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Abstract—Insufficient data is a common issue in training deep
learning models. With the introduction of generative adversarial
networks (GANs), data augmentation has become a promising
solution to this problem. This paper investigates whether data
augmentation can help improve speech emotion recognition.
Unlike conventional GANs, we train a GAN with an autoencoder,
where the input to the discriminator comes from the bottleneck
layer of the autoencoder and the output of the generator. The
synthetic samples can be obtained from the decoder, using the
output of the generator as the decoder’s input. The combined net-
work, namely adversarial data augmentation network (ADAN),
can generate samples that share common latent representation
with the real data. Evaluations on EmoDB and IEMOCAP
show that using OpenSmile features as input, the ADAN can
produce augmented data that make an ordinary SVM classifier
outperforms an RNN classifier with local attention and make a
DNN competitive to some state-of-the art systems.

I. INTRODUCTION

Emotion recognition plays an important role in natural
human computer interaction. With the development of deep
learning, impressive progress has been achieved in speech
emotion recognition [1], [2], [3]. Instead of using hand-crafted
spectral and prosodic features, deep belief networks can be
used for feature learning and feature selection [4]. To classify
the frame-based bottleneck features or to exploit the dynamic
structure of frame-based features, long short-term memory
recurrent neural networks (LSTM-RNN) have been used [5],
[6]. Training a deep learning model requires a lot of data.
Unfortunately, in many applications, acquiring labeled data
is a big challenge. The data collection process is expensive
and time-consuming. It is also difficult to define emotion in
a precise way, because the emotion of some utterances may
be ambiguous and could belong to more than one emotion
type. In some cases, even professional annotators may not be
unanimous in their decisions [7]. Therefore, it is important to
address the data sparsity problem. In this paper, we propose an
elegant solution based on the idea of Generative Adversarial
Network (GAN) to enlarge the training set by generating fake
samples.

Transfer learning [8] is a popular solution to the insufficient
data problem. In particular, domain adaptation (a subset of
transfer learning) is able to adapt a source-domain model to fit
the target-domain data without requiring labeled data from the
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target domain. This technique has made significant progress
in image classification [9]. Motivated by the achievements
in image classification, transfer learning has been gradually
applied to speech emotion recognition as well [10], [11].

The introduction of generative adversarial networks (GANs)
[12] opens up new opportunities for addressing the insufficient
training data problem. A typical GAN comprises two neural
networks: a generator and a discriminator. These two networks
act like two players aiming to win a zero-sum game. The
generator is trained to map an arbitrary distribution to the
data distribution, and the discriminator is trained to distinguish
whether a sample comes from the data distribution (i.e.,
genuine) or from the generator (i.e., fake). Some researchers
advocate that the GAN-based data augmentation technique can
help to improve performance on recognition tasks [13], [14].

Another GAN-based approach is the adversarial autoen-
coder (AAE) [15]. In addition to minimizing the reconstruction
errors, an AAE also needs to match the aggregated posterior
distribution of the latent representation to an arbitrary prior
distribution. Sahu et al. [16] exploited the AAE to synthesize
speech emotion samples and applied the synthetic data for
emotion classification. Their results demonstrate that adding
synthetic data to the original training set helps to improve the
performance of speech emotion classification. However, they
also pointed out that the generated features do not follow the
actual marginal distribution of the real samples.

In this work, we design an adversarial data augmentation
network (ADAN) by combining an autoencoder with a GAN in
a way that is different from the AAE. To address the problem
of AAE highlighted above, we take feature learning into
consideration. Specifically, instead of presenting the decoder
with random vectors sampled from an arbitrary distribution,
we present the decoder with emotion-aware latent vectors
generated by a DNN. These emotion-aware latent vectors are
made indistinguishable from the output vectors of the encoder
through adversarial learning. As a result, the ADAN aims to
generate samples that share common latent representation with
the real data. Our experimental results demonstrate that this
data augmentation approach can improve the speech emotion
recognition on the EmoDB [17] and IEMOCAP [7] datasets.
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Fig. 1. The structure and data flow of an adversarial data augmentation
networks (ADANs), the network comprises an autoencoder with an auxiliary
classifier (top), a generator (lower-left) and a discriminator (lower-right). The
dotted line is only used for data augmentation after training.

II. ADVERSARIAL DATA AUGMENTATION NETWORK

A. Network Structure and Training Algorithm

Fig. 1 shows the structure of an adversarial data augmenta-
tion network (ADAN). It consists of an autoencoder R(E(x))
with an auxiliary classifier C(E(x)), a generator G(z,y) and
a discriminator D(h). The ADAN aims at: (i) learning a latent
representation that retains emotion information, (ii) matching
the posterior distribution p(ĥ|z,y) to the posterior distribution
p(h|x), and (iii) minimizing the reconstruction errors between
x and x̂.

To achieve the three aims above, the three components in
Fig. 1 are trained adversarially. Specifically, the encoder of the
autoencoder is trained to learn a latent representation h in an
N -dimensional space. The auxiliary classifier is to ensure that
the latent representation is able to differentiate the emotion
classes. The decoder is to reconstruct the emotion vectors in
the original space. The generator takes samples drawn from
an arbitrary distribution in an N -dimensional space and one-
hot encoded emotion labels as input and generates samples
in the latent space; its goal is to generate samples that are
indistinguishable from the real samples in the latent space, i.e.,
p(h|x) ≈ p(ĥ|z,y). The discriminator aims at distinguishing
whether a latent vector comes from the real data or from the
generator. Compared with generating samples in the original
space, the advantage of generating samples in the latent space
is that the latter overcomes the difficulties of generating high-
dimensional vectors.

To train the proposed network, we minimize the losses

defined below:

L(ADAN)
D = Ep(x,y,z)

{
− logD(E(x))−log(1−D(G(z,y)))

}
(1)

L(ADAN)
C = Ep(x)

{
−

K∑
k=1

y(k)emo logC(E(x))k

}
(2)

L(ADAN)
R = Ep(x)

{
||x−R(E(x))||2

}
(3)

L(ADAN)
E = Ep(x)

{
||x−R(E(x))||2

−
K∑

k=1

y(k)emo logC(E(x))k

}
(4)

L(ADAN)
G = Ep(z,y)

{
log(1−D(G(z,y))

−
K∑

k=1

y(k)emo logC(G(z,y))k

}
(5)

where ()k denotes the k-th element of a vector, G stands for
the generator, R for the decoder, E for the encoder, D for the
discriminator and C for the auxiliary classifier. If the generator
is trained with inverted labels [12], the generator loss becomes

L(ADAN)
G = Ep(z,y)

{
− log(D(G(z,y))

−
K∑

k=1

y(k)emo logC(G(z,y))k

}
. (6)

After training, the auxiliary classifier C and the discrimina-
tor D are removed. Then the remaining parts are used for data
augmentation by connecting the generator G to the decoder R
(the dotted arrow in Fig. 1). The augmentation procedure will
be described in Section III.

B. Advantages of ADAN

If the autoencoder and the auxiliary classifier of an ADAN
are well trained and fixed, then the remaining parts are similar
to a vanilla GAN. This motivates us to train an autoencoder
and a vanilla GAN separately. However, this training approach
leads to poorly performed augmented data in our experiments.
This may be due to the fundamental problems of GAN; that
is to say, GANs are hard to train because of the gradient
vanishing problem and gradient instability problem in the gen-
erator [18], especially when the amount of training received by
the generator and the discriminator is not carefully balanced.
Imagine a situation where the distributions of the fake and
real samples are fairly different at the beginning of training.
Then, the fake and real samples could be easily classified by
the discriminator. If the discriminator becomes so good that
the error gradient received by the generator become zero, then
the generator will be prohibited to learn anything.

The gradient vanishing problem in GAN can be overcome
by the ADAN. The reason is explained as follows. When
training begins, the weights and bias terms of the generator
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and the encoder are initialized randomly with zero mean
and variable variances. Because both the feature vectors and
weights in E have zero mean and tanh is used as the
activation function, the expectation of h is almost zero.1

Similar situation occurs in the generator. This means that at the
early stage of training, the distributions of h and ĥ are largely
overlapped, which causes difficulty for the discriminator to
differentiate these two groups of latent vectors. With such a
high cross-entropy loss from D, the generator will receive non-
zero error gradient and the gradient vanishing problem will not
occur. During the course of training, the auxiliary classifier and
the decoder will encourage E to form class-dependent clusters
in the latent space, while the adversarial training of G (through
D, the first term of (5)) will make ĥ’s similar to h’s. Another
strategy used by ADAN to avoid gradient vanishing is to inject
cross-entropy loss of C to G through the second term of (5).
This means that even if the gradient of the first term in (5) is
zero, we still have the gradient of the second term to update
G.

While the AAE and the proposed ADAN rely on an autoen-
coder to create a latent space, in the ADAN, the autoencoder is
trained and used in a very different and potentially much better
way. In particular, instead of using a mixture of Gaussians to
generate class-dependent random samples [15], ADAN uses
a DNN (the lower-left network in Fig. 1) to generate class-
dependent latent vectors, where the class information comes
from the one-hot encoded labels. Because the DNN can be
trained to maximize class information in the generated vectors,
the ADAN avoids a potential problem in AAEs in which the
synthetic samples follow an arbitrary distribution rather than
the actual data distribution [16]. The auxiliary classifier will
also encourage the encoder to form class-dependent clusters
in the latent space, which facilitates the generator to learn and
mimic the distributions of genuine latent vectors. In short, the
proposed network can improve the quality of the synthetic
samples compared to the vanilla GAN and AAE.

III. EXPERIMENTS

A. Datasets

The Berlin Database of Emotional Speech (EmoDB) [17]
and the Interactive Emotional Dyadic Motion Capture (IEMO-
CAP) [7] were used in the experiments.

EmoDB contains seven categories of emotional speech
spoken by ten speakers. All speakers spoke the same set of
verbal content in an anechoic chamber. It is a very small
dataset which comprises 535 utterances.

IEMOCAP contains the utterances of ten actors participat-
ing in dyadic interactions. In this study, we considered four
emotions: angry, happy, neutral, and sad. This amounts to
4490 utterances. The data can be divided into improvised
sessions and scripted sessions. Because the actors need to
change their emotional states within the scripted sessions,
the emotions in the scripted sessions are more ambiguous

1If random variable X and Y are independent, E{XY } =
EX{X}EY {Y }.

than those in the improvised sessions [7]. We used all of the
utterances belonging to these four emotion classes for training
emotion classifiers and for performance evaluation. But we
only used the improvised sessions for training the ADAN and
for data augmentation.

B. Emotion Features

We used OpenSmile [19] to extract emotion features spec-
ified in Interspeech 2011 Speaker State Challenge [20] for
EmoDB and Interspeech 2010 Paralinguistic Challenge for
IEMOCAP [21]. For both datasets, we removed the features
with zero variances. The features were then normalized inde-
pendently by z-norm.

C. Evaluations

For IEMOCAP, we applied leave-one-session-out cross vali-
dation (LOSO-CV) to ensure that no testing data were involved
in either data augmentation or training of emotion classifiers.
IEMOCAP consists of five sessions, each with a male and a
female speaker. For each fold in the LOSO-CV, we used four
sessions for training and the remaining one for testing. For
EmoDB, we applied leave-one-speaker-out cross validation.
Thus, we performed a 10-fold cross-validation on EmoDB and
5-fold cross-validation on IEMOCAP. We used both weighted
accuracy (WA) and unweighted average recall (UAR) for
performance comparison.

D. Experimental Setup

For each dataset, we carried out three steps: train ADANs,
create augmented data, and train emotion classifiers.

We set the dimension of the latent vectors to 100. For
each training vector, we randomly drew a sample from a 100-
dimensional Gaussian distribution N (0, I) as the input to the
generator. For each epoch, we trained the discriminator M
times to minimize the cross-entropy of classifying real and
synthetic data (1), followed by freezing its weights. Then the
autoencoder and auxiliary classifier were trained ((2) – (4)),
followed by freezing the weights of the auxiliary classifier.
After that, we trained the generator to maximize the cross-
entropy of the discriminator (1st term of (6)) and to minimize
the cross-entropy of the auxiliary classifier (2nd term of
(6)). When the network converged, we presented the one-
hot emotion labels and Gaussian random vectors z to the
generator, the synthetic latent vectors were then passed to the
decoder (the dashed arrow in Fig. 1) to produce augmented
data in the original space. The emotion labels determined the
number of samples for each class that we wanted to obtain.
We created 10 augmented sets, each with the same size as the
original set, and augmented the synthetic data to the initial
training set to train emotion classifiers.

The components in the ADAN are fully-connected neural
networks with two hidden layers. The number of hidden
neurons is 800 for the encoder and the decoder, while it
is 100 for the remain parts. For each epoch, one pass of
stochastic gradient descent was applied to the discriminator,
i.e., M = 1. The learning rate for all subnetworks in the
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(a) EmoDB (b) IEMOCAP

Fig. 2. Cross entropy and mean squared error losses during the course of
training of the ADAN using (a) EmoDB and (b) IEMOCAP as training data.

(a) Latent (IEMOCAP) (b) Original (IEMOCAP)

Fig. 3. (a) Latent representation and (b) data in the original space after
augmentation for four emotions in IEMOCAP improvised sessions. Markers
of the same color belong to the same emotion. Lighter colors represent the
real samples, while darker colors represent the synthetic samples.

ADAN was set to 0.0001. Support vector machines (SVMs)
and simple deep neural networks (DNNs) were trained for
emotion classification. Hyperbolic tangent was used in the
ADAN and the DNN classifier for IEMOCAP. ReLU was
used in the DNN classifier for EmoDB. Radial basis function
kernels were used in the SVM classifier for EmoDB. The
Adam optimizer [22] and Xavier weight initialization [23]
were used in all DNNs. The scikit-learn toolbox was used
for implementing the SVMs and Tensorflow was used for
implementing the DNNs.

IV. RESULTS

The curves in Fig. 2 clearly show that except for the
discriminator loss, all losses decrease until convergence. The
increase in the discriminator loss suggests that the synthetic
samples causes adversity in the discriminator.

For visualization purpose, the t-SNE tool [24] was used to
project the latent vectors and the feature vectors onto a 2-
dimension space, as shown in Fig. 3. In the figure, emotional
states are represented by different colors, with darker and
lighter colors corresponding to synthetic and genuine vectors,
respectively. Since we only used the improvised sessions of
IEMOCAP for training the ADAN, the figure only reflects the
data in that part. Clear emotion clusters can be observed in
the latent space, and synthetic vectors are very close to the
genuine vectors. For the original data space, we observe that
the synthetic samples do not only close to the genuine ones,
but also follow the actual data distribution. More importantly,
mode collapse does not occur, which is a common problem in

TABLE I
COMPARISON OF WEIGHTED ACCURACY (WA) ON EMODB DATASET.

Methods WA (%)
Perception by human (Burkhardt et al. [17]) 87.50
GMM/SVM (Luengo et al. [25]) 78.30
SVM with IS11 Speaker State (Mak [26]) 80.56
DNN with IS11 Speaker State (Mak [26]) 80.19
Augmentation based on data duplication 82.06
Augmentation based on adding noise 82.06
Augmentation based on SMOTE 82.43
ADAN + SVM (proposed) 80.93
ADAN + DNN (proposed) 83.74

TABLE II
PERFORMANCE OF SVM CLASSIFIERS ON IEMOCAP WITH AND

WITHOUT DATA AUGMENTATION.

Improvised only Improvised & Scripted
Training data WA(%) UAR(%) WA(%) UAR(%)

real only 67.94 60.06 64.74 58.25
synthetic only 67.76 58.10 59.00 52.52

real + synthetic 67.89 61.32 65.01 59.01

vanilla GANs.
As EmoDB is a small dataset, it is expected that it can

benefit a lot from data augmentation. Table I shows the
weighted accuracy achieved by different methods. For this
small dataset, SVMs can easily beat the DNNs. However, after
data augmentation using our proposed ADAN, we can train a
DNN that outperforms the SVM by more than 3% absolute.
Better DNNs were also trained based on other data augmenta-
tion techniques, such as duplicating the training data, adding
noise to feature vectors and applying the synthetic minority
over-sampling technique (SMOTE) [27]. Table I shows that
the classifier based on the proposed ADAN achieves the best
performance. The performance of SVMs is also improved after
data augmentation, which indicates that the synthetic data have
positive effect on finding better decision boundaries in the
SVMs. This promising result suggests that data augmentation
is beneficial for speech emotion recognition and our proposed
ADAN can generate real-like samples.

Since the emotions in EmoDB are highly distinguishable,
it may be easy to synthesize the emotion data. In order to
obtain more convincing results, we conducted our experiments
on the IEMOCAP dataset in which different emotions are
more confusing. Thus, to mimic its data distribution is more
challenging.

Table II shows the performance of the SVM classifiers on
IEMOCAP using real, synthetic, and both real and synthetic
data. Evidently, with the synthetic data, the performance can
be slightly improved. We have also used confusion matrices
for further analysis. We find that the classification accuracy of
“Happy” increases after data augmentation. But augmenting
more “Happy” data could not further improve performance.
This may be due to the feature vectors themselves, of which
the emotion “Happy” is confusable with other emotions. Ma
et al. [28] pointed out that the neutral speech segments from
sentences labeled with “Happy” are very similar to other
emotions. The augmented data may help the classifier to better
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TABLE III
CLASSIFICATION PERFORMANCE OF THE PROPOSED METHOD AND
EXISTING METHODS ON IEMOCAP IMPROVISED AND SCRIPTED

SESSIONS.

Methods WA (%) UAR(%)
RNN (Mirsamadi et al. [29]) 63.50 58.80
AAE & SVM (Sahu et al. [16]) - 58.38
Augmentation based on data duplication 64.37 58.34
Augmentation based on adding noise 64.30 58.40
Augmentation based on SMOTE 62.47 58.52
ADNN + SVM (proposed) 65.01 59.01

TABLE IV
CLASSIFICATION PERFORMANCE OF THE PROPOSED METHOD AND

END-TO-END SYSTEMS ON IEMOCAP IMPROVISED SESSION ONLY.

Methods WA (%) UAR(%)
2-D ACRNN ([30]) - 62.40
3-D ACRNN ([30]) - 64.74
Variable-Length DNN ([28]) 71.45 64.22
ADAN + SVM (proposed) 67.89 61.32
ADAN + DNN (proposed) 66.80 62.83

recognize the emotion of happy but the help is still limited.
The accuracies obtained by using the synthetic data only for

training are comparable with those obtained by using real data
for training. Compared with AAE [16], which achieves only
UAR of 33.75% by using synthetic data only, the synthetic
samples generated by our proposed network are more like real
data, which achieves an UAR of 52.52%.

Table III and Table IV compare the performance of our
proposed network with some end-to-end systems [28], [30]
that do not use OpenSMILE features as input. An advantage
of end-to-end systems is that they can capture the emotion
information from waveforms or time-frequency representations
through supervised learning. Typically, they can outperform
systems that are based on handcrafted features extracted by
OpenSMILE. That explains why even with data augmentation,
our ADAN + DNN in Table IV could not beat these end-
to-end systems. Nevertheless, ADAN is a very general data
augmentation method, which can be readily applied to create
training data for these end-to-end systems. This will be an
interesting future work to pursuit.

V. CONCLUSIONS

Insufficient data in speech emotion datasets is a problem in
training deep learning models for speech emotion recognition.
A lack of training data would lead to over-fitting in complex
models. In this paper, an adversarial data augmentation net-
work is proposed to find a latent space, generate samples in
the latent space and produce synthetic samples in the original
space for data augmentation. We demonstrated that this data
augmentation network can produce emotion-rich augmented
samples that are beneficial for training emotion classifiers. We
have only considered the simple case in which the inputs to the
data augmentation network are OpenSmile emotion vectors.
Nevertheless, the augmentation network is general enough for
generating other types of vectors.
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