
Multi-Task and Multi-Level Detection Neural
Network Based Real-Time 3D Pose Estimation

Dingli Luo∗† , Songlin Du∗ and Takeshi Ikenaga ∗
∗ Graduate School of Information, Production and Systems, Waseda University,

Kitakyushu 808-0135, Japan
† University of Electronic Science and Technology of China,

Chengdu 611731, China
luodingli@toki.waseda.jp

Abstract—3D pose estimation is a core step for human-
computer interaction and human action recognition. However,
time-sensitive applications like virtual reality also need this
task to achieve real-time speed. This paper proposes a multi-
task and multi-level neural network architecture with a high-
speed friendly 3D human pose representation. Based on this,
we build a real-time multi-person 3D pose estimation system
with a single RGB image as input. The network estimates 3D
poses from the input image directly by the multi-task design
and keeps both accuracy and speed by the multi-level detection
design. By evaluation, we show our system achieves the 21 fps
on RTX 2080 with only 33 mm accuracy lose compared with
related works. We also provide network visualization to prove
our network work as we design. This work shows the possibility
for a single RGB image based 3D pose estimation system to
achieve real-time speed, which is a basement for building a
low-cost 3D motion capture system.

I. Introduction
Human pose estimation is an important step for the

computer to understand human behavior. Because com-
pared with image or video, abstract 2D or 3D human
poses are much easier to analyze. Some works [1], [2]
estimate human 2D pose by marking joints’ 2D positions
for each human on the given input image. Farther more,
estimating human pose by giving joints’ 3D position in 3D
space is a more difficult task. However, human poses in
3-dimensional space contain more information and are not
affected by camera projection. Considering this, there are
also many works that try to do this. Recent approaches
estimate the human’s 3D pose in 4 kinds of ways: based
on single 2D image input [3], based on multiple images
with calibration [2], based on video sequences [4], based
on other 2D pose estimation system [5]. Image and video-
based methods are more complex and hard to design.
However, compared with 2D estimation system based
methods, they avoid the time cost and accuracy loss
from other systems. For the systems using more than
one camera, they always provide more accurate result
because of less occlusion. However, this also limited by
cost consideration and usage environment.

Our approach only needs one monocular RGB camera
without depth and focus on game or entertainment usage
like Kinect from Microsoft. This means we want to provide
a real-time multi-person 3D pose estimation system with

a single RGB image as input. Although this system has
a limited detection range and do not perform well on a
complicated situation which is the same as Kinect, we
only need a regular RGB camera, and our system is much
cheaper for customers.

To achieve this goal, a new multi-task and multi-level
pose estimation neural network and its corresponding
representation is proposed. For the multi-task, it takes
RGB image as input and produces 2D joint position, depth
information and connection information in the same pro-
cess. And the multi-level structure avoids repeat process
and keep the accuracy. Then a post-processing system
generates all human poses based on this information. We
proposed a representation of joints as a bridge between
neural network and the traditional algorithm, which is
easier for both learning and post-processing. After the
design part, in order to train this neural network and
overcome the lack of 3D dataset in wild space, we provide
a mixed training design with a real-life 2D dataset and
virtual 3D dataset captured from the game. Finally, we
validate the effectiveness by using a virtual dataset to train
a task for real-life. We also provide the light-weight neural
network design for real-time speed. Our post-processing
system design overcomes the lost accuracy.

Our system is general for using in house and the wild.
We trained this system on the MSCOCO 2014 [6] and
JTA dataset [7]. Then we evaluated that and it can
achieve 112mm MPJPE in 21 FPS on GTX 2080ti. We
also provide detail profile for an explanation of our neural
network. This is important for industry usages.

II. Related Work
A. 2D Real-Time Human Pose Estimation

Although we design for 3D human pose estimation
system, we learn many ideas from current 2D human
pose estimation systems like the encoding method and
the network design.

2D human pose estimation system takes image or video
as input and gives the information of each human and
its 2D positions of each human’s joints. In the beginning,
there are image feature based pose estimation systems
like [8]. But nowadays, deep learning based methods like

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China

1427978-988-14768-7-6©2019 APSIPA APSIPA ASC 2019

DeepPose [9] has been widely used to achieve higher
accuracy. Not only this, but some of these methods also
consider to achieve real-time speed. In order to achieve
both high speed and high accuracy, researchers think from
two directions.

a) Bottom-top solution: This kind of solutions detect
each joint first, then connects corresponding joints into
humans. These methods are summarised into ’Bottom-up
solutions.’ Most of the works treat joint position detection
as given the probability in the current pixel position. The
difficult problem is that the method to connect joints
belongs to one person. For example, Open Pose [2] from
CMU uses part affinity fields to help the connection.
Another one [10] uses the parent joint offset to solve
this, which is inspired us to design our representation.
Some researchers [11] also use clustering to merge all joints
belongs to the same person. Besides, by treating human
pose as Graphical Model, deep graph neural networks [12]
are used to analyze the possible relationship between joints
to find out the belonging [13]. Bottom-top solutions are
naturally easy to detect multiple persons in image and
can achieve stable high speed.

b) Top-bottom solution: This kind of solutions detect
each human in input first by object detection methods like
Mask-RCNN [14] and crop each person into image parts.
Then it does pose estimation for each human individually.
These methods are called “Top-bottom” solutions. Since
there is only one person in an image, the connection
of joints is easier to deal with. So these methods are
used to achieve high accuracy requirement. However, the
speed depends on the object detection system and also
be affected by human numbers. Alpha Pose [15], [16] is a
famous top-bottom solutions.

B. 3D Real-time Human Pose Estimation
Compared with image-space 2D human pose estimation,

3D human pose estimation is a much harder problem. In
industry, markers and multi-camera calibration based 3D
human pose systems [17] are widely used in motion capture
by CG companies. Since the requirement of clothes,
markers, spaces and camera number, this is really hard
to use as a customer-level solution. Many works try to
provide solutions for lower cost, less camera and faster
speed. Depending on the input, they can be divided into
four kinds.

a) Single 2D image based: These methods only need
one camera as input, which means less cost and easy
deployment. However, estimating 3D joint position based
on 2D image space is actually an under-determined
problem because there is more than one answer. Using
binocular camera [18] or depth camera [19] to get depth
information is one solution. On the other hand, considering
the human body structure, even only one RGB camera can
calculate the human 3D pose with the highest probability.
For example, single-shot multi-person 3D pose estimation
[3] system provides an end-to-end neural network which

can provide 3D joints positions. Also some works [20]
provide 3D geometry models based on parametric human
3D models [21]. All these works show the possibility of
estimating 3D human pose based on monocular RGB
camera input.

b) Camera calibration based: Camera calibration [22]
calculates 3D position based on captured images from
different directions. This is widely used in SLAM systems
[23]. Since this method is much easier for extending
existed 2D human pose estimation system into 3D pose
estimation, many 2D estimation works [2] [16] choose
this to provide a 3D pose estimation solution. However,
this kind of method needs more than one cameras from
more than one angles, which is hard to use in the wild
environment.

c) Video sequence based: The movement also pro-
vides depth information because movement speed is vari-
ant based on the distance to the camera. Also, an action
sequence contains more information for neural networks
to understand human body structure. So many works
[24] choose video as input. Some works need another 2D
estimation network to transfer the video into a 2D motion
sequence, then use to estimate 3D pose. VideoPose3D [4]
from Facebook AI is a recent example. These methods
can achieve higher accuracy compared with image-based
methods. But the processing time of pre-processing and
the latency from collecting frames for input makes the
speed hard to achieve real-time.

d) 2D pose based: To avoid the complexity of colorful
image, many works take 2D poses as input which is pro-
duced from other 2D human pose estimation methods. For
example, 3D pose baseline [5] takes one human’s 2D pose
directly then output the 3D pose with joints 3D position.
Both the input and output is vector instead of image.
To improve the quality. Since the pose vector samples is
easy to construct automatically, self-supervised [25] and
unsupervised methods [26] are also wildly used to improve
the accuracy. However, Converting from the image to the
abstract 2D pose causes color information lost. This makes
it difficult to benefit from color information to fix the 3D
position.

III. Multi-Task and Multi-Level Network for Real-Time
Multi-Person 3D Pose Estimation

We design a simple pipeline with one RGB image as
input and the 3D pose as output. As shown in Fig. 1, our
total pipeline contains only 2 step: a neural network pro-
cesses the input RGB image and output 2D joint position,
connection information and joint depth information in
the same time, then a post-processing system combine all
things together to generate 3D pose result. Compared with
a typical 3D pose estimation system ’3D pose baseline’ [5],
our work uses a specially designed middle representation
to avoid losing depth information. This design makes our
system finish both 2D and 3D detection in one network
which means the speed is higher.

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China

1428

Input
Image

2D Joint
Probability

2D Offset
Probability

Joint
Depth

CNN

One
Network

Post
Process

Final
3D Pose

Input
Image

2D Pose

CNN

2D Pose
Network

Final
3D Pose

NN

3D Pose
Network

Fig. 1. Concept difference between ours and a typical solution

In this section, we first talk about the representation of
pose in our system which determines neural network and
post-processing design. Then we talk about each step in
our pipeline. A multi-task neural network is used to output
2D pose information and 3D information in the same time.
And a multi-level detection structure is applied to keep
the speed and accuracy. The second post-processing step
deals with detection, linking and automatically matching
the pose in 2D image space and depth in 3D world space.

A. Relative Depth Based Pose Representation
The pose representation is like a bridge between the

neural network and the post-processing system. So the
definition of representation highly effect both the neural
network design and the post-processing system design. In
our situation, we use CNN as basic module which means
the outputs are images. So we define an image based
representation for all human poses.

There are many kinds of representation. Some re-
searches [5] directly represent each 3D joint position in
the unified 3D space. “unified” means the positions are
not related with camera position. Some other researchers
consider the pose as a set of parameters to a parametric
body model like SMPL [21].

In our case, we consider a human pose as a di-
rectional graph. In this graph, each node is corre-
sponding to a human joint j which contains these
information:(Classj , Xj , Yj , Dj , OffsetXj , OffsetYj) as
shown in Fig. 2, The Classj means the current joint’s
class. The (Xj , Yj) means the position of current jointj.
The Dj shows the joint depth which is the distance to
camera. The (OffsetXj , OffsetYj) is target position of
current joint’s parent joint. In order to simplify and speed
up, we want to make the task of the network as easy as
possible. So in our case, we encode the 3D joint positions
by two parts: 2D positions(Xj , Yj) in image space and
relative depth(D) in world space. The 2D positions can

J

Y

X

Depth

Offset

Relative
Depth

Fig. 2. The encoding method of our pose.

be reused from pose linking process. So the one channel
depth(D) is the only additional information needed. Based
on the network output, the post-process does a mapping
F to transfer to the final camera-related 3D space:

F (Xj , Yj , D) −→ (X3D, Y3D, Z3D). (1)

For the depth, we encode depth value as relative depth.
We consider the human pose as a tree structure with the
head as the root node. For each joint, the connected joint
which is near to head will be the parent node, and the
far joints will be the children. Then the relative depth is
encoded as the current joint’s depth to the parent joint’s
depth. We make sure each joint only have one parent joint,
otherwise, the relative depth is not uniqueness. Compared
with the absolute depth, the relative depth is much easier
to learn: it is not related to the human position and only
needs local area information.

B. Multi-Task and Multi-Level 3D Detection Network
The design target of our network is keeping the accuracy

and achieve high speed. Based on this, we provide a new
multi-task and multi-level 3d detection network architec-
ture. As we show in Fig. 3, our network architecture
contains three parts: the feature pyramid network, 2D
detection branch and depth detection branch. The depth
detection branch looks almost the same with 2D detection
except for the map generation module. In each detection
branch, we do detection in different feature level then
concatenate together. Finally, a map detection module
analysis the concatenate result and output the final map.

1) Multi-Level Detection Network Backbone: The con-
volutional neural network usually has the best detection
target size. So in order to adapt different target size, a
normal way is processing the input image many times
with different scales. However, in our case, processing
the input image more than one time takes a huge time
cost. Instead, we use feature pyramid network [27] base
multi-level architecture to detect in multiple scales by the
network structure. This structure can adapt sizes of the
target without higher the calculation cost too much. This
is saved without causing accuracy loss because the saved

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China

1429

input

192

conv1
8

96

8

96

32

48

64

24

128

12

256

6
Conv2

256

12

128

12

Deconv1

384

24

192

24

Deconv2

48

160

48

320 Deconv3
224

12 24 48

24 48

48

48

Concat4
240

48

Heat Map
Generation

Module

Heat
Map

48

Generation
Module

Relative Map Relative
Map

12

Detect Level 1

24 48

24

Detect Level 2

48

48

Detect Level 3

48

Concat5
240

48

Depth Map
Generation

Module

Depth
Map

Depth
Generation
Task

2D
Detection
Task

Concat1
Concat2

Concat3

Fig. 3. The overall map of our network architecture.
This shows our network architecture. Firstly, a ResNet34-like backbone processes the input image. Then it is followed by a

Deconvolution and concatenate layer. These two structures build a U-Net structure. Then there are two separate branches. One is for 2D
detection to output 2D probability map and 2D offset map. The other one is for the 3D depth map. Each detection branch is constructed
by a multi-level detection module, a concatenate layer and a map generation module. For the detailed structure, please check Fig. 4

calculation cost is redundancy. For each area in the input
image, there is only one best detection level, which means
the calculation of other detection levels is not needed.

In detail, we use ResNet34 [28] as the front part but
compress the channels into a half. The detailed structure
is shown in Table. I. After this, there is an additional
convolution layer. Then it is followed by three pairs of
deconvolution layer and concatenate layer.

2) Detection Module and Map Generate Module: We
design a common structure to use in different levels
called detection module and another small module called
Map Generate Module to generate the target map. The
structure is shown in Fig. 4. Take the map generate module
as an example. A convolution layer is applied to the input
features in order to decrease the channel number. Then
it is processed by a residual structure to extract high-
quality features. Finally, in order to merge feature maps
from different levels, we must make the size of feature
maps become the same. We use deconvolution layer or
convolution transpose layer. Each time the feature map
processed by deconvolution layer, the map’s channel size
becomes a half. Compared with using pooling layers, this

saves calculation.
All these modules are designed based on the same idea of

ResNet [28]. It starts with a 1× 1 convolution to smaller
the channel number. Then it uses a 3 × 3 convolution.
Finally, it uses a 3× 3 convolution to recover the original
channel number. The cost is lower than directly doing a
3× 3 convolution.

3) Loss Design: As a multi-task neural network, we
need to carefully design the loss function in order to
balance each different branch. Otherwise, one branch may
be weaker than others.

In our case, for classification branch, we directly use L2
loss instead of soft maxed cross entropy loss. Then for the
other two branches, we only focus on the position where
has a joint instead of the background. For the background
area, we directly ignored the loss and allowed the branches
to output any result. We find out this makes the task easier
and the network can achieve lower loss.

IV. Post-Processing
The output of the network is three multi-channel maps.

We need to use post-processing to get the final 3D pose.

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China

1430

Our post-processing progress constructed by four steps:
1) Joint Detection: Use a convolution pass to find out

the local maximum point in the output heat map.
2) Joint Linking: Generate a set of joint pairs based on

a heat map and relative map. Then sort the joint
pairs and calculate the possible joint connection with
the highest total probability.

3) Depth Adapting: Calculate the relative scale of
world space depth. This process makes the mismatch
coordinate space to the same coordinate space.

4) Temporal filter: Depending on the application, if
needed, a temporal filter will be used to smooth
the 3D pose result.

A. Distance Based Joint Linking

In order to link the joints together, we first calculate
the target position:

(TargetXj , TargetYj) = (Xj+OffsetXj , Yj+OffsetYj)

. Then we search a circle area with (TargetXj , TargetYj)
as center and Rsearch as radius. If there is a corresponding
joint with the right class inside the circle, we link current
joint to this joint. We calculate the search radius based on
the target distance because the farther the parent joint,
the higher the error will be. We calculate the Rsearch based
on

l =
√
OffsetX2

j , OffsetY
2
j , (2)

Rsearch = max(l ∗ α+ (1− α), 1). (3)

In practice, we set the α as 0.3. We find out this makes
higher accuracy compared with the fixed joint search
radius.

TABLE I
ResNet-like Backbone Structure

layer name output size 34-layer
input 384× 384
conv1 192× 192 7× 7, 8, stride 2

conv2_x 96× 96

3× 3 max pool, stride 2[
3× 3, 32
3× 3, 32

]
× 3

conv3_x 48× 48

[
3× 3, 64
3× 3, 64

]
× 4

conv4_x 24× 24

[
3× 3, 128
3× 3, 128

]
× 6

conv5_x 12× 12

[
3× 3, 256
3× 3, 256

]
× 3

+

Deconv
...

Concate with other
detect module

Activation

+

Output Map

Detection Module Map Generate Module

Conv 2D 1x1
Batch Normalization

Leaky Relu

Conv 2D 3x3

Batch Normalization

Leaky Relu

Conv 2D 3x3
Batch Normalization

Leaky Relu

Conv 2D 1x1

Batch Normalization

Leaky Relu

Conv 2D 1x1
Batch Normalization

Leaky Relu
Conv 2D 3x3

Batch Normalization
Leaky Relu

Conv 2D 1x1

Batch Normalization

Leaky Relu

Conv 2D 3x3

Batch Normalization

Leaky Relu

Conv 2D 1x1
Batch Normalization

Leaky Relu
Conv 2D 3x3

Batch Normalization
Leaky Relu

Conv 2D 1x1

Batch Normalization

Fig. 4. Detection module and map generate structure
The detection module and the map generate module is constructed

by the same residential structure. This structure is made by a
Conv 2D 1× 1 to decrease the channels into a half. Then a Conv
2D 3× 3 is applied to do convolution. Finally, a Conv 2D 1× 1 is

used to recover the original channel number. The detection module
uses this basic structure twice and the map generate module only
use once. In order to concatenate with other levels output, a set of
Deconv layers are used to make the output feature map have the

same width and height.

B. Regression Based Automatic Depth Scale

A core part is how to adapt the depth scale based on
2D detected result. We want to scale the depth with a
value Scaledepth to make the coordinate in the same unit.
In theory, the depth is based on camera position. And
the 2D coordinate of joint also needs camera information.
This means without camera information, we cannot map
the world space depth to camera space.

depth =
√
(Px − Cx)2 + (Py − Cy)2 + (Pz − Cz)2, (4)uxuy

1

 =

fx 0 cx
0 fy cy
0 0 1

r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3

XY
1

 . (5)

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China

1431

However, we find out a map between the human size and
depth scale. This assumes the human size is normal. The
relationship between human 2D size (Width,Height) and
Scaledepth is strong both proved by linear regression and
visualization.

Then we use a fast calculation to get the Scaledepth and
multiply to the Depth. Then we can get the right human
joint position in camera space without getting camera
information.

V. Experiments
A. Training

A huge problem for training 3D pose estimation neural
network is the dataset. Capturing high-quality 3D joints
data usually need to do in the studio and the characters
need to wear special clothes with markers. This means it
is tough to get 3D pose dataset in the wild environment.
However, it is much easier to get the 3D pose from the
game because it is needed to render the character. So we
choose to use a virtual 3D pose dataset called JTA dataset
[7]. Although the input image’s realistic is not as good as
the dataset from real life, we proved that with carefully
designed training progress and data augmentation, a game
dataset is also suitable for training a neural network which
will be used in real life.

We train the 2D detection branch of the network with
MSCOCO 2014 [6] dataset first to initialize the network.
Then, we randomly choose a sample from 2D dataset or
3D dataset each time. We recognized this training progress
makes the network training more stable and decrease the
training time. We train the whole network on one Nvidia
GTX 1080ti for 72 hours.

B. Results
We evaluated our method on JTA dataset test set. We

use MPJPE (mean per joint position error) to measure
our network’s performance. The result is shown in Table.
II. Since we want to test the image based performance, we
do not use temporal smoother. Since there are not many
image-based 3D pose solution also considering speed, we
compared with some other solutions. For other RGB image
based solutions, they do not target for speed and cannot
achieve real-time. Some methods also used 2D pose, but
it takes a 2D pose as input. This means it needs a pre-
processing by another 2D pose network. This means the
quality and the speed of the pre-processing method highly
affect the performance of the followed 3D pose estimation
methods. We test these methods by adding a typical 2D
pose estimation system OpenPose [2] to measure the speed
and accuracy.

However, many cases of the test dataset are not suitable
for our design target. Like there are crowd peoples in a
different size. So we also test our work on a test set more
similar to game or entertainment. The result images are
listed in Fig. 5.

By analysis, we find out most error is happened on
the foot. Considering about our relative depth encoding
method, the farther the joint to the root node, the higher
the error will be.

C. Network profile and visualization
We design this neural network architecture based on the

idea of multi-level detection. However, it is hard to prove
the neural network acts as we designed because there isn’t
any manually writing code or logic. In order to prove the
neural network is acted as we designed, we use network
profile and visualization to prove this.

To prove different level have different focus area, we
dump the output feature maps in each level, then find
out the area with the highest output in total.

MapActivation(x, y) =

∑
MapFeature(x, y, i)

max(MapFeature(x, y))
. (6)

The higher activation means the current level has higher
interest on this area. Like we show in Fig. 6, we find out
a different level of detection path do as we want. The
high level with small detection receptive field focuses on
small targets like necks and human heads far away from
the camera. The low level with large detection receptive
field focuses on large body parts near to the camera.
The middle level takes responsibility for other areas. The
interest detects areas in different level do not cover each
other. This proves our network act as we design to do.

VI. Conclusions
This paper proposed a system to do real-time multi-

person 3D pose estimation. It contains a multi-task and
multi-level detection neural network to directly take an

TABLE II
Performance compare

Methods Input
MPJPE
(mm)

Speed
(ms)

Zhou et al.[24] Video 64.9 -
Martinez et al.[5] 2D Pose 62.9 -

Open Pose[2]
(high accuracy mode)
+ Martinez et al.[5]

RGB
Image

70.5 833.3

Open Pose[2]
(high speed mode)
+ Martinez et al.[5]

RGB
Image

82.7 113.6

LCR-Net[29]
RGB
Image

87.7 -

Ours
RGB
Image

112.9 46.5

- Means this work is not designed for speed or cannot
measure by FPS. For example, the 2D pose based
work’s speed depends on the pre-processing system’s
speed.

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China

1432

Fig. 5. Some results of our work, include single-person and multi-person pose estimation result.

Input Image High level Middle level Low level

Fig. 6. Activation area for different detection level.
This image shows the division of work for different levels: The

high-level focus on small detection targets like neck and human
head far away from the camera. The middle-level focus on most
parts of the image. The low-level focus on the large parts in the

image like the human arm of the person near to the camera.

image as input and output 2D joint position, 2D joint
linking and 3D joint depth information. Then a post-
processing progress is used to construct 3D pose for each
human. With only 33 mm accuracy down, our RGB image
based solution achieves 21 fps speed on RTX 2080. This is

an affordable accuracy for game and entertainment. Our
system shows the potential of using a normal RGB camera
to do real-time 3D pose estimation for multiple people is
possible.

Acknowledgment

This work was supported by Waseda University Grant
for Special Research Projects (2019C-581)

References
[1] Z. Cao, T. Simon, S.-E. Wei, and Y. Sheikh, “Realtime multi-

person 2d pose estimation using part affinity fields,” in CVPR,
2017.

[2] Z. Cao, G. Hidalgo, T. Simon, S.-E. Wei, and Y. Sheikh,
“OpenPose: realtime multi-person 2D pose estimation using
Part Affinity Fields,” in arXiv preprint arXiv:1812.08008, 2018.

[3] D. Mehta, O. Sotnychenko, F. Mueller, W. Xu, S. Sridhar,
G. Pons-Moll, and C. Theobalt, “Single-shot multi-person 3d
pose estimation from monocular rgb,” in 2018 International
Conference on 3D Vision (3DV), pp. 120–130, IEEE, 2018.

[4] D. Pavllo, C. Feichtenhofer, D. Grangier, and M. Auli, “3d
human pose estimation in video with temporal convolutions and
semi-supervised training,” in Conference on Computer Vision
and Pattern Recognition (CVPR), 2019.

[5] J. Martinez, R. Hossain, J. Romero, and J. J. Little, “A simple
yet effective baseline for 3d human pose estimation,” in ICCV,
2017.

[6] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ra-
manan, P. Dollár, and C. L. Zitnick, “Microsoft coco: Common
objects in context,” in Computer Vision – ECCV 2014 (D. Fleet,
T. Pajdla, B. Schiele, and T. Tuytelaars, eds.), (Cham), pp. 740–
755, Springer International Publishing, 2014.

[7] M. Fabbri, F. Lanzi, S. Calderara, A. Palazzi, R. Vezzani, and
R. Cucchiara, “Learning to detect and track visible and occluded
body joints in a virtual world,” in European Conference on
Computer Vision (ECCV), 2018.

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China

1433

[8] T. Vatahska, M. Bennewitz, and S. Behnke, “Feature-based
head pose estimation from images,” in 2007 7th IEEE-RAS
International Conference on Humanoid Robots, pp. 330–335,
IEEE, 2007.

[9] A. Toshev and C. Szegedy, “Deeppose: Human pose estimation
via deep neural networks,” in The IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), June 2014.

[10] S. D. Dingli Luo and T. Ikenaga, “End-to-end feature pyramid
network for real-timemulti-person pose estimation,” in MVA,
2019.

[11] X. Nie, J. Feng, J. Xing, and S. Yan, “Pose partition networks for
multi-person pose estimation,” in Proceedings of the European
Conference on Computer Vision (ECCV), pp. 684–699, 2018.

[12] S. Cao, W. Lu, and Q. Xu, “Deep neural networks for learn-
ing graph representations,” in Thirtieth AAAI Conference on
Artificial Intelligence, 2016.

[13] X. Chen and A. L. Yuille, “Articulated pose estimation by
a graphical model with image dependent pairwise relations,”
in Advances in Neural Information Processing Systems 27
(Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and
K. Q. Weinberger, eds.), pp. 1736–1744, Curran Associates, Inc.,
2014.

[14] W. Abdulla, “Mask r-cnn for object detection and instance
segmentation on keras and tensorflow,” 2017.

[15] H.-S. Fang, S. Xie, Y.-W. Tai, and C. Lu, “RMPE: Regional
multi-person pose estimation,” in ICCV, 2017.

[16] Y. Xiu, J. Li, H. Wang, Y. Fang, and C. Lu, “Pose Flow: Efficient
online pose tracking,” in BMVC, 2018.

[17] A. Sharifi, A. Harati, and A. Vahedian, “Marker based human
pose estimation using annealed particle swarm optimization
with search space partitioning,” in 2014 4th International
Conference on Computer and Knowledge Engineering (ICCKE),
pp. 135–140, Oct 2014.

[18] D. C. Blumenthal-Barby and P. Eisert, “High-resolution depth
for binocular image-based modeling,” Computers & Graphics,
vol. 39, pp. 89–100, 2014.

[19] Z. Zhang, “Microsoft kinect sensor and its effect,” IEEE Mul-
tiMedia, vol. 19, pp. 4–10, Feb 2012.

[20] M. Omran, C. Lassner, G. Pons-Moll, P. Gehler, and B. Schiele,
“Neural body fitting: Unifying deep learning and model based
human pose and shape estimation,” in 2018 International
Conference on 3D Vision (3DV), pp. 484–494, IEEE, 2018.

[21] M. Loper, N. Mahmood, J. Romero, G. Pons-Moll, and M. J.
Black, “SMPL: A skinned multi-person linear model,” ACM
Trans. Graphics (Proc. SIGGRAPH Asia), vol. 34, pp. 248:1–
248:16, Oct. 2015.

[22] M. Drennan, “An implementation of camera calibration algo-
rithms,” Clemson University, 2010.

[23] D.-x. Zhu, “Binocular vision-slam using improved sift algo-
rithm,” in 2010 2nd International Workshop on Intelligent
Systems and Applications, pp. 1–4, IEEE, 2010.

[24] X. Zhou, M. Zhu, S. Leonardos, K. G. Derpanis, and K. Dani-
ilidis, “Sparseness meets deepness: 3d human pose estimation
from monocular video,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 4966–4975,
2016.

[25] M. Kocabas, S. Karagoz, and E. Akbas, “Self-supervised learn-
ing of 3d human pose using multi-view geometry,” in The
IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2019.

[26] C.-H. Chen, A. Tyagi, A. Agrawal, D. Drover, R. MV, S. Sto-
janov, and J. M. Rehg, “Unsupervised 3d pose estimation with
geometric self-supervision,” arXiv preprint arXiv:1904.04812,
2019.

[27] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and
S. Belongie, “Feature pyramid networks for object detection,”
in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 2117–2125, 2017.

[28] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 770–778, 2016.

[29] G. Rogez, P. Weinzaepfel, and C. Schmid, “Lcr-net:
Localization-classification-regression for human pose,” in Pro-

ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 3433–3441, 2017.

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China

1434

