
1

Edge Mining on IoT Devices
Using Anomaly Detection
Kavin Kamaraj∗, Behnam Dezfouli†, and Yuhong Liu‡

Internet of Things Research Lab, Department of Computer Science and Engineering, Santa Clara University, USA
∗kkamaraj@scu.edu, †bdezfouli@scu.edu, ‡yliu@scu.edu,

Abstract—With continuous monitoring and sensing, millions of
Internet of Things sensors all over the world generate tremendous
amounts of data every minute. As a result, recent studies start
to raise the question as whether to send all the sensing data
directly to the cloud (i.e., direct transmission), or to preprocess
such data at the network edge and only send necessary data to
the cloud (i.e., preprocessing at the edge). Anomaly detection is
particularly useful as an edge mining technique to reduce the
transmission overhead in such a context when the frequently
monitored activities contain only a sparse set of anomalies.
This paper analyzes the potential overhead-savings of machine
learning based anomaly detection models on the edge in three
different IoT scenarios. Our experimental results prove that by
choosing the appropriate anomaly detection models, we are able
to effectively reduce the total amount of transmission energy as
well as minimize required cloud storage. We prove that Random
Forest, Multilayer Perceptron, and Discriminant Analysis models
can viably save time and energy on the edge device during
data transmission. K-Nearest Neighbors, although reliable in
terms of prediction accuracy, demands exorbitant overhead and
results in net time and energy loss on the edge device. In
addition to presenting our model results for the different IoT
scenarios, we provide guidelines for potential model selections
through analysis of involved tradeoffs such as training overhead,
prediction overhead, and classification accuracy.

Keywords—Edge mining, fog computing, anomaly detection,
supervised machine learning

I. INTRODUCTION

The Internet of Things (IoT) refers to a network of billions
of interconnected devices that have the ability to communicate
and exchange data over the Internet. Such IoT devices range
from sensors, smart phones, computers, vehicles, building
appliances, and health devices. The extension of Internet
connectivity to physical devices and everyday objects has
substantially increased worldwide real-time data collection and
transmission. As of 2019 there are approximately 9 billion IoT
devices across the world and by 2020 this number will surge
to over 25 billion [1]. These IoT edge devices, such as smart
light bulbs, wearable medical devices, doors, heaters, sensors
for smart agriculture, etc., which typically host a variety of
sensors for temperature, pressure, humidity, light, motion and
acceleration, are often resource-constrained[2]. For example,
many of them are battery-powered, with limited processing
power which is just sufficient for the task at hand so that they
can be mass-produced while minimizing costs.

On the other hand, the amount of data produced by these
sensors at this scale is staggering. As IoT devices grow in
number, the tremendous amount of sensing data collected has

raised great challenges for data transmission overhead (time
and energy) and cloud storage. Applications of cost-cutting
edge mining techniques to reduce packet transmission and
remote storage requirements are rapidly growing throughout
IoT networks [3], [4]. One of the most basic edge mining
techniques is random sampling to reduce the number of
observations sent to the cloud. More sophisticated methods,
such as anomaly detection, isolate and transmit only the
contextually relevant observations [5]. The guiding principle
behind anomaly detection is that only unexpected behavior
needs to be notified to the centralized cloud. Contemporary
works specify different anomaly detection methods ranging
from basic thresholding to machine learning algorithms [6],
[7]. However, as the resources available at each IoT edge
device can be rather limited in terms of power, memory,
connectivity, bandwidth, and computation, it is critical to
choose appropriate anomaly detection algorithms that can not
only effectively identify abnormal behaviors but also consume
limited resources at the edge devices.

In this work we present supervised machine learning based
anomaly detection that can substantially reduce energy con-
sumption and transmission overhead on the edge and storage
requirements on the cloud. We conduct our experiments on a
custom testbed inclusive of an edge device, the cloud, and
an energy measurement platform. Four classes of machine
learning algorithms, Random Forest Classifier (RF), Multilayer
Perceptron Classifier (MLP), K-Nearest Neighbor Classifier
(KNN), and Discriminant Analysis Classifier (DA) are bench-
marked on a Raspberry Pi 3 (RPi3) edge device for different
anomaly detection scenarios. We use both Linear Discriminant
Analysis (LDA) and Quadratic Discriminant Analysis (QDA)
variants of DA for this study. Our work makes several novel
contributions to anomaly detection used in the context of edge
mining. First, we benchmark training and prediction phase
overhead (i.e., time and energy consumption) at the edge
device for each model on multiple datasets. Second, real data
rather than synthetic data have been adopted for experiments.
Third, we demonstrate tangible transmission cost-savings us-
ing machine learning based anomaly detection for multiple
datasets.

We demonstrate significant overhead-savings achieved using
MLP, RF, and DA anomaly detection model classes during
the data processing and transmission period. Furthermore,
we identify the best anomaly detection model for different
application scenarios. For example, MLP features one of the
shortest prediction phases, which is recommended for time-
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sensitive scenarios. However, it also has one of the most costly
training phases which is undesirable if there are resource
constraints for training. By analyzing these tradeoffs, we
better understand why the models achieve different levels of
performance in different scenarios.

The rest of the paper is organized as follows. In Section
II, we present related work focusing on previously studied
applications of anomaly detection on IoT edge devices. Section
III discusses the supervised models and the datasets used
in our experiments. Section IV contains both experimental
procedure and results. Finally, Section V concludes the paper
and provides future research directions.

II. RELATED WORK

Anomaly detection is one of the the most popular edge
mining techniques explored in IoT scenarios [8], [9]. In [10],
[11], [12], and [13] anomaly detection is used as a method to
implement an Intrusion Detection System (IDS) for Wireless
Sensor Networks (WSN). Sommer et al. [12] propose the use
of LDA to reduce the dimensionality of network intrusion
datasets and applies both Naive Bayes and KNN algorithms
for anomaly classification. In [13], the authors benchmark
the performance of anomaly detection (i.e., false positive
rates) using an unsupervised outlier detection technique based
on the RF algorithm. Furthermore, [14] demonstrates the
effectiveness of autoencoders for an unsupervised IDS and
proposes a novel splitting and learning mechanism to lower
false positive detection. Although these works explore novel
applications of anomaly detection on the IoT edge, they do not
focus on resource constrained scenarios and therefore do not
delve into the time and energy consumption of these methods.

In [15], [16], and [17] anomaly detection is investigated
in healthcare applications. Arijit et. al [16] propose cardiac
anomaly detection with low false negative counts and stress
the importance of capturing outliers in healthcare applications.
Similar to the IDS studies, this work focuses extensively on
anomaly detection implementation but does not consider the
factor of resource consumption. Several works also tackle
anomaly detection in IoT applications outside of IDS and
healthcare. In [18] non-machine learning anomaly detection
algorithms are proposed for a set of heterogenous sensors
in an IoT WSN. In [19] an autoencoder neural network is
used for determining anomaly readings from a testbed of eight
temperature and humidity sensors. These works also, however,
do not consider overhead nor consider pros and cons using
different anomaly detection methods.

Few works consider resource constrained IoT scenarios. For
example, Sedjelmaci et. al [20] test a reputation model based
on game theory to predict attack signatures on a resource
constrained IoT device. In addition to this, the work of Lyu
et. al [21] is one of the few works which presents cost-savings
potential of anomaly detection using both real and synthetic
datasets on a resource constrained IoT platform. However, this
work only evaluates unsupervised hyperellipsoidal clustering
and does not include supervised machine learning algorithms.
Unsupervised methods are useful in the absence of ground-
truth information but are generally not as accurate as super-
vised methods for classification tasks.

TABLE I: Mathematical notations and symbols.

d Number of features
h Number of neurons per hidden layer
i Number of iterations
k Number of hidden layers
K Number of neighbors
M Number of testing samples
N Number of training samples
o Number of output neurons
P Distance-metric complexity
T Number of trees

TABLE II: Training and prediction time complexity of anomaly detection
models.

Classifier Training Complexity Testing Complexity
RF O(N ∗

√
(d ∗ T )) O(Td)

MLP O(Ndhkoi) O(Nhk)
KNN O(1) O(NPMlogK)

LDA if N >d: O(Nd2)
if d >N : O(d3)

O(M)

QDA O(d4) O(M logM)

III. ANOMALY DETECTION MODELS AND DATASETS USED

In this section below, we provide an analysis of each ma-
chine learning method benchmarked in our study and discuss
their general use cases, time complexity, and performance
tradeoffs involved in their training and prediction phases.
We have chosen RF, MLP, KNN, LDA, and QDA (i.e., two
variants of DA) for this study because they are among the most
popular machine learning classification methods [22]. Further-
more, all chosen models have distinct underlying mathematical
mechanisms which account for varying model performance
across different scenarios. Table I denotes all mathematical
notations. Table II provides each model’s theoretical training
and testing time complexity.

A. Random Forests

RF models are applicable to a wide range of classification
problems [22]. In a random forest, each node is split using a
subset of features randomly chosen at that node. This strategy
is robust against overfitting and enables RF to perform better
than many other classifiers, including discriminant analysis,
support vector machines, and neural networks [22]. The only
major downside of RF is that a large number of trees can
slow down the algorithm for real-time predictions. Suppose
there are T randomized trees, d features, and N training
samples, RF’s training time complexity is O(N2

√
dT ) [23].

The computational complexity at test time for a RF with T
trees and d features is O(Td) [23].

B. Multilayer Perceptron

MLP is the most known and frequently used type of
neural network using the backpropagation training algorithm.
In recent years, neural networks have been extensively used
for pattern recognition and optimization. MLP models contain
three types of layers: input layer, output layer, and hidden
layer. Each node in the input layer, from top to bottom, passes
an input data point to each neuron in the first hidden layer.
Then, each hidden layer neuron multiplies each value with a
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TABLE III: Overview of the datasets.

Dataset Dimensionality % of Anomalies Anomaly Type IoT Scenario
KDDCup 567497x3 0.35% Attack on the Network Intrusion Detection

Digits 30000x784 11% Digit 0 Anomalous Image Detection
Gestures 11674x64 25.3% A Hand Contraction of Patient Health Monitoring

weight vector and computes the sum of the multiplied values.
Subsequently each hidden layer neuron applies its activation
function to this sum, and sends the resulting value to the next
layer and eventually to the output layer. Suppose there are N
training samples, d features, k hidden layers each containing
h neurons, o output neurons, and i iterations. The time com-
plexity of MLP training is O(Ndhkoi) [24]. It is advisable to
start with a small number of hidden layers and nodes given the
high time complexity of MLP’s backpropagation algorithm and
time-consuming grid search procedure [24]. One of the most
notable advantages of MLP, is its low prediction complexity,
O(Nhk), which makes it suitable for time-sensitive anomaly
detection tasks.

C. K-Nearest Neighbors
K-Nearest Neighbor Classifier (KNN) is a relatively simple

learning algorithm. It is very commonly used in text mining,
agricultural predictions, and stock market forecasting [25].
Because KNN does not make any assumptions about the
underlying data distribution, it is particularly suitable for appli-
cations with little or no prior knowledge about the distribution
of the dataset.

KNNs are generally reputed for high prediction accuracy
with respect to precision and recall. Furthermore, the training
phase of KNN classifiers is very efficient. The training time
complexity of KNN is only O(1). Nevertheless, there are
several drawbacks of KNNs. First, the model has high space
complexity as it stores all training data instances. Second,
finding the most optimal value for K is not trivial [26].
KNN’s most significant drawback, however, is its exorbitant
prediction phase overhead, which is O(NPMlogK) with
N training samples, M test samples, K neighbors, and P
distance metric time complexity. The high overhead at the
prediction phase may make it less suitable to be carried on
by resource constrained IoT edge devices.

D. Discriminant Analysis
In this work, we use both LDA and QDA. LDA first projects

a dataset onto lower-dimensional space to prevent overfitting
and to generate linear class-separability. QDA also performs
dimensionality reduction but generates a quadratic line to fit
the training data. [27]. Despite its potential for non-linear
data patterns, the number of the parameters needed by QDA
scales quadratically with that of the variables, making it slower
for very high dimensional datasets. Both LDA and QDA
are extensively used for bankruptcy status classification and
face classification. LDA’s training complexity is O(d3) if d
>N (i.e., more features than training samples) and O(Nd2)
if N <d (i.e., more training samples than features). QDA’s
training complexity is generally O(d4) [27]. LDA’s prediction
complexity is O(N) whereas QDA’s prediction complexity is
O(N2).

TABLE IV: Training and prediction data dimensions.

Dataset Training Data Size Prediction Buffer Size
KDDCup 10000 50000

Digits 3000 2000
Gestures 3000 3000

E. Datasets Used

In this paper, we benchmark all four classes of classifi-
cation algorithms on the following datasets: KDDCup 1999
(KDDCup) [28], Digits 0-9 (Digits) [29], and Hand Ges-
tures (Gestures) [30]. We have chosen these datasets for the
following reasons. First, they represent different application
scenarios. Second, they represent different percentages of
anomalies at 0.35%, 10%, and 25.3% respectively. Third, they
represent different orders of dimensionality at 3, 784, and 64
respectively. Table III provides an overview of each dataset
with regard to anomaly detection scenario, percentage of
anomalies, and dimensionality. The original KDDCup dataset
from UCI machine learning repository contains 41 attributes.
ODDS Library from Stonybrook University, New York has
reduced the dataset to 3 attributes: duration of communication,
number of incoming bytes, and number of outgoing bytes.
Each training sample contains 3 features and an output value
indicating whether the network is in a secure or compromised
state. The original data set has 3,925,651 attacks (80.1%) out
of 4,898,431 records. ODDS has forged this dataset to contain
only 3,377 attacks (0.35%) out of 567,497 records. The end
goal in this scenario is to only notify the cloud of the sparsely
occurring attacks on the network.

Digits is a dataset containing images (28×28) of digits
between 0-9. There are a total of 784 features with each feature
corresponding to each constituent pixel of a given image.
Digit 0 is considered the anomalous class and constitutes
roughly 10% of the dataset. We consider digit 0 to represent
an unexpected entity or intruder captured within a collection
of image frames in a video stream. Anomaly detection can
substantially lower transmission overhead when filtration is
applied to high dimensional data such as images.

Hand Gestures is a dataset with 64 total attributes each
representing sensor measurements of a person’s hand while
playing the game of rock-paper-scissors. The original dataset
classifies each observed motion as either rock (closed fist),
paper (open fist), scissors (two fingers pointed), and neutral
(flat hand). For our study, we designate rock as the anomalous
gesture and group the other three gestures into the norm class.
We consider the rock symbol to be emblematic of a patient’s
hand contraction which requires medical assistance. In this
process, we introduce a scenario where 25.3% of the closed
fist instances (i.e., anomalies) are representative of a health
condition requiring notification to the cloud.
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Fig. 1: The testbed used for our experiment inclusive of three RPi3s and the
EMPIOT energy measurement platform. The RPi3 hosting EMPIOT captures
energy measurements of the edge RPi3 transmitting data to the cloud RPi3.

IV. EXPERIMENTATION AND ANALYSIS

The organization of this section is as follows. First, we
specify our testbed, model creation process, and model bench-
marking process. Then, we show how each anomaly detection
model performs on each dataset (i.e., scenario) with respect to
both overhead and anomaly detection accuracy. Furthermore,
we show the best model for each scenario and analyze trade-
offs involved in model selection such as training overhead,
prediction overhead, and prediction accuracy.

A. Methodology

The testbed includes three RPi3s, which are used as the edge
device, the cloud, and the interface to connect to our energy
measurement platform, EMPIOT [31]. All RPi3s feature a
BCM2837 SoC, a 1.2 GHZ quad-core ARM Cortex A53
processor, and 1 GB LPDDR2-900 SDRAM and run Debian
OS [32]. Both the client and cloud RPi3s connect to an
access point (i.e., router) through an 802.11 link. We run
and benchmark all machine learning algorithms for anomaly
detection on the edge RPi3. Time measurements are captured
by setting timestamps in the Python code before and after
algorithm execution. Energy measurements are captured by
EMPIOT. EMPIOT is composed of a shield and is installed
on top of the host RPi3. Figure 1 shows our experimental setup
inclusive of edge, cloud, and EMPIOT.

We use scikit-learn implementations of RF, MLP, KNN,
LDA, and QDA for our anomaly detection experiment. There
is minimal data preprocessing for the three datasets used in this
experiment because they do not contain missing column values
nor incorrect formatting. All code related to anomaly detection
such as data aggregation and model training/validation is
written in Python 3.6 making use of bcrypt, pandas, numpy,
and scikit-learn libraries. For each dataset, we first tune and
validate each model by running an offline grid search (i.e.,
hyperparameter tuning). We configure the grid search to rank
model configurations based on precision and recall. Note that
we consider grid search to be a purely offline operation
performed on the cloud and do not consider its overhead.
We also note that grid search is not necessarily exhaustive
in all scenarios because not all models require extensive hy-
perparameter tuning. For example, RF generally demonstrates

high prediction accuracy on all datasets using default scikit-
learn parameters. MLP, on the other hand, requires extensive
hyperparameter tuning to converge on hidden layer and node
count. Having decided on hyperparameter configuration, we
are left with one-time model training. For each scenario, we
train a model with the least number of samples that enables it
to predict with both precision and recall greater than 80% and
either precision or recall greater than 90%. Table IV shows the
training data size for each dataset. We choose to benchmark
model training on the RPi3 edge to provide reference for cases
when the edge needs to carry on model training. Note that we
also consider model training to be an offline operation and
therefore will not factor this cost into our overhead-savings
analysis.

We benchmark model precision and recall for each
dataset. Precision indicates the percentage of relevant results
Precision = TruePositiveCount

TruePositiveCount+FalsePositiveCount . Recall
indicates the percentage of results accurately classified by the
algorithm Recall = TruePositiveCount

TruePositiveCount+FalseNegativeCount .
We also tabulate the time and energy consumption of each
model’s training phase and prediction phase. The training
phase entails instantiating a model with a hyperparameter
configuration and fitting the model on training samples. The
prediction phase entails executing the model predict function
on a buffer of test samples. Time is measured by setting
timers within the Python code while energy is measured using
EMPIOT. All data transmitted to the cloud is secured using
256-bit AES encryption. Note that encryption overhead is
factored into our cost analysis. For each model and dataset,
we show precision, recall, prediction time and energy, training
time and energy, the number of observations and MBs saved by
the cloud, and lastly, the time and energy saved using anomaly
detection. We then closely analyze the quantitative results and
study the performance tradeoffs of different models in different
scenarios.

B. Results and Analysis

We present the model performance and model overhead
results obtained from each dataset. We recommend the best
model for each scenario based on training and prediction
overhead and model accuracy. Note that the time and energy
savings reported for each anomaly detection model consider
prediction cost and not the offline training cost. We conclude
this section with an analysis of general model behavior ob-
served across all datasets and propose recommended use cases
for each model.

1) KDDCup Dataset: For the 3 feature KDDCup dataset,
all models are trained using 10000 network observations out of
a total of 567497 labeled training samples with 0.35% anomaly
rate. Note that this dataset has the lowest dimensionality as
well as the lowest anomaly rate among the three datasets. In
this scenario, the edge device aggregates 50000 size network
status buffers for the prediction phase (i.e., anomaly detection)
and subsequent transmission.

Figure 2 shows the precision and recall values observed
when applying each model for each scenario. We see that all
models post exceptional precision and recall values on the

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China 

36



5

KDDCup Digits Gestures
0

25

50

75

100
99

.5

91
.1

2

93
.0

3

97
.9

6

90
.1

89
.698

.9

97
.4

3

82

99
.4

7

92
.4

2

98
.2

R
ec

al
l (

%
)

RF MLP KNN LDA QDA

(a)

KDDCup Digits Gestures
0

25

50

75

100

10
0

97
.1

2

93
.9

7

98
.9

95
.1

94
.510

0

94 97
.8

8

10
0

83
.1

8

91
.6

2

P
re

ci
si

on
(%

)

RF MLP KNN LDA QDA

(b)

Fig. 2: All models are viable for the datasets chosen. All models perform best
for the KDDCup dataset, containing the lowest number of features, and post
precision and recall values of 98.9% and 97.96% respectively. RF and QDA
offer the best prediction accuracy for Gestures while RF and KNN offer the
best prediction accuracy for Digits.

sparse anomaly KDDCup dataset. Relatively speaking, MLP
posts the lowest precision and recall values at 98.9% and
97.9% respectively. All other models post over 99% recall
and 100% precision. We subsequently examined that one of
the features in this dataset has a Gaussian distribution and
that the anomalies primarily occur when the feature’s value
lied ±3σ outside of the mean. Given this level of accuracy
in anomaly detection, we assert that the edge device can save
around 99.5% of the data (i.e., approximately 1.2 MB) per
buffer sent to the cloud.

Figure 3 shows the training time and energy for each
model applied on different datasets. Specifically for KDDCup,
LDA has the most time and energy efficient training phase
among all models. This is because LDA uses an underlying
dimensionality-reduction technique for generating a class-
separating boundary that is efficiently performed on a 3
dimensional dataset. KNN, RF, and MLP follow in order. RF
takes a significantly longer time proportional to KNN for this
dataset due to the relatively large test data buffer size.

Figure 4 shows the prediction time and energy when each
model is applied. As shown in Figure 4, when applied on
the KDDCup data, LDA is also the most cost-effective model
for prediction. The low dimensionality of inputs to the model
enables LDA to classify anomalies very efficiently. It is fol-
lowed by MLP, RF, and KNN. MLP is marginally worse than
LDA for this scenario considering the fact that it is slightly
inferior in terms of prediction accuracy. RF is a well-rounded
choice with respect to both prediction accuracy and overhead.
Note that RF’s prediction overhead exceeds LDA’s prediction
overhead due to the complexity involved in processing test
samples at multiple nodes at multiple tree levels. KNN is
rendered slow and ineffective for this scenario as its prediction
phase consumes nearly 38 seconds and 101J for a 50000×3
buffer.

2) Digits Dataset: The 784 feature Digits dataset has the
highest dimensionality among all our datasets and is emblem-
atic of an anomalous image detection scenario. For this dataset,
all models are trained using 3000 images out of the total
20000 images with a 10% anomaly rate. The edge device
performs anomaly detection on buffers containing 2000 images
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Fig. 3: MLP features the most expensive training phase with RF, QDA, LDA,
and KNN generally following in this order as shown in (a) and (b). MLP
costs approximately 500% more time and 500% more energy than the next
best performing model across all datasets.
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Fig. 4: LDA offers the most cost-effective prediction phase for both Digits
as well as KDDCup datasets as shown in (a) and (b). MLP offers the most
cost-effective prediction phase for the 64 feature Gestures dataset. KNN costs
nearly 600% more energy and 650% more time than the next best performing
model across all datasets.

and transmits the anomalous images identified.
Regarding prediction accuracy, Figure 2 shows that KNN

offers the best overall precision and recall among all models
at 94% and 97.4% respectively. RF posts the highest precision
out of all the models at 97.1%. LDA performs the poorest in
this scenario offering 92.42% recall but only 83.18% precision.
Given the overall high level of accuracy in anomaly detection,
we assert that the edge device can save around 89.5% of the
data (i.e., approximately 11.3 MB) per buffer sent to the cloud.

As far as training overhead, Figure 3 shows that KNN
has the most efficient training phase on the Digits dataset.
KNN only stores training samples as part of its training phase
rather than formulating a mapping between inputs and outputs.
Therefore, for this 784 dimensional dataset, the other algo-
rithms have a considerably more demanding training phase.
KNN is followed by LDA, RF, and MLP in order. MLP, which
has the most expensive training phase, costs 168 seconds and
524.97J. This result is expected given the computationally
expensive nature of MLP’s backpropagation algorithm and
high data dimensionality.

In terms of prediction overhead, Figure 4 shows that LDA
has the most efficient prediction phase among all models and
costs only 0.11 sec and 0.3J for prediction on a 2000 image
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Fig. 5: RF, MLP, and LDA all demonstrate overhead savings when applied to
data before transmission; most notably, RF applied to the Digits dataset saves
45.119 J and 16.37 seconds per 2000 image buffer. KNN is a poor choice
for real-time anomaly detection scenarios given that it causes net time and
energy loss across all datasets.
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Fig. 6: From (a) we observe that the models reduce approximately 90% of
the observations sent from Digits’ buffers, 76% of the observations sent from
Gestures’ buffers, and 99.5% of the observations sent from KDDCup’s buffers.
The resulting saved cloud storage shown in (b) is substantial, especially for
Digits dataset where we saved nearly 12 MB of data sent per 2000 image
buffer.

buffer. It is followed by RF, MLP, and KNN in order. KNN
is very expensive for prediction and costs nearly 230 seconds
and 600J. This is because the distance computation between K
neighbors and all M test samples is costly for 784 dimensional
data points. If we prioritize prediction accuracy much higher
than prediction time, KNN offers the best precision and recall
values at the expense of costly prediction overhead. If the
primary objective is to minimize transmission time delay, LDA
offers a robust solution at the expense of low precision (i.e.,
83.18%). RF and MLP lie in the middle ground and are the
two most well-rounded solutions for this scenario. Because
RF also has significantly less training overhead, we propose
that RF is the best anomaly detection method for this image
classification scenario.

3) Gestures Dataset: For this 64 feature dataset, all the
models are trained using 3000 hand gesture observations out
of a total of 12000 hand gesture observations with a 25.3%
anomaly rate. This dataset has the second highest dimension-
ality and the highest anomaly rate among all datasets. In
this scenario, the edge device aggregates 3000 observations
(gestures) per buffer for the prediction phase and subsequent

transmission. Note that we use QDA only on this dataset
instead of LDA as LDA posted less than 20% precision.
This is because LDA could only generate a linear fit for
certain features in this dataset that exhibited quadratic patterns.
Nevertheless, we benchmarked LDA and observed that it takes
0.43 seconds for the training phase and 0.051 seconds for the
prediction phase. Therefore, if LDA demonstrated acceptable
prediction accuracy for Gestures, it would have claimed the
second most efficient training phase and the most efficient
prediction phase among all models.

With regard to prediction accuracy, Figure 2 shows that
QDA posts the highest recall out of all models at 98.2%. RF
also performs well with 93.03% recall and 93.97% precision. It
is followed by MLP and KNN in order. Given the overall high
level of accuracy in anomaly detection, we assert that the edge
device can save around 75% of the data (i.e., approximately
1.15 MB) per buffer sent to the cloud.

KNN training, as shown in Figure 3, is the most efficient
and MLP training is the least efficient. RF training costs
substantially more overhead than QDA. This is explained by
the computation involved in creating a set of randomized
decision trees for a pool of 64 features.

As far as prediction overhead, MLP has the most efficient
prediction phase for the Gestures dataset and consumes 0.054
seconds and 0.142J per buffer. This is 274% more time
efficient and 294% more energy efficient than the next best
RF prediction phase. QDA and KNN follow in order. MLP is
the clear choice for this scenario because it offers fast anomaly
detection and the best cost-savings among all four models.

4) General Observations: We note that time and energy
savings for each anomaly detection model is calculated by
subtracting both prediction phase overhead and anomalous
buffer transmission overhead from full buffer transmission
overhead. Figure 5 shows the overhead savings observed when
applying each model on each dataset. LDA provides the most
data transmission overhead savings among all models. MLP,
QDA, RF, and KNN follow in order. Considering that the
deployment of KNN leads to net overhead loss across all
benchmarked scenarios, its use may be eliminated from real-
time anomaly detection scenarios.

Comparing both Figure 5 and Figure 4, we note that the
rank ordering of models’ overhead savings from least to
greatest matches the rank ordering of models’ prediction phase
overhead from greatest to least. From Figure 4, note that
QDA, which is used in place of LDA for the Gestures dataset,
substantially exceeds LDA in prediction phase overhead con-
sumption. This explains why MLP has the fastest prediction
phase for the Gestures dataset but has the second and third
slowest prediction phase for KDDCup and Digits datasets
respectively. Also note that RF has the second most efficient
prediction phase for Digits but is substantially less efficient
than MLP for KDDCup. This suggests that RFs are more sen-
sitive to testing buffer size than dimensionality. For reference
purposes, the rank ordering of training time complexity from
greatest to least is generally MLP, RF, QDA, LDA, and KNN
across all datasets. Note that all rankings presented are based
on testing with Python’s scikit-learn library and experimental
results may vary when using other software implementations

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China 

38



7

TABLE V: Sample use cases for different models.

Model Suitable Applications

RF Minimal training samples
Delay sensitive applications

MLP Non-linear relationship between training inputs and outputs
Extremely time-sensitive application

KNN Resource constrained training
Delay insensitive application

DA Resource constrained training and prediction
Delay sensitive and mission critical application

of the machine learning models.
Figure 6 shows percentages of buffer size reduction and

fewer MBs of data sent to the cloud upon applying each
model on each dataset. The amount of data storage conserved
on the cloud depends on the dateset’s anomaly rate and
dimensionality. Low anomaly rate indicates that there will be
a proportionally smaller number of observations sent to the
cloud. Low dimensionality indicates that there will be fewer
bytes of data per observation sent to the cloud. The cloud
would benefit the most when applying anomaly detection for
a scenario with very high dimensional data and low anomaly
detection rate. In this way, the cloud will not receive the vast
majority of data points sent from the edge. With this in mind,
we will examine the cloud storage savings observed for each
discussed scenario. KDDCup has the lowest dimensionality
(i.e., 3) and lowest anomaly rate (i.e., 0.35%) among all the
datasets. Therefore, we are able to filter over 99% of the
observations captured on the edge but save only 3 features
per observation. This explains why we are only able to save
approximately 1.2 MB sent to the cloud during prediction
phase even though the buffer size is 50000. Digits has the
highest dimensionality (i.e., 784) among all datasets and falls
between the other two datasets with regard to anomaly rate
(i.e., 10%). Despite having a considerably higher anomaly
rate than KDDCup, Digit’s dimensionality ensures that we
save 784 data points sent to the cloud per observation. Thus,
by filtering 90% of each Digits buffer we save roughly
12.3 MB sent to the cloud. Lastly, Gestures has the highest
anomaly detection rate (i.e., 25.3%) and ranks second as far
as dimensionality (i.e., 64). This indicates that there is a
substantially higher proportion of observations needed to be
notified to the cloud compared to the other scenarios and a
moderate level of data points saved per filtered observation.
These two factors slightly downgrade cloud storage savings
and result in approximately 1.15 MB saved by the cloud per
data buffer.

Based on the above results, Table V summarizes the sce-
narios best suited for each model.

V. CONCLUSION

In this paper, we explored the use of anomaly detection
as an impactful edge mining technique in different IoT sce-
narios. We proved that RF, MLP, LDA, and QDA anomaly
detection models have considerable potential to save edge
device transmission overhead as well as cloud storage. The
overhead-savings for a generic IoT scenario varies depending
upon the anomaly rate and dimensionality of the transmitted
data. We conclude that LDA has the most cost-effective

anomaly detection phase that we have benchmarked across all
scenarios and should be the primary choice for an extremely
resource constrained edge device. QDA also has a very effi-
cient anomaly detection phase but undoubtedly demands more
overhead than LDA for the quadratic fit operation. We also
conclude that RF is the most well-rounded anomaly detection
method among all models featuring a comparably lightweight
prediction phase and offering exceptional precision and recall.
MLP also works very well for time-critical prediction tasks
given that there are not significant resource constraints for
training. The KNN classifier, despite its reliable prediction
accuracy, demands excessive amounts of time and energy for
anomaly detection, which rules out its use case in most IoT
scenarios. The only reason to consider using KNN is in a case
of stringent resource constraints for model training.

This work clearly demonstrates the overhead-savings po-
tential of machine learning based anomaly detection on both
edge and cloud. We also have provided a comprehensive
overview of the tradeoffs involved in the deployment of these
models. For future work, we aim to benchmark unsupervised
classification methods for anomaly detection. Unsupervised
machine learning methods are very useful when we do not
have ground truth labeling but can infer properties from
the training dataset. For example, Elliptical Envelope is a
suitable technique for a dataset which expresses a multivariate
gaussian distribution and an Isolation Forest is optimal for a
dataset which expresses a multimodal distribution. For future
contribution, we also aim to scale our experimental setup to
other IoT platforms such as Cypress CYW43907.
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