
theorem, the correlation function, the sampling theorem and
so on [5-10]. The random signal analysis in the LCT domain
has also been researched in several literatures [11-16].

In the stochastic signal processing, a stochastic process is
said to be stationary in a wide sense when it has a zero
mean and its auto-correlation function does not change over
time [11-13]. The Wiener-Khinchine theorem is an important
theorem in the random signal analysis, which states that the
power spectrum density and the correlation function form a
FT pair. Similarly, it has been proved that for a nonstationary
signal, if it is chirp stationary in a LCT domain, the linear
canonical correlation function and the linear canonical power
spectral density of the signal form a LCT pair [13].

As is known to all, the convolution and correlation functions
for a transform operation can be defined using the time-
shift operator. Jun Shi et al. have proposed the generalized

convolution and product theorems associated with LCT by in-
troducing a linear canonical translation operator [5]. Actually,
the translation operator defined in [5] includes the shifts in
time, frequency and linear modulated frequency. The ergodic
theory has been introduced by Boltzmann in the context of
statistical mechanics, which is the study of the conditions that
permit to change a temporal average by an ensemble average
[17]. The von Neumann’s theorem considered advantages in
spectral resolution of linear operators, such as the FT and
consequently in the harmonic analysis. Sampling theorem
plays an important role in the digital signal processing. The
sampling theorems and error estimates for random signals in
the linear canonical transform domain have been studied in the
mean square sense [13]. In this paper, we will first discuss the
properties of the linear canonical translation operators which
has been defined in [5] in detail, then establish the relationship
between the sampling theorem and the von Neumann ergodic
theorem, and last estimate the power spectral density of a
random signal in the LCT domain in the sense of distributions.

The paper is organized as follows: Section II reviews the
preliminaries about the LCT and the nonstationary random sig-
nal analysis in the LCT domain. In Section III, the properties
of the linear canonical translation operator are researched first.
Then, the von Neumann ergodic theorem for linear canonical
translation and random signal estimation by ergodicity are
proposed. Section IV concludes the paper.

II. PRELIMINARIES

A. The linear canonical transform

The LCT with real parameter M = (a, b, c, d) of a signal
f(t) is defined as [1]

FM(u) = LM[f(t)](u)

=

{
BM

∫∞
−∞ f(t)KM(u, t)dt, b ̸= 0√

dej(cd/2 )u2

f(du), b = 0
(1)

where KM(u, t) = ej
1
2 (

a
b t

2− 2
b tu+

d
b u

2) is the transform kernel,
BM =

√
1/(j2πb) , and det(M) = ad − bc = 1. The

inverse transform of the LCT is given by the LCT with
parameter M−1 = (d,−b,−c, a). From the definition of the
LCT, it is obvious that the LCT with special parameters
could reduce to the transforms what are familiar, such as
the FT when M = (0, 1,−1, 0), the FRFT when M =
(cosα, sinα,− sinα, cosα), the Fresnel transform when M =
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(1, b, 0, 1) and so on. More details about the properties of the
LCT can be found in the references [1-5].

Using the quantum mechanical notation [4], the LCT of the
signal f(t) can be written as

LM[f(t)](u) = BM

∫ ∞

−∞
dt ⟨u|KM |t⟩ ⟨t|f⟩

= BM ⟨u|KM |f⟩
= ⟨u|FM⟩
= FM(u), (2)

where the function is denoted as f(t) = ⟨t|f⟩ and
⟨u|KM |t⟩ = KM(u, t) gives the representation of the LCT
kernel in quantum mechanics.

B. Nonstationary random signal analysis in LCT domain

The stationarity is one of the most important concepts in
random signal processing. For a nonstationary signal x(t), if
its modulated form x(t)ejat

2/2b is stationary in the wide sense,
the signal is said to be chirp stationary [11-13]. The LCT auto-
correlation function is defined as [13]

RM
xx(t1, t2) = E{x(t1)x∗(t2)ejat2(t1−t2)/b }. (3)

When the random signal is linear canonical chirp stationary,
we have that

RM
xx(t1, t2) = RM

xx(τ) |τ=t1−t2 . (4)

The LCT power spectral density and the LCT auto-
correlation function form a LCT pair as follows

PM
xx (u) =

√
1

−j2πb
LM[RM

xx(τ)](u)e
−jdu2/(2b) . (5)

Obviously, the result reduces to the Wiener-Khinchine theorem
when M = (0, 1,−1, 0).

III. MAIN RESULTS

A. The linear canonical translation operator

The time-shift operator plays a significant role in the
definition of convolution and correlation functions [5]. In
this subsection, we introduce the linear canonical translation
operator and study its properties first, which will be used in
the future work.

The linear canonical translation operator Tτ,M with param-
eter M = (a, b, c, d) and value τ is defined as [5]

Tτ,M[f ](t) = f(t− τ)e−jτ(t−τ/2 )a/b . (6)

It satisfies the following property based on the definition of
the LCT

LM{Tτ,M[f ]}(u) = FM(u)e−juτ/b , (7)

where FM(u) is the LCT of f(t). When M = (0, 1,−1, 0),
the operator Tτ,M reduces to the ordinary time-shift operator
Tτ [f ](t) = f(t− τ).

It is easy to prove that the linear canonical translation
operator forms a commutative group which holds the following
group property

Tτ,M ◦ Tυ,M = Tτ+υ,M. (8)

Therefore,

Tnτ,M = Tτ,M ◦ Tτ,M ◦ · · · ◦ Tτ,M = Tn
τ,M

. (9)

As a result, the group of the linear canonical translations
{Tτ,M : −∞ < τ < ∞} is a real-parameter group, and its
inverse operator is T−1

τ,M
= T−τ,M and identity operator is

T0,M = I .
Next, we analyze the properties of the linear canonical

translation.
(a) The eigenfunctions of linear canonical translation
For the set of the orthonormal functions

φx,M(x′) = BMe
j 1
2 (

a
b x

2− 2
bxx

′+ d
b x

′2), (10)

it can be shown that these functions satisfy the following
eigenvalue equation:

Tτ,M−1 [φx,M](x′)

= φx,M(x′ − τ)ejτ(x
′−τ/2 )d/b

= BMej
1
2 (

a
b x

2− 2
bx(x

′−τ)+ d
b (x

′−τ)2)ejτ(x
′− τ

2 )
d
b

= BMej
1
2 (

a
b x

2− 2
bxx

′+ 2
bxτ+

d
b x

′2)

= ej
1
bxτφx,M(x′). (11)

Therefore, the functions φx,M(x′) are the eigenfunctions of
the operator Tτ,M−1 with the eigenvalue λx,M = ej

1
bxτ .

(b) The invariant subspace of linear canonical translation
The following functions are the subset of the eigenfunctions

of Tτ,M−1 ,

φ2πn b
τ ,M(x′) = BMe

j 1
2 ((2πn)

2 ab
τ2 −2πn 2

τ x′+ d
b x

′2), (12)

where n is an arbitrary integer. The corresponding eigenvalue
is λ2πn b

τ ,M = 1, i.e.

Tτ,M−1 [φ2πn b
τ ,M](x′) = φ2πn b

τ ,M(x′). (13)

These functions are invariant functions under the linear canon-
ical translation Tτ,M−1 . It can be proved that they have the
property of orthogonality. For the functions φ2πn b

τ ,M and
φ2πm b

τ ,M, we calculate∫ τ/2

−τ/2

φ2πn b
τ ,M(x)φ∗

2πm b
τ

,M
(x)dx

=
1

2πb
ej

1
2 [(2πn)

2−(2πm)2] ab
τ2

∫ τ/2

−τ/2

e−j(2πn−2πm) 1
τ xdx.

(14)

And because of∫ τ/2

−τ/2

e−j[2πn−2πm] 1τ xdx = τ · δn,m, (15)
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we can obtain ∫ τ/2

−τ/2

φ2πn b
τ ,M(x)φ∗

2πm b
τ

,M
(x)dx

=
τ

2πb
ej

1
2 [(2πn)

2−(2πm)2] ab
τ2 δn,m. (16)

That is to say, the invariant functions φ2πn b
τ ,M(x) under

the linear canonical translation Tτ,M−1 are orthonormal, and
constitute a complete set in x ∈ [−τ/2 , τ/2 ].

(c) The unitarity of linear canonical translation
The linear canonical translation can be defined by the

integral form

Tτ,M[f ](x) =

∫
R

f(u)Kτ,M(x, u)du, (17)

where the kernel is

Kτ,M(x, u) = δ(x− τ − u)e−j a
b u(x−u)e−j a

2b τ
2

. (18)

The evaluation of the Hermitian adjoint of Kτ,M(x, u) leads
to

K†
τ,M

(x, u) = Kτ,M(u, x)

= δ(u− τ − x)ej a
b x(u−x)ej

a
2b τ

2

, (19)

from where we obtain∫
R

f(u)K†
τ,M

(x, u)du = T−τ,M[f ](x). (20)

Consequently, the linear canonical translation is an unitary
operator and satisfies the identity

T †
τ,M
◦ T−1

τ,M
= T−1

τ,M
◦ T †

τ,M
= I. (21)

B. The von Neumann ergodic theorem for linear canonical
translation

The ergodic theorem due to von Neumann states that
for a given unitary operator U on the Hilbert space H =
L2(Ω, F,P), where (Ω, F,P) is a probability space, in general
U can be any isometric operator on H , and the orthogonal
projection P onto the subspace of all function invariant under
U , {φ ∈ H |Uφ = φ} ; the following limit

lim
N→∞

1

N

N−1∑
n=0

Unf = Pf = E{f |FI } (22)

exists for any f ∈ H in the sense of the norm convergence

in H . In other terms, 1
N

N−1∑
n=0

Un converges to P in the strong

operator topology [17].
For a wide sense stationary random signal U(x), which is

bandlimited with band width uM in the LCT domain with
parameter M, the linear canonical auto-correlation function
RM is also a random function. Considering the sampled
version of RM as follows

R̃M(x) =
2πb

uM

∞∑
n=−∞

RM(n
2πb

uM
)δ(x− n2πb

uM
), (23)

where the sampling interval is 2πb
uM

. Then,

LM[R̃M](u)

=
2πbBM

uM

∞∑
n=−∞

RM(n
2πb

uM
)e

j 1
2 [(2πn)

2 ab
u2
M

−2πn 2u
uM

+ d
b u

2]
.

(24)

On the other hand, if we use the Poisson summation formula∑
n

δ(t− nT ) =
∑
k

1

T
ejk

2π
T t, (25)

(23) can be rewritten as

R̃M(x) = RM(x)
∞∑

n=−∞
ejnuMx/b . (26)

Then, in combination with the frequency shift property of LCT

LM[ejµxf(x)](u)

= LM[f(x)](u− bµ)ejdµue−jbdµ2/2 , (27)

and the linear canonical translation (6), we can obtain

LM[R̃M](u)

=

∞∑
n=−∞

LM[R̃M](u− nuM)ej
d
b (nuMu)e−j d

2b (nuM)2

=
∞∑

n=−∞
TnuM,M−1LM[R̃M](u). (28)

From the result of (24) and (28), by using the property of
linear canonical translation in (9), we obtain

∞∑
n=−∞

TnuM,M−1LM[R̃M](u)

=

∞∑
n=−∞

Tn
uM,M−1LM[R̃M](u)

= BM
2πb

uM

∞∑
n=−∞

RM(n
2πb

uM
)e

j 1
2 [(2πn)

2 ab
u2
M

−2πn 2u
uM

+ d
b u

2]
.

(29)

We can see that the above expression closely resembles the
form of the von Neumann Mean Ergodic theorem in (22).

C. Random signal estimation by ergodicity

Utilizing the representations in quantum mechanics, denote
a function in the position representation as φ2πnb/τ ,M(x′) =⟨
x′|φ2πnb/τ ,M

⟩
, then we can write∣∣LMRM
⟩
=

∫
R

RM(x)
∣∣φ2πnb/uM ,M

⟩
dx. (30)

The above expression is in general true for random sig-
nals whose auto-correlation function RM(x) ∈ H , where
H = L2(Ω, F, P ) is a Hilbert space. Nevertheless, the above
identity is fulfilled in the sense of distribution.
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The orthogonal projection operator onto the space of all
vectors invariant under TuM,M−1 is given by

PuM,M =

∞∑
n=−∞

∣∣φ2πnb/uM ,M

⟩ ⟨
φ2πnb/uM ,M

∣∣, (31)

and considering the following result⟨
φ2πnb/uM ,M|φx,M

⟩
= δ(2πnb/uM − x), (32)

we have

BM
2πb

uM

∞∑
n=−∞

RM(n
2πb

uM
)e

j 1
2 [(2πn)

2 ab
u2
M

−2πn 2u
uM

+ d
b u

2]

=
2πb

uM
⟨u|PuM,M

∣∣LMR
M
⟩
. (33)

Substituting (33) into (29), we can obtain that
∞∑

n=−∞
Tn

uM,M−1

∣∣LMRM
⟩
=

2πb

uM
PuM,M

∣∣LMR
M
⟩
. (34)

The result is analogous to the von Neumann ergodic theorem
of (22), but is in the sense of distribution. As the linear
canonical correlation and LCT power spectral density form
a LCT pair, the result of (34) can be rewritten as

∞∑
n=−∞

Tn

uM,M−1

∣∣PM
⟩
=

2πb

uM
PuM,M

∣∣PM
⟩
. (35)

Therefore, the power spectral density of a random signal can
be estimated by the ergodicity from the power spectral density
of the sampling signal in the LCT domain.

D. Potential applications and future work

The estimation method of the power spectral density of a
random signal from its sampling signal has been discussed. In
practical applications, the signals are usually analyzed with
random property as the influence by the external factors,
such as in the applications of sea clutter suppression and
micromotion marine target detection [18]. Some detection and
estimation methods based on LCT has been proposed and
verified to be effective in the detection of marine target with
micromotion [19]. The method discussed in this paper may be
also effective in some similar applications, which will be our
future work.

IV. CONCLUSION

In the paper, the linear canonical translation operator which
can be used to define generalized convolution and product
theorems in the LCT domain is analyzed first, including its
eigenfunctions, the invariant subspace and unitarity. Asso-
ciating the von Neumann ergodic theorem with the linear
canonical translation operator, the power spectral estimation

of the random signal in the LCT domain is proposed by the
ergodicity in the distribution sense.
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