
Dynamic Threshold for DDoS Mitigation in SDN Environment 
Guo-Chih Hong†, Chung-Nan Lee* and Ming-Feng Lee+ 

Department of Computer Science and Engineering 
National Sun Yat-sen University, Kaohsiung, Taiwan 

†E-mail: shps950418@gmail.com  Tel: + 886-7-5254335 
*E-mail: cnlee@mail.cse.nsysu.edu.tw  Tel: + 886-7-5252000 ext. 4313 
+ E-mail: mflee@mail.nsysu.edu.tw  Tel: + 886-7-5252000 ext. 4335 

 
 
 

Abstract—Software-Defined Networking (SDN) is one of the 
key technologies of 5th generation mobile networks (5G). 
However, like the traditional network architecture, SDN is 
also vulnerable to the Distributed Denial of Service (DDoS) 
attack. This paper explores the dynamic threshold for DDoS 
attack in the SDN environment. Through the characteristics of 
SDN, we propose a feasible DDoS detection and defense 
mechanism. The proposed mechanism calculates the entropy 
of the network environment by the collected traffic status, and 
derives a dynamic threshold according to the network 
conditions to determine whether the environment is subject to 
DDoS attacks. In the event of a DDoS attack, the proposed 
mechanism discards the traffic from the malicious nodes to 
the victim nodes with a flow entry. In addition, if no DDoS 
attacks occur in the environment, the proposed system can 
disperse the traffic of the SDN switch, thereby balance the 
traffic load in the environment. 

A. INTRODUCTION 

The fifth generation (5G) mobile communication network 
will be the foundation for communications and computing in 
next few years. According to the requirements defined by the 
Next Generation Mobile Networks Alliance (NGMN) for the 
5G mobile communication network, it will have significant 
improvements in all aspects compared to the fourth generation 
(4G) mobile communication network. The application of 5G 
is bound to become a major boost to the development of 
technology in the future. Software-Defined Networking 
(SDN) is one of the key technologies for 5G networks. SDN 
uses the remote controller to control the SDN switches to 
forward packets in a specific or optimal route and reduces the 
redundant packet forwarding process to improve transmission 
efficiency. 

At present, there are some security issues in SDN. After 
entering the 5G era, if these security issues have not been 
resolved, these problems will continue in the 5G environment 
and endanger its usage. The impact of these security issues 
can range from small IOT devices to cloud servers or data 
centers, and even the entire network can cause irreparable 
damage. 

SDN is a relatively new communication architecture 
compared to traditional networks and uses newer 
communication protocols and relies entirely on the central 

controller. Once the controller is compromised, the entire 
network where the controller is located may be subject to 
considerable risk. Although some organizations or researches 
have proposed the expected policy of security vision and 
security issues for the SDN network architecture, there is no 
more specific and complete treatment for Distributed Denial 
of Service (DDoS) attacks. 

DDoS attacks often use many zombie computers (or called 
botnets), which are computers that are controlled by malicious 
attackers after being infected by malicious software. Zombie 
computers launch attacks in accordance with the control of 
the attackers, and usually the owners of these computers are 
not aware that their computers have been implanted with 
malicious programs. The types of DDoS attacks can be 
mainly divided into two categories, namely bandwidth 
consumption and resource consumption attacks. The purpose 
of bandwidth consumption attack is to consume the network 
bandwidth of the attacked target, so that the network 
bandwidth of the target is filled, resulting in the inability to 
provide services. On the other hand, the purpose of resource 
consumption attack is to exhaust the hardware or system 
resource of the attacked target and make it difficult for the 
system to handle other tasks, resulting in its inability to 
provide services stably. Common DDoS attacks include UDP 
flood, TCP SYN flood, ICMP flood, Http Flood and so on. 

This study focuses on DDoS detection and defense in SDN 
environment. In this work, we use OpenDaylight, an open 
source software, as the central controller for the SDN 
environment, and conduct research on DDoS treatment 
through OpenDaylight. The characteristics of this study are as 
follows. 

1. In the related research similar to this work, the 
thresholds of traffic and entropy used to determine 
whether the network environment is subject to DDoS 
attacks are mostly fixed values. The disadvantage of 
using fixed thresholds is that it cannot cope with a 
changing network environment. Network traffic has 
the characteristics of high usage period and low usage 
period with time. If a single and fixed threshold is 
used to judge whether or not to suffer DDoS, there 
will be a misjudgment. Therefore, based on statistics 
and observing the status of the network environment, 
we propose a mechanism for defining dynamic 
thresholds to adapt to the changing network 
environment. In addition, compared to some existing 

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China 

1978-988-14768-7-6©2019 APSIPA APSIPA ASC 2019



methods that use dynamic thresholds [6, 7, 8], the 
proposed mechanism has the ability to prevent 
misjudgment if the entropy of the system slowly 
approaches steady state over time. 

2. For peak network traffic or heavy traffic that is not 
subject to DDoS attacks, the proposed system 
balances the load on the network devices in the SDN 
environment, so that hardware resources can be used 
more efficiently and the transmission delay in the 
environment is reduced. 

3. In the related research similar to this work, most 
DDoS defense schemes only deal with some specific 
SDN switches, whereas the proposed mechanism can 
monitor and manage all switches in the whole SDN 
environment. In addition to being able to find the 
source of the corrupted switch, the proposed 
mechanism can optimize the entire SDN environment. 

4. The load balancing proposed here considers both the 
number of hops passing through the packet 
transmission path and the traffic utilization of the 
transmission route. Compared to considering only one 
of the above elements, the proposed scheme can 
choose a more suitable route and avoid inappropriate 
path switching. 

II. RELATED WORK  

Arbettu et al. [1] analyzed several SDN controllers that are 
currently used more frequently, and each controller provides 
different security mechanisms. Because of the different 
security mechanisms, the security problems faced by various 
controllers are also different. However, the common security 
problem of these SDN controllers is that the countermeasures 
against DDoS attacks still need to be strengthened. In addition, 
from some researches [2] [3], it can be known that DDoS is 
still a difficult security problem in the SDN environment. At 
present, some studies have focused on DDoS detection and 
defense in SDN environment. 

The main detection method in [4] is to use the network 
traffic monitoring tool iftop as a tool for traffic detection. 
Their method directly collects traffic in the environment with 
iftop and compares the end-to-end transmission throughput. If 
the value of req/resp exceeds a specified threshold, the 
transmission request is determined to be a malicious attack, 
and the defense mechanism for the attack is to directly drop 
the OpenFlow flow entry of the traffic to achieve the effect 
like using a firewall. Lawal and Nuray [5] used the traffic 
analysis tool sFlow to collect traffic on the entire network in 
the SDN environment. When the traffic of the transmission is 
greater than the pre-defined threshold, their defense 
mechanism determines that the traffic is an attack and then 
issues an OpenFlow flow rule to block the attack. 

Note that the traffic thresholds of the defense methods 
mentioned above [4, 5] are pre-defined static thresholds. 
Although these methods using static thresholds can work in 

situations that meet certain network conditions, if they are to 
be applied to different application scenarios, then their 
defense system needs to define a new threshold again to adapt 
to the new scenario. In contrast, the method of dynamically 
defining the threshold can be changed according to the status 
of the environment. Recently, dynamic thresholds have been 
used in some studies. Then we discuss the studies using 
dynamic thresholds for DDoS detection. 

The DDoS detection method proposed by Pande et al. [6] 
is to check the packet characteristics (packet length, type, etc.) 
when the packet is forwarded to the controller to determine 
how to arrange the transmission route. If it is a specific type 
of packet that is pre-defined as suspicious, it will be discarded 
directly. For example, the packet with TTL (Time To Live) 
error is discarded directly. If the packet is an ARP (Address 
Resolution Protocol) packet, it is judged whether the MAC 
address is already in the record table, and if not, the packet is 
discarded. After passing the above filtering mechanism, the 
traffic of the entire environment is finally judged. If the traffic 
is higher than the pre-defined threshold, different defenses are 
taken depending on whether it is on the same network 
segment as the victim. The method proposed by Gkountis et 
al. [7] is to use the SDN switch to send the packet to the 
controller in the form of OpneFlow packet_in, check the 
traffic and size of the packet sent to the controller, and 
compare it with a threshold to determine if there is a 
possibility of suffering a DDoS attack. The method then 
issues and adjusts the hard_timeout and idle_timeout 
parameters of flow entry according to the situation to reduce 
the packet flow sent to the controller for query. The method 
proposed by You et al. [8] is also to observe the 
characteristics of the environment traffic by transmitting the 
OpneFlow packet_in packet to the controller through the 
switches. The method collects the source IP, the destination 
IP, and the destination port of each packet_in packet to 
calculate entropy, and uses the rule of thumb of normal 
distribution as the benchmark for the threshold to detect 
whether or not the DDoS attack is suffered. However, if the 
entropy of the system slowly approaches the steady state over 
time, there may be a risk of misjudgment. 

The load balancing is also considered here. Attarha et al. 
[9] proposed a load balance method to determine whether the 
load in the transmission route exceeds the predefined 
maximum tolerance value. The tolerance value of their 
method is defined as 0.7 times of the capacity. When the load 
exceeds 0.7 times of the capacity, it means that the path is 
blocked and it is necessary to find a more suitable path. The 
path search method is to find all the paths that can be from the 
source to the target, then find the path that can also load the 
traffic flow, and finally direct flow to the found path.  Zakia 
and Yedder [10] first find the shortest paths from the source 
to the target by Dijkstra’s shortest path search method [12], 
and calculate the utilization of each shortest path. Finally, 
their method selects the path with the lowest utilization of 
these shortest paths as the best path and direct traffic flow to it.  

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China 

2



Nkosi et al. [11] also use Dijkstra’s shortest path search 
method to find the shortest paths from the source to the target 
and compare the load in these shortest paths. The method uses 
the path with the lowest load as the best path. Finally, traffic 
is directed to this best path. 

III. THE PROPOSED SYSTEM  

A. Architecture of Proposed Mechanism 

The traffic analysis tool in this study is sFlow. We use the 
functions provided by OpenDaylight and sFlow to collect the 
traffic status of the network environment that is used the 
proposed mechanism to process DDoS detection and defense. 
As shown in Figure 1, the architecture of the proposed system 
contains three modules. 

The DDoS detection and defense mechanism 
communicates with sFlow and OpenDaylight through the 
REST (Representational State Transfer) API (Application 
Programming Interface). The system obtains the topology and 
traffic information, and then manages the SDN network 
environment through OpenDaylight. The architecture can be 
divided into three modules, namely Collector, Manager and 
Executor. The Collector continuously collects the packets 
received and delivered by each SDN switch, and transmits the 
collected results to the Manager periodically. In addition, in 
order to make the maintenance of the administrator 
conveniently, Collector keeps the records of traffic collected 
within a time window, which is used for Manager to observe 
and make security strategy. The Manager is an important 
decision-making module. The main task is to detect whether 
the entire environment has been attacked by DDoS according 
to the collected data provided by the Collector. The Executor 
is a module that controls the OpenDaylgiht controller 
according to the instructions of the Manager, so that it can 
manage the OpenFlow switches to protect the entire SDN 
environment. 

The main operation process of the Manager is to use 
entropy with the package transfer data sent by Collector to 
determine whether a DDoS attack is likely to occur. If it is 
judged that the DDoS attack is happening, the Manager 
requests the Collector to collect the traffic status of the 
switches that may be under attack and transmits the 
corresponding policy to the Executor. Then the Executor 
controls and setups the switches according to the policy. If 
high traffic occurs and no attacks are found, the Manager 
balances the load of all IP flows within the network 
environment controlled by the Controller. The system finds 
all the routes from each source IP to the target IP by 
calculating the scores of all the routes by (9) which will be 
detailed in Section III-D, and searches the lowest score as the 
most suitable route. The system then compares whether the 
new route is more suitable than the original route, and if so, 
transfers the traffic to the new route, otherwise the original 
route is maintained. 

 

 

Figure 1. Architecture of the proposed system 

B. Process of the Proposed Mechanism 

Before entering the details of the proposed mechanism, we 
give the definition of some notations in Table 1. 

Table 1: Notations used in the proposed mechanism 
Notation Description ܪ Entropy ݊ Total number of traffic sources݅ The i-th traffic source 

௜ܲ  The probability of traffic flowing from the i-
th source to the detected target 

௜݂ Traffic from the i-th source received by the 
detected target (in bytes) 

௧݂ Total traffic received by the detected target 
(in bytes) ߤ The average traffic  in a traffic time window ߪ 

The standard deviation of traffic  in a traffic 
time window 

௧ܶ௥௔௙௙௜௖ The threshold of traffic ܶܮ௧௥௔௙௙௜௖  The lowest traffic threshold 

୉ܶ୬୲୰୭୮୷ Threshold for judging whether entropy is 
abnormal ܪୟ୴୥ The average value of entropy in a traffic 

time window ߪୌ The standard deviation of entropy in a 
traffic time window 

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China 

3



The proposed mechanism first collects the transmission 
traffic of the SDN switches as a preliminary detection, and 
then observes the traffic changes of the entire network 
environment by using the traffic analysis tool sFlow, and 
captures the total traffic of each switch from OpenDaylight to 
calculate the traffic flow. Through sFlow, one can observe 
many contents, such as protocols, traffic sources, traffic 
destinations, etc. The proposed mechanism calculates a 
dynamic threshold from a traffic time window and then 
compares with the current collected transmission traffic. If the 
transmission traffic is lower than the threshold, it means the 
network environment is in normal state, there is no heavy load 
or DDoS attack occurs. If the traffic is higher than the 
threshold, it may represent an abnormality in the environment. 
Excessive load may mean that the network environment is 
being attacked by DDoS. 

Entropy can be used as a basis for judging whether the 
overall system environment is subject to DDoS attacks. The 
basis for calculating entropy can be source port, destination 
port, source IP, destination IP and so on. In the proposed 
mechanism, entropy can be calculated by the traffic status 
collected by sFlow and OpenDaylight to determine whether 
the DDoS attack is affected in the whole environment. 
Equation (1) is the common formula for calculating entropy. ܪ = −෍ ௜݈ܲ݃݋ଶ ௜ܲ௡

௜ୀଵ  (1) 

௜ܲ = ௜݂݂௧ (2) 

In (1), the meaning of the notation H is the degree of 
uncertainty, that is, the randomness of the traffic distribution 
in the whole system. Notation n is the number of connected 
targets. Notation ௜ܲ  represents the probability that traffic 
flows from source i to the detected target, as defined by (2), 
where ௜݂  represents the traffic (in bytes) received by the 
detected target from source i, and ௧݂ represents the total traffic 
(in bytes) received by the detected target.  

In (1), the closer H is to zero, the most traffic in the system 
comes from some specific sources. In other words, some 
specific targets in the system may be suffering from DDoS 
attacks; otherwise, if H is larger, it represents the traffic 
distribution in the system is relatively average, which means 
that the probability of suffering DDoS attacks is low. 

This study uses OpenDaylight controller with sFlow to 
continuously collect the traffic and its direction of each SDN 
switch, and periodically calculates the entropy of the entire 
network environment to determine whether DDoS is 
happening in the system controlled by OpenDaylight 
controller. If it is determined that there is a DDoS attack, the 
proposed mechanism traces the source and blocks the attack 
traffic. 

C. Thresholds of Traffic and Entropy  

The threshold of the traffic in this study is not a fixed 
value, but is automatically adjusted according to the 
environment, which is a dynamic threshold. In order to 
calculate the traffic threshold, the data of traffic flow is stored 
for a traffic time window and continuously updated, and then 
the data is used to calculate the average value of traffic μ and 
the traffic standard deviation σ. Parameters μ and σ are 
calculated according to (3) and (4), where n is the number of 
traffic sources and ௜݂ is the traffic flow from the i-th source. 

ߤ =෍ ௜݂݊௡
௜ୀଵ  (3) 

ߪ = ඨ∑ ௜݂ଶ − ଶ௡௜ୀଵߤ ݊  (4) 

By the rule of thumb of normal distribution, “typically, 
95% of the value is within the mean plus or minus twice 
standard deviations” and one can neglect the low flow rate 
(flow value below μ-2σ) because flow rate below μ-2σ has 
less impact on the network environment, it is not threatening. 
Hence, if the traffic flow is normal, 97.7% of the traffic flow 
will be maintained within two standard deviations, so the 
threshold of traffic ௧ܶ௥௔௙௙௜௖  can be derived from (5). 

௧ܶ௥௔௙௙௜௖ = ߤ + 2 ∗  (5) ߪ

If the traffic exceeds ௧ܶ௥௔௙௙௜௖ , it means that abnormal traffic 
changes may occur, and further calculation of entropy is used 
to judge. If it is judged that the network environment is not 
under DDoS attacks, load balancing will be performed, and at 
the same time, the system will continue to store the traffic 
data to calculate the next traffic threshold. In other words, 
after confirming that the high traffic is not a malicious flow, 
the traffic threshold ௧ܶ௥௔௙௙௜௖  will be revised due to the change 
of the traffic, resulting in a new traffic threshold.  

However, if the traffic threshold is completely dependent on 
the condition of traffic flow, the first reception of higher 
normal traffic will result in a misjudgment when the initial 
network traffic is extremely low or no traffic. If no additional 
corrections are made, it will cause false alarm frequently and 
reduce the system performance. Therefore, we define a 
minimum traffic threshold ܶܮ௧௥௔௙௙௜௖ as shown in (6). 

௧ܶ௥௔௙௙௜௖ = max(ܶܮ௧௥௔௙௙௜௖ , ߤ + 2 ∗  (6) (ߪ

In this study, we define this minimum traffic threshold ܶܮ௧௥௔௙௙௜௖  is 100K bps. The reason for this is that the traffic 
below this minimum threshold does not have a significant 

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China 

4



impact on the performance of the entire network environment. 
In addition, since the mechanism needs to collect the traffic 
data for a traffic time window, after the system is initialized, 
there will be a time window of initial collection of 
environmental traffic, and no traffic judgment will be 
performed in the initialization phase. 

In addition, in this study, the entropy threshold ୉ܶ୬୲୰୭୮୷ 
used for determining entropy is also dynamically defined. 
Similarly, the rule of thumb for the normal distribution is used, 
and ୉ܶ୬୲୰୭୮୷ is obtained as shown in (7). 

୉ܶ୬୲୰୭୮୷ = ୟ୴୥ܪ	 + 2 ∗  ୌ (7)ߪ

Since ୉ܶ୬୲୰୭୮୷ changes with the status of the environmental 
traffic, when the traffic in the entire network topology 
gradually enters a steady state, ୉ܶ୬୲୰୭୮୷  may approach the 
average etropy ܪୟ୴୥  because of the standard deviation of 
entropy ߪୌ gradually approaches zero. If the etropy changes 
slightly in a steady state, it may lead to misjudgment. 
Therefore, in the initialization phase, in addition to collecting 
the traffic status of the environment to obtain the trafic and 
entropy thresholds, it is also necessary to obtain a lowest 
entropy difference to help determine the entropy change in 
steady state. Empirically, we set this lowest entropy 
difference to 0.005. 

D. Load Balancing 

When the proposed mechanism judges that no attack occurs, 
load balancing is performed to effectively balance the load of 
network devices in the environment, thereby achieving better 
hardware resource utilization efficiency. The proposed load 
balance scheme balances the load of all the switches 
controlled by the SDN controller. The scheme first detects all 
IP flows currently in the network topology. For all IP flows, 
we first find out all the routes from the source IP to the 
destination IP through a Python package NetworkX, and then 
estimate the score ܵܿ݁ݎ݋௥௢௨௧௘ .of each route. The lower the 
score, the better this route is. After finding the route with the 
lowest score, we then calculate whether the score of the new 
route is lower than the score of the original route if the IP 
flow is moved from the original route to the new one, and is 
lower than the score threshold ௌܶ௖௢௥௘ . If so, the traffic is 
directed to the new route, otherwise the IP flow is maintained 
in the original route. In this way, it is possible to find the most 
suitable route and avoid the situation that the load is more 
unbalanced due to the flow transfer for load balancing caused 
by the slight traffic difference. 

The calculation of the route score ܵܿ݁ݎ݋௥௢௨௧௘ is given in (9), 
and the calculation of route utilization  ܷ݈݅ݐோ  is given in (8), 
where capacity C is the maximum information rate that a 
channel is able to transmit/receive, ℎ݌݋ோ	 represents the 
number of hops passed by this route, and ℎ݌݋௅ represents the 
number of hops of the longest route among all the routes. 

Furthermore, as shown in (8) when calculating the utilization 
of route ܷ݈݅ݐோ , the lagest traffic value ݂ܶܿݎ௅  observed in the 
switches passed by the route is selected for calculation. The 
utilization calculated by this value can truly reflect the load 
status of the route. The design of this calculation method 
mainly considers the number of hops (or switches) that the 
route passes through and the utilization of the route. The 
reason for considering the number of hops is that the more 
hops are passed, the more processing time is required for the 
packets. The value α in (10) is a variable parameter, which 
can be changed according to the use scenario and conditions. 
The range of α is between 0 and 1, and its role is to adjust the 
ratio of the main reference conditions. If the choice of 
available routes is less and the difference of route hops is 
large, it is recommended to use a smaller α value, otherwise 
use a larger α value. ܷ݈݅ݐோ =  (8) ܥ	/	௅݂ܿݎܶ

௥௢௨௧௘݁ݎ݋ܿܵ = ߙ × ℎ݌݋ோℎ݌݋௅ + (1 − (ߙ × ோ݈݅ݐܷ  (9) 

0 ≤ ߙ ≤ 1 (10) 

It is necessary to compare whether the score obtained by 
the new route is higher than the score threshold ௌܶ௖௢௥௘  to 
evaluate whether the traffic flow needs to be directed to the 
new route. The score threshold ௌܶ௖௢௥௘	is given in (11), where ℎ݌݋ே  represents the number of hops passed by the newly 
discovered best route. The calculation of ܷ݈݅ݐ௡௘௪  is 
formulated in (13), where ݂ܶܿݎ௦௣ is the traffic flow expected 
to be transferred, capacity C is the maximum information rate 
that a channel is able to transmit/receive. 1/β of the score 
increase caused by ݂ܶܿݎ௦௣  is used as the score threshold, 
where β is an adjustable parameter and the value is greater 
than 0. We set β to 10, which means that the new score must 
be 10% lower than the original score to judge the path is 
suitable. If the score of the original route minus the score of 
new route is less than this score threshold, it means that the 
new route will not be better than the original one, or the effect 
is similar, so no change is required. 

ௌܶ௖௢௥௘ = ߙ) × ℎ݌݋ேℎ݌݋௅ + (1 − (ߙ ×  (11) ߚ/(௡௘௪݈݅ݐܷ

ߚ > 0 (12) 

௡௘௪݈݅ݐܷ =  (13) ܥ	/	௦௣݂ܿݎܶ

IV. SIMULATION 

A. Simulation Environment 

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China 

5



The OpenDaylgiht controller and Mininet v3.3 are used as 
the tools for simulating the SDN environment. Since the Open 
vSwitch (OVS) that can operate the OpenFlow protocol has 
been supported on the Mininet 3.2 version, Mininet is used as 
a tool for simulating software-defined networking 
environment. We adopt multiple OVS and virtual machines 
(VMs) for network topology. Several virtual machines are 
connected under the OVS to perform packet transmission and 
reception, and the entire topology is controlled and monitored 
by the OpenDaylight controller.  

Figure 2 shows the topology we establish using Mininet, 
where hi represents host i (i ∈	 {1,…,8}), sj represents 
OpenFlow switch j (j	 ∈	 {1,…,10}), and the IP addresses of 
h1~h8 are 10.0.0.1~10.0.0.8. It can be seen from Figure 2 that 
the topology used in this study is roughly a tree topology. 

 
Figure 2. Network topology of the simulation environment 

B. Simulation Results 

The simulation is divided into normal state and the state 
of simulated malicious attack. In addition, the system 
detects traffic flow and performs the appropriate 
mechanism every three seconds. Under normal state, we 
tested whether the system would be misjudged, and 
whether load balancing could be performed when there was 
high traffic but no attack occurs. In a malicious attack state, 
the underlying normal traffic was first set, and malicious 
traffic was injected into the environment after a period of 
time to simulate the DDoS attack. In this way, we tested 
whether the system could correctly determine the DDoS 
attack and successfully retain the original normal traffic to 
verify the feasibility of the proposed mechanism. 

First of all, we used the packet processing tool Scapy as 
the traffic generation tool, and transmitted in packets of 100 
KB per second in the manner of host h1 to h8, h2 to h3, h5 to 
h4 and h6 to h7, respectively, and captured the traffic load of 
each switch in the system. 

Figure 3 shows the simulation results under normal 
network traffic. In Figure 3, the Y axis represents the flow 
load, and its unit is KB/s; X-axis shows in which round the 
system captures traffic flow. The first 10 rounds belong to 
the initialization phase and the work in this phase was to 
collect the environment status. Therefore, no detection and 

defense mechanism was started. After the 10th round, the 
proposed mechanism started to operate, and the load 
balancing was started around the 12th round and finally 
been completed at the 20th round. Part of the traffic was 
transferred from s9 to s10, so the load of s9 was reduced, and 
the load of s10 was relatively increased. After that, the 
system also had a situation that triggered the load balancing. 
However, under the load balance evaluation of the system, 
the load of each switch was balanced, so no transmission 
path was changed. 

 
Figure 3. Simulation result under normal network traffic. 

Then we used Scapy as a tool to simulate DDoS attacks. In 
the network topology of Figure 2, we simulated maliciously 
attack from two VMs (h7 and h8) to a victim VM (h3). Figure 
4 shows the test results of the simulated DDoS attack. It 
shows only the traffic load scenarios of switches s5, s6, s7, s8, 
s9 and s10. Because s1, s2, s3 and s4 are switches directly 
connected to VMs, even if the flow entry lets s1, s2, s3 and s4 
discard the packets, they continue to receive the traffic from 
hosts, so there is no change in traffic load of these switches. 
We do not specifically show the load status of s1, s2, s3 and s4.  

Before the 40th round, the traffic of each switch is the 
normal traffic set by Scapy. The normal traffic is packet 
transmissions from h1 to h8, h2 to h3, h5 to h4, and h6 to h7 
respectively for 100KB/s. Then after 40 round, we started to 
inject 400KB/s attack traffic from h7 to h3 and h8 to h3, 
respectively. From the results in Figure 4, it can be seen that 
before the 10th round, the traffic load was not even, because 
the system is in the initialization phase of collecting the 
current environmental status, and starts load balancing around 
the 12th round. The environment load is balanced after the 
20th round and remains stable until the 40th round. At around 
the 43 round, there is spikes in some the switches due to the 
injection of attack traffic. The proposed mechanism works at 
about the 47 rounds, and then successfully blocks the 
malicious traffic at 50 rounds, and the regular traffic in this 
environment was continuously transmitted. The delay 
between 43 and 50 rounds is due to the sampling delay of 
sFlow. This shows that the proposed mechanism can 

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China 

6



effectively detect and defend against malicious traffic from 
DDoS attack and maintain normal traffic. 

 
Figure 4. Simulation result under DDoS attack 

V. CONCLUSIONS 

In this paper, we proposed a mechanism that can cope with 
DDoS attack in SDN environment. The detection mechanism 
of DDoS is to use adaptive thresholds of entropy and traffic to 
continuously analyze and evaluate the communication of the 
whole SDN environment. Further, our mechanism makes use 
of the flow entry of OpenFlow to deal with DDoS attack. 
From the simulation results, it can be seen that our 
mechanism can properly cope with DDoS, so it can preserve 
the normal traffic in the environment and block malicious 
traffic. It can also process load balance to reduce the 
transmission delay of the environment when the environment 
is under heavy traffic load. 

ACKNOWLEDGEMENT 

This research was supported in part by the Ministry of Science and 
Technology of Taiwan under contract No. MOST 107-2221-E-036-
MY3. 

REFERENCE 

[1] R. K. Arbettu, R. Khondoker, K. Bayarou and F. Weber, 
“Security analysis of OpenDaylight, ONOS, Rosemary and 
Ryu SDN controllers,” 2016 17th International 
Telecommunications Network Strategy and Planning 
Symposium (Networks), pp. 37–44, 2016. 

[2] I. Ahmad, T. Kumar, M.Liyanage, J. Okwuibe and M. 
Ylianttila, “5G security: analysis of threats and solutions,” 
2017 IEEE Conference on Standards for Communications 
and Networking (CSCN), pp. 193–199, 2017. 

[3] K. K. Karmakar, V. Varadharajan and U. Tupakula, 
“Mitigating attacks in Software Defined Network 
(SDN),”2017 Fourth International Conference on Software 
Defined Systems (SDS), pp. 112–117, 2017. 

[4] R. M. Thomas and D. James, “DDOS detection and denial 
using third party Application in SDN,” 2017 International 
Conference on Energy, Communication, Data Analytics and 
Soft Computing (ICECDS), pp. 3892–3897, 2017. 

[5] B. H. Lawal and A. T. Nuray, “Real-time detection and 

mitigation of Distributed Denial of Service (DDoS) attacks in 
Software Defined Networking (SDN),” 2018 26th Signal 
Processing and Communications Applications Conference 
(SIU), pp. 1–4, 2018. 

[6] B. Pande, G. Bhagat, S. Priya and H. Agrawal, “Detection and 
mitigation of DDoS in SDN,” 2018 11th International 
Conference on Contemporary Computing (IC3), pp. 1–3, 
2018. 

[7] C. Gkountis, M. Tahab, J. Lloret and G. Kambourakis, 
“Lightweight algorithm for protecting SDN controller against 
DDoS attacks,” 2017 10th IFIP Wireless and Mobile 
Networking Conference (WMNC), pp. 1–6, 2017. 

[8] X. You, Y. Feng and K. Sakurai, “Packet_In message based 
DDoS attack detection in SDN network using OpenFlow,” 
2017 Fifth International Symposium on Computing and 
Networking (CANDAR), pp. 522–528, 2017. 

[9] S. Attarha, K. H. Hosseiny, G. Mirjalily and K. Mizanian, “A 
load balanced congestion aware routing mechanism for 
Software Defined Networks,” 2017 Iranian Conference on 
Electrical Engineering (ICEE), pp. 2206–2210, 2017. 

[10] U. Zakia and H. B. Yedder, “Dynamic load balancing in SDN-
based data center networks,” 2017 8th IEEE Annual 
Information Technology, Electronics and Mobile 
Communication Conference (IEMCON), pp. 242–247, 2017. 

[11] M. C. Nkosi, A. A. Lysko and S. Dlamini, “Multi-path load 
balancing for SDN data plane,” 2018 International 
Conference on Intelligent and Innovative Computing 
Applications (ICONIC), pp. 229–234, 2018. 

[12] D. E. Knuth, “A Generalization of Dijkstra's Algorithm,” 
Information Processing Letters, vol. 6, no. 1. pp. 1–5, 1977. 

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China 

7




