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Abstract—In this paper, we consider applying the concept
of Saak (Subspace approximation with augmented kernels)
transform to the convolutional neural networks (CNNs). In
CNNs, the activation function known as ReLU (Rectified
linear unit) is widely used for image or signal processing
applications, e.g., image classification, image super resolution,
etc. Activation functions including ReLU discards negative
values of the input to achieve nonlinear input-output rela-
tions. In CNNs, therefore, ReLU discards negative values
of filter outputs although those negative values may have
equal importance as positive values in image processing.
The Saak transform is proposed to utilize the information
carried by the negative values. In this paper, we consider the
CNN architectures to utilize the concept of Saak transform
by introducing a modified ReLU which discards positive
values. Then we show that we can construct several CNN
architectures based on the concept of Saak and the modified
ReLU. To see the possibility of the proposed architecture,
we apply them to the image classification and consider the
validity from the results.

I. INTRODUCTION

In this paper, we consider applying the concept of
Saak (Subspace approximation with augmented kernels)
transform [1] to the convolutional neural network (CNN)
architectures in order to utilize the negative correlations.

Deep learning systems based on artificial neural net-
works are expected to be applied to a wide variety
of applications, such as self-driving cars [2], automatic
translation of foreign languages [3], etc. Besides, CNN
architectures are widely used in the applications in image
processing area, such as image classification [4], image
super resolution [5], etc. There are several widely known
architectures based on CNN, e.g., LeNET [6], VGG16 [7],
or ResNet [8].

When we apply CNNs to image or signal processing
applications, the activation function known as ‘ReLU’
(Rectified linear unit) is widely used. The activation
function is applied to the output of the filter unit, and
when the value becomes negative, the output is truncated
to be zero. This means that the negative outputs, or
negative correlations, are not processed in the CNNs
although they have the equal importance in the image or
signal processing as the positive correlations. This may
cause problems, such as the increased number of required
parameters, or longer learning time, etc.

The Saak transform [1] is an attempt to utilize those
truncated negative correlations. The Saak transform em-

ploys the Karhunen-Loève transform (KLT) [9] to reduce
the amount of data. After the KLT, to utilize the negative
correlations, it performs the extension of the bases in the
negative direction by augmenting kernels. Then, the ReLU
function is applied to discard the negative values. At this
point, however, because the bases are extended in the
negative direction before applying the ReLU, the negative
correlations are also processed separately, and forwarded
to the next process. Using the Saak in combination with
support vector machine (SVM) has been shown to be
effective for handwriting recognition [1] to reduce the
required amount of calculation in comparison with the
CNN-based architectures.

In this paper, we consider applying the concept of the
Saak transform to the CNN architectures. Although the
advantage of the Saak concept used with the SVM is
shown, it may still have importance to apply the concept
to the CNN architectures. Because, if we could utilize
the concept to improve the learning characteristics, or to
shorten the learning time, etc, we can apply it to the
wide variety of applications where the advantage of the
CNN architectures had been proven. We show that we
can construct several CNN architectures to incorporate
the Saak concept. As the base architecture, we choose
the ResNet which is shown to be effective in the image
processing applications. The modification of the ResNet to
utilize the negative correlations are proposed and, through
the computer simulations, we evaluate the validity of the
proposed method.

II. RELATED WORKS

A. ReLU

To consider CNN architectures to apply the concept of
Saak transform, we first review the ReLU, and then, define
its variant.

The input-output relation of the standard ReLU, (we
refer it as sReLU in the following), is expressed as

f(x) = max(0, x) (1)

where x is the input to the unit. We show the input-output
relation of the sReLU in Fig. 1(a). We note that there are
modified versions of the ReLU, such as Leakey ReLU, or
Parametric ReLU [10].

In addition to the sReLU, we could define the nega-
tive ReLU, nReLU in the following, whose input-output
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relation is given as below.

f(x) = min(0, x) (2)

In Fig. 1(b), we depict this relation.
In this paper, using these two types of ReLU, i.e.,

sReLU (standard ReLU) and nReLU (negative ReLU),
we consider CNN architectures to utilize the information
of negative correlations in addition to the positive ones.
In those architectures, sReLU and nReLU are mixed, and
the network are branched according to the positive and
negative correlations as in the Saak transformation.

We show that various combinations could be con-
structed by the presence or absence of a branch in a
block, and the merging methods after the branch. Then,
we compare those CNN architectures.
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Fig. 1: Input-Output relations of the standard ReLU
(sReLU), and negative ReLU (nReLU). Only positive
values are processed and negative values are discarded by
sReLU. nReLU, on the other hand, outputs negative values
and discards positive values.

B. Saak Transform

The Saak transform [1, 11] is derived based on the anal-
ysis of CNNs as the RECOS (REctified-Correlations on
Sphere) transform [12]. It employs the KLT to obtain the
eigenvectors of the correlation matrix of the input signal.
Then, each kernel of this transformation is expanded in the
negative direction (inverted sign) as kernel augmentation.
This process is called sign-to-position format conversion
(S/P Conversion).

Augmentation of the kernels in the negative direction is
performed according to the following rules.

a2k−1 = bk, a2k = −bk (3)

where ak and bk show the augmented kernels and trans-
formation bases of the KLT respectively. In Fig. 2, we
show a block diagram of the Saak transform.

In the following, based on the concept of the Saak, we
consider extending the ResNet by using nReLU instead of
kernel augmentation to utilize the negative correlations.

C. ResNet

Generally, it is considered that advanced features could
be extracted by using deeper neural networks. However, it
is not an easy task to increase the number of layers because

KLT S/P Conversion

Inverse
KLT

P/S Conversion

Forward Saak Transform

Inverse Saak Transform

Fig. 2: Structure of the Saak transform

several difficulties arise as it increases, e.g., vanishing of
gradient problem.

As an architecture that enables the construction of
deeper networks, ResNet (Residual network) was proposed
by He et al. [8] In the ResNet, layers learn using the
residual by short-cutting the input signal and adding up
with the outputs of the previous layer. Since the proposed
method uses the ResNet to consider the application of
the concept of the Saak transform, we describe a brief
summary of the ResNet here.

1) Residual Network: A building block of the ResNet
is called a Residual Block. The mathematical definition of
Residual Block is as follows.

y = F(x,Wi) + x (4)

where x and y are the input and the output vectors of the
considered layers respectively; and Wi show the weights
to be determined.

The conventional neural networks update the weights in
H(x,Wi) so that the optimum output y = H(x,Wi) is
obtained for the corresponding input. However, the ResNet
defines the difference between the input and the output
F(x,Wi) as the following:

F(x,Wi) = H(x,Wi)− x. (5)

Then, the internal weights of F(x,Wi) are adapted so
that the optimum output y = H(x,Wi) is obtained by
changing this equation as

H(x,Wi) = F(x,Wi) + x. (6)

Note that we cannot define the addition when the
dimensions of the output of F(x,Wi) and the input
x differ. Then, by introducing a transformation matrix
Ws that transforms the dimension of x, equation (4) is
modified as

y = F(x,Wi) +Wsx (7)

so that the dimensions of F(x,Wi) and Wsx will become
the same.

2) Network Architecture: There are two types of the
Residual blocks, namely Basic and Bottleneck. Basic
block has two convolutional layers as shown in Fig.3(a).
On the other hand, the Bottleneck block has three convo-
lutional layers as shown in Fig. 3(b).

By combining several Residual Blocks, different ResNet
architectures can be constructed with different number of
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Fig. 3: Construction of the Residual Blocks of ResNet. (a) Basic and (b) Bottleneck blocks are used in the conventional
architecture. n is stage of number of stage. It repeats this architecture 4 times.

layers. For example, ResNet 18 is an 18-layer network,
which consists of 8 Basic blocks (16 layers), with the first
convolutional layer and the final combined layer.

III. PROPOSED ARCHITECTURE

A. Proposed architecture to implement the concept of Saak

Here, we consider applying the concept of the Saak
transform to the ResNet. For that purpose, we first consider
modifying the Residual blocks in Fig. 3 and branching the
network to realize the functionality of nReLU.

The input-output relation of nReLU can be realized by
inverting the input x and then performing sReLU as shown
in the following equation

y = σ(−x) (8)

where σ shows the output of sReLU. We can easily
confirm that y and the output of nReLU are identical.

Here, we propose a modified Residual block, which we
call the Dual Residual Block (DRB), in which the ReLU
unit in Fig. 3 (a), (b) is branched as shown in Fig. 4 (a), (b)
to utilize both the positive and the negative correlations.

In the conventional Residual block, only the rectification
by sReLU exists after batch normalization. In contrast, in
a DRB, we add a branch to realize the functionality of
nReLU in which the negative rectification is performed.
Hence, we have two paths to perform convolutions for
calculating the positive and negative correlations, respec-
tively.

The merging of positive and negative correlations after
convolution is explained in section III-C.

B. Double ResNet

As mentioned before, the ResNet is constructed by com-
bining several residual blocks. In the proposed method,
we construct the network by using not only Basic and
Bottleneck blocks but also Dual Basic and Dual Bottleneck
blocks. Besides, we implement sReLU and nReLU as
different branches as shown in Fig. 5. We call the network
as Double ResNet when branching by sReLU and nReLU
are used, and, otherwise, as Single ResNet.
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Fig. 4: Construction of Residual Network proposed in this paper (a) Dual Basic and (b) Dual Bottleneck blocks are
used in the conventional architecture. n is stage of number of stage. It repeats this architecture 4 times like traditional
ResNet.
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Fig. 5: Double ResNet is a network in which sReLU and
nReLU are branched after batch normalization to form two
parallel Residual Blocks.

C. Merging Methods

In the proposed structure, the outputs of Dual Basic
blocks should be merged to obtain the output of the blocks.
For that, three merging methods are considered in the

following.
The first method is called Sum, which adds the same

components of the output of convolution. The second
is called Half, which halves the number of filters in
convolution and merges the output of nReLU at the end of
the output of sReLU. The third is called Full, which does
the same thing without reducing the number of filters of
the second convolution in Half.

Let us explain these three methods using mathematical
expression by defining the following variables.

A[k]: output of the unit A in the k-th channel
C+[k]: output of the k-th channel after convolu-

tion of sReLU
C−[k]: output of the k-th channel after convolu-

tion of nReLU.
Using these variables, the result of merging using Sum

can be expressed as

A[k] = C+[k] + C−[k]. (9)

Besides, Half and Full have the following output:

A[k] =

{
C+[k] (k < n)
C−[k − n] (k ≧ n)

(10)

where n shows the number of filters.
The number of filters n is half of the conventional

ResNet when ‘Half’ is used, and the same number of filters
as ResNet when ‘Full’ is used.
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Mathematical notation Network Block Merge # params Test accuracy[%] Train Time [sec]
B(3, 3) Single ResNet Basic Block — 11.2M 83.4 13978

B(3 + 3, 3 + 3) Single ResNet Dual Basic Sum 22.1M 82.9 24215
B(3⊕ 3, 3⊕ 3) Single ResNet Dual Basic Half 11.2M 83.0 16175
B(3 ⊞ 3, 3 ⊞ 3) Single ResNet Dual Basic Full 44.5M 83.4 43652
B(3, 3) ⊞B(3, 3) Double ResNet Basic Block — 22.4M 83.4 26275

B(3 + 3, 3 + 3) ⊞B(3 + 3, 3 + 3) Double ResNet Dual Basic Sum 44.3M 83.2 46375
B(3⊕ 3, 3⊕ 3) ⊞B(3⊕ 3, 3⊕ 3) Double ResNet Dual Basic Half 22.4M 83.2 30945
B(3 ⊞ 3, 3 ⊞ 3) ⊞B(3 ⊞ 3, 3 ⊞ 3) Double ResNet Dual Basic Full 89.0M 83.9 85529

TABLE I: Accuracy rate and learning time in Basic Block and its extended residual block

Mathematical notation Network Block Merge # params Test accuracy[%] Train Time [sec]
B(1, 3, 1) Single ResNet Bottleneck — 23.6M 81.3 28309

B(1 + 1, 3 + 3, 1 + 1) Single ResNet Dual Bottleneck Sum 44.3M 81.9 47144
B(1⊕ 1, 3⊕ 3, 1⊕ 1) Single ResNet Dual Bottleneck Half 24.6M 82.6 36113
B(1 ⊞ 1, 3 ⊞ 3, 1 ⊞ 1) Single ResNet Dual Bottleneck Full 93.9M 83.2 80938
B(1, 3, 1) ⊞B(1, 3, 1) Double ResNet Bottleneck — 47.2M 82.1 53730

B(1 + 1, 3 + 3, 1 + 1) ⊞B(1 + 1, 3 + 3, 1 + 1) Double ResNet Dual Bottleneck Sum 88.6M 82.2 83026
B(1⊕ 1, 3⊕ 3, 1⊕ 1) ⊞B(1⊕ 1, 3⊕ 3, 1⊕ 1) Double ResNet Dual Bottleneck Half 47.2M 81.9 68962
B(1 ⊞ 1, 3 ⊞ 3, 1 ⊞ 1) ⊞B(1 ⊞ 1, 3 ⊞ 3, 1 ⊞ 1) Double ResNet Dual Bottleneck Full 188M 82.9 65555

TABLE II: Accuracy rate and learning time in Bottleneck and its extended residual block

D. Network Combination

By selecting and combining the types of residual blocks
and the merging methods, we can construct several archi-
tectures.

There are three points that we can select.

• Type of network · · · whether to use SingleResNet or
DoubleResNet defined in Sec. III-B.

• Type of Residual block · · · Select from the 4 types of
Residual blocks shown in Sec. III-A. That is, Basic,
Bottleneck, Dual Basic, or Dual Bottleneck

• Merging method · · · The method for merging the
outputs of Residual blocks can be selected, i.e., Sum,
Half, or Full.

To show the combination of the selection, we introduce
a rule for description as below.

Let B(M) denotes a residual block structure where
M represents the kernel size in the convolution layer.
For example, B(3, 3) represents a residual block structure
formed of two 3 × 3 convolution layers, and the ResNet
Basic block is selected.

Then, we show the Sum, Half and Full of merging
methods by +, ⊕, and ⊞, respectively. For example,
B(3 + 3, 3 + 3) indicates a ResNet structure in which a
convolution layer with a kernel size of 3× 3 is branched
by sReLU and nReLU and then merged by Sum method.

Other examples are expressed as below.

• B(1, 3, 1) - Original Bottleneck Block
• B(3⊕ 3, 3⊕ 3) - Single ResNet in Dual Basic with

merging Half
• B(3, 3)⊞B(3, 3) - Double ResNet in Original Basic

Block
• B(3 + 3, 3 + 3)⊞ B(3 + 3, 3 + 3) - Double ResNet

in Dual Basic with merging Sum
• B(1 + 1, 3 + 3, 1 + 1) - Single ResNet in Dual

Bottleneck with merging Sum

IV. EXPERIMENTAL RESULTS

Here, we show the results of experiments of applying
the proposed network architectures to Cifar-10 [13] image
classification. It has 50,000 training and 10,000 testing
data sets which are classified into 10 classes. Also, in
order to increase the number of training in each epoch,
we expanded the training data by image manipulations,
i.e., rotation, horizontal, or vertical flipping, etc.

We evaluated the proposed networks in terms of the
accuracy rate for test data and train time. Because the pro-
posed Dual ResNet is a derivative of Basic and Bottleneck
blocks, we evaluate them separately below.

A. Experiment Environment
We used the following environment for the experiment.
• Computer:

– CPU: Intel Xeon E5-1620v4
– Memory: DDR4-2400 128GB RAM
– GPU: NVIDIA GeForce GTX1080
– OS: Ubuntu 18.04.2 LTS

• Software:
– Python 3.7.3 [14]
– TensorFlow 1.13.1 [15]
– Keras 2.2.4 [16]

B. Conditions

The architectures used in the experiments are based on
ResNet18 (Basic Block) and ResNet50 (Bottleneck). The
following architectures were compared:

• Basic and Dual Basic block
– B(3, 3)
– B(3 + 3, 3 + 3)
– B(3⊕ 3, 3⊕ 3)
– B(3⊞ 3, 3⊞ 3)
– B(3, 3)⊞B(3, 3)
– B(3 + 3, 3 + 3)⊞B(3 + 3, 3 + 3)
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– B(3⊕ 3, 3⊕ 3)⊞B(3⊕ 3, 3⊕ 3)
– B(3⊞ 3, 3⊞ 3)⊞B(3⊞ 3, 3⊞ 3)

• Bottleneck and Dual Bottleneck block
– B(1, 3, 1)
– B(1 + 1, 3 + 3, 1 + 1)
– B(1⊕ 1, 3⊕ 3, 1⊕ 1)
– B(1⊞ 1, 3⊞ 3, 1⊞ 1)
– B(1, 3, 1)⊞B(1, 3, 1)
– B(1 + 1, 3 + 3, 1 + 1)⊞B(1 + 1, 3 + 3, 1 + 1)
– B(1⊕ 1, 3⊕ 3, 1⊕ 1)⊞B(1⊕ 1, 3⊕ 3, 1⊕ 1)
– B(1⊞ 1, 3⊞ 3, 1⊞ 1)⊞B(1⊞ 1, 3⊞ 3, 1⊞ 1)

Note that, among these architectures, B(3, 3) and
B(1, 3, 1) correspond to the conventional ResNet18 and
ResNet50, respectively.

In all the experiments, the number of epochs was 10
and the batch size was 32.

C. Comparison of the merging methods

We applied the proposed architectures to the experi-
ments using the Basic and the Bottleneck blocks with the
three merging methods, i.e., Sum, Half and Full.

TABLES I and II show the results of the basic block
and bottleneck. The accuracy rates are shown in Fig. 6
and Fig. 7.

From TABLE I and TABLE II, it is confirmed that
the accuracy rate tends to become higher in the order
’Sum’, ‘Half’, and ‘Full’ for the proposed structures
except the Double ResNet case in TABLE II. Besides,
we can see that from TABLE I, only the ’Double ResNet’
with ’Full’ merging achieves the higher accuracy rates than
the conventional ResNet B(3, 3). On the other hand, from

TABLE II, the proposed architectures achieve the higher
accuracy rate than the convention architecture B(1, 3, 1).

D. Comparison of Single and Double ResNet

When Single ResNet and Double ResNet are compared
in both Basic and Bottleneck blocks, there is a tendency
for the accuracy rate to be higher when Double ResNet is
used. However, it is also noticed that both the train times
and the number of parameters were almost two times of
those of the ResNet. This is due to the fact that Double
ResNet is composed of two Residual Blocks in parallel.

E. Train Time

Train Time shown in TABLE I and TABLE II are the
total learning time for epochs (10 epochs). The shortest
train time was achieved when B(3, 3) was used which is
the original Basic block. In view point of the train time, the
proposed architectures requires the longer ones, because of
the branching in the networks to implement sReLU and
nReLU.

For the proposed architectures to be implemented in
the actual applications, we need to consider more efficient
implementation of the negative activation.

V. CONCLUSIONS

In this paper, we proposed CNN architectures that split
functionality of the ReLU used in ResNet into sReLU
and nReLU and perform convolutions in parallel. The
purpose of the proposed method is to utilize the negative
correlations, which are discarded in the conventional
architectures, in addition to the positive ones because both
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correlations may contain equally important information in
the image and signal processing applications. We applied
the proposed architectures to Cifar-10 image classification
for evaluating the performance, and it is shown that the
architectures have an ability to achieve better accuracy rate
than the conventional ResNet. However, for evaluating the
true performance of the proposed architectures, we need to
apply them to other applications and to consider adjusting
the network structures. On the other hand, because of
the cost of branching, the number of parameters and
learning time have increased compared to the conventional
architectures. As a future work, we would investigate more
efficient architectures for achieving better results with less
learning time.
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