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Abstract—In the control algorithm of autopilot system, the Deep 

Learning method plays a vital role. Since the convolutional neural 

network (CNN) model used in automatic driving has a huge 

amount of parameters and the training results are prone to over-

fitting, an excellent model is necessary. In this paper, an end-to-

end control method was proposed to apply a convolutional neural 

network with a new network structure to control the steering angle 

and speed of the vehicle and reach the goal of automatic vehicle 

driving. The experimental results show that it not only greatly 

reduces the number of parameters, but also keeps the error rate of 

the experimental results at the low level. 

 
I. INTRODUCTION 

The field of artificial intelligence develops rapidly, among 

which autonomous driving is the research content that people 

pay close attention to. The typical methods of autonomous 

driving technology include three schemes. The first method is 

indirect perception. This method includes target detection, 

target tracking, scene semantics segmentation and correction, 

three-dimensional reconstruction and other computer vision 

sub-tasks. By synthesizing the detection results of multiple sub-

tasks, a complete environment representation is established. 

The advantage of this method is that the module is clear and the 

coupling degree is low, while the disadvantage is that the 

redundancy is high, which will result in waste of resources. The 

second scheme is direct perception, which optimizes indirect 

perception and learns the key indicators of driving directly. 

This model simplifies the operation, but it has some limitations 

in unstructured traffic scenarios. The third scheme is end-to-

end control. It mainly uses in-depth learning technology. The 

aim of end-to-end control method is to establish a direct 

mapping relationship between sensor and driving action. The 

end-to-end structure achieves good results. This method 

directly uses the learning method to supervise and learn driving 

action. Fig. 1 illustrates how the basic end-to-end solution 

works. 

 

 
Fig. 1: Basic end-to-end structure 

These three typical methods of automatic driving have some 

 
representative results. At present, the three methods are 

constantly being studied and developed. In this paper we adopt 

end-to-end structure. It is unavoidable to use the neural network 

model in the end-to-end control of this automatic driving 

method. In recent years, a variety of neural network models 

have been developed and widely used, among which are 

AlexNet [1], VGGNet [2], GoogleNet [3], ResNet [4] and so 

on. They are the most typical models. Current research [5- 15] 

is mostly based on the improvement and innovation of these 

models. 

We propose a new deep model learning architecture for 

autopilot technology based on the traditional learning model. 

Our learning model is universal because it learns the predicted 

future motion path given the current proxy state. Finally, we 

use end-to-end Control method and deep learning algorithm to 

achieve automobile driving. The number of parameters can be 

greatly reduced, and the parameters can be effectively 

transferred and used through the improved neural network 

model. Our paper has made two new contributions: Firstly, we 

designed a novel CNN model, which has a simpler model 

structure, a smoother operation process and can output multi-

mode prediction. Secondly, we produce large data sets in order 

to learn general motion models from vehicles with 

heterogeneous actuators. 

The rest of the paper is organized as follows: In Section II, the 

related work on automatic driving are analyzed. We present the 

proposed work of our model in Section III. In Section IV, the 

criteria for data sets, parameters of the model and the test results 

are given, and finally, we conclude the paper in Section V. 

 
II. RELATED WORK 

Samples were collected by camera [6]. One of the cameras is 

used to match the input image with the steering angle. The other 

two cameras are used to input negative samples to correct 

vehicle deviation. Referring to the VGG16 of CNN model, the 

automatic driving operation is completed. Mainly based on the 

data provided, paper [16] predicts and simulates the driver's 

behavior in the training data under the given current state. They 

proposed two methods: automatic encoder to reduce 

dimensionality and RNN conversion learning. However, this 

regression method is difficult to understand the 
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different turning situations in the same scenario. There is still   

a unique method, which is different from the previous two 

methods [6,16]: by putting forward a set of scene description 

indicators which can be used for automatic driving, and by 

accurately learning the values of these indicators, the final 

decision can be made [7]. The framework used in this paper is 

CNN model based on Caffe. However, due to the complexity of 

environmental factors, the calculation dimension is high and the 

redundancy is high. Paper [8] adopted FCN-LSTM architecture, 

in which FCN uses AlexNet pretrained on ImageNet, removes 

pooling5, and uses dilated convolutions for FC6 and FC7. 

Semantic segmentation is used as side-task, and the 

performance of the model is improved. In recent years, Deep 

Learning-based deep reinforcement learning method is used to 

complete automatic driving [17-20]. This  method  fully 

considers the relationship between agent and environment. 

Unlike CNN, its output is not a direct decision- making state, 

but a reward for the corresponding behavior of output decision-

making. These methods are innovations on CNN model, but 

they do not solve some drawbacks of CNN model itself. 

From the past research results, it is wise to apply CNN to 

automatic driving. But up to now, the CNN network model 

used for automatic driving takes a long time in the training 

process, and is prone to over-fitting, which reduces the training 

accuracy. Usually dropout, regularization and other methods 

are also needed to reduce the error rate in the training process 

which increases a lot of calculation process. In our experiments, 

we will use a new network structure to avoid these problems. 

 
III. PROPOSED WORK 

We first describe the overall advantages of the global 

average pooling layer in the automatic driving model, and then 

we propose a specific novel convolutional neural network 

architecture for automatic driving. 

Our experimental model is based on AlexNet model. The 

global average pooling layer(GAP) is used to replace the most 

of the full connection layer(FC). 

The generalization ability of the whole network model is 

affected by the full connection layer. In this paper, we use a 

strategy called global average pooling layer to take the place of 

full connection layer in our driving model. This layer appears 

after the last convolution operation, so the feature of black box 

in the full connection layer is removed directly, and the actual 

category meaning of each channel is given directly. The global 

average pooling layer is mainly used to solve the problem of 

full connection. The feature map of the last layer is pooled to 

form feature points. These feature points are composed into the 

final feature vector for softmax calculation. Feature mapping 

can be easily interpreted as related category mapping. The 

advantage of the global average pooling layer is that the 

relationship between each category and feature map is more 

intuitive, feature map is easier to be converted into 

classification probability because there is no parameter to be 

adjusted in GAP, and the over-fitting problem is avoided; 

GAP aggregates spatial information, so it is more robust for 

spatial conversion of input. 

Our network architecture is shown in the fig.2. The network 

layer consists of seven layers, including one normalization 

layer and five convolution layers. The last pooling layer in the 

convolution layer is the global average pooling layer. At the 

end of the model, we still need a full connection layer to 

integrate all the features. 

 

Fig. 2: proposed CNN architecture. 

The first layer of network structure is to pack our graphics 

data into "layer" objects. In data normalization with 

x=x(x-min)/(max-min)（1） 
Max and Min are the maximum and minimum values in the 

whole data, and X is the current pixel value to be converted. 

The implementation of standardization in the network allows 

the standardization plan to be changed through the network 

structural and accelerated through GPU processing. 

We use step-wise convolution in the first three convolution 

layers, including 2 *2 strides and 5 *5 cores, and 3 *3 non- step 

convolution in the last two convolution layers. 

In this layers. For example, to take a two-dimensional image 

I as input, we need a two-dimensional convolution kernel K: 

 (2) 

We use the local receptive field and weight sharing 

characteristics of convolutional neural network to enhance 

some features of the original signal, reduce noise and obtain 

local receptive features. The pooling layer is connected behind 

the convolution layer for down-sampling. On the one hand, the 

resolution of the image can be reduced and the number of 

parameters can be reduced. On the other hand, the robustness 

of translation and deformation can be obtained. 
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Following the five convolution layers, the final stage is the 

global average pooling layer, whose work is to take the global 

average of the generated feature map. The operation structure 

is shown in Fig. 3. The global average of the feature map is 

used to output a value, which is to change a tensor of W * H * 

D into a tensor of 1 * 1 * D. 

 

 
Fig. 3: The data flow of CNN with GAP 

 
IV. EXPERIMENT 

The main purpose of our experiment was to reduce the 

number of parameters and increase the speed of the operation 

while ensuring the accuracy of the experiment. In this section, 

we first prepare the criteria for data sets, and then use a deep 

learning model based on heuristics and standard depth. 

Additional experiments have been carried out to assess the 

usability of our model. In addition, we demonstrate the 

excellent capability of our model to process data. Finally, we 

use a car to demonstrate the performance of our model in a 

simulated environment. 

A. Data set 

Our dataset is from the simulation platform. The platform is 

Udacity. It contains two operation scenarios, i.e. Training and 

Autonomous. We collect data under the Training interface and 

verify the fluency of the model under the Autonomous 

interface. We get the data from three directions of the car 

through the simulation vehicle, which are from the front, the 

left and the right, just like the fig. 4. It includes many driving 

scenes, such as lake scenes, jungle scenes and so on. We use 

different driving scenarios to form different data sets. Different 

datasets have different sizes and goals. 
 

Fig. 4: The input data from three directions of the vehicle, they are left, 
middle and right, respectively. 

 

A large number of datasets from the simulation platform can 

be collected, and then according to the dataset the universal 

driving model is learned and trained. For different training 

scenarios, datasets are collected by repeated operations. We 

make the amount of data enough to support the experiment to 

train a precise model. We will collect the data in two formats: 

picture format and data format. It is convenient for data 

importing and model learning. 

Compared with other experiments, our experimental data 

format is simple, no data enhancement and other operations are 

needed, which simplifies the experimental process. In addition, 

the accuracy of the data also has a very important 

impact on the accuracy of the model, so it is necessary to ensure 

that there is no dirty data in the training data and that every 

picture follows the correct driving strategy. 

B. Selection of experimental parameters 

In the experiment, CNN is trained by the extended Adam 

algorithm of stochastic gradient descent(SGD) algorithm. 

Adam algorithm is superior to traditional SGD algorithm in that 

Adam designs independent adaptive learning rates for different 

parameters by calculating the first and second moment 

estimates of gradients. During the training process, each batch 

contains 20032 images, and the total number of iterations 

(epoch) is 8. We select ELUS as the activation function. Elus 

activation function, like ReLU function, has no parameters. The 

converges of ELUS function is faster than ReLU function. 

Better results can be achieved without batch processing than 

with batch processing when using ELUS function. The ELUS 

function without batch processing is more effective than the 

ReLU function with batch processing. The ELUS function is 

given as follows: 

 

 （3） 

when x is less than 0, more complex transformations are 

made. 

C. Comparison with the model based on FC 

After the model training, we get the change of loss and 

validation loss as shown in Fig. 5. Both of parameters descend 

smoothly. It shows that our model has been learning effectively 

without using Dropout and regularization methods, and the 

occurrence of over-fitting is avoided effectively. 
 

Fig. 5: The training and validation loss of the model with GAP layer 

 

The method proposed in this paper with global average 

pooling layer is called model B. Comparing with the model in 

this paper, the convolutional neural network with full connection 

layer is called model A. Figure 6 shows the loss of model A and 

model B. Figure 7 shows the variation of error rates under 

different neural models.
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Fig. 6: The error rate of model A and model B in 8 epochs of training is 

shown. 

 
Fig. 7: The loss of model A and model B in 8 epochs of training is shown. 

 

From fig. 6, we can see that the error rate of network model 

B and network model A is almost the same under the same 

iteration times, but model B has a faster error reduction under 

the global level pooling layer, which indicates that model B has 

a stronger generalization ability. In fig. 7, Compared with the 

model with full connection layer, the loss value of our model is 

in a steady state of decline. 

Table 1 lists the parameters, model file size, training time per 

step and error rate of network models A and B under various 

experimental conditions. As can be seen from table 1, the 

training time of model B is slightly better than that of model A, 

and the computational complexity of model B is smaller in 

terms of the computational complexity in the training stage. In 

terms of model file size, model B is reduced by 30% compared 

with model A. 

 

 parameters Model 

file size 

/(KB) 

Training 

time per 

step/(ms) 

Test 

Error 

Model A 2116983 9 228 0.37% 

Model B 131413 6 219 0.38% 

TABLE1. model A compare to model B 

D. Visualization 

We input data into the CNN model to get the response of 

neurons to the input image. We can visualize these outputs, and 

the visualization results are shown in Fig. 8. We can get some 

filling block and boundary characteristics after the first layer 

convolution calculation. The convolution kernel 

basically retains all the information of the image at this stage. 

The middle layer learns some texture features so that the 

features are closer to the classifier level and the features needed 

for driving decisions can be obtained. With the increase of 

layers, the output content of convolution core becomes more 

and more abstract and less information is retained. 

  
Test picture conv2d_1 

 

conv2d_2 conv2d_3 

 

conv2d_4 conv2d_5 

Fig. 8: Visualizing convnet filters. The first one is the road test map, followed 

by Filter patterns for layer conv2d_1 to conv2d_5. 

 

We visualize class activation maps (CAM) to determine the 

importance of each location to each category. Since the original 

road information is retained in the graph, we can superimpose 

the heatmap with the original image to determine the strong 

response of neurons to those road markers when estimating. 

From Fig. 9, we can see that neurons respond strongly to the 

location of road markings and obstacles. It indicates that they 

have learned to avoid these obstacles when making decisions. 

The thermodynamic response is more and more intense with 

the deepening of training. 
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Test picture conv2d_1 conv2d_2 

 

conv2d_3 conv2d_4 conv2d_5 
Fig. 9: The CAM of our experiment. The first one is the road test map, 

followed by the class activation thermodynamic map of the first to fifth test 

images. 

To verify the generality of our approach, we tested different 

scenarios other than datasets (see fig. 10). The speed and steering 

angle of the simulated vehicle are predicted based on the model 

whether in lake or jungle scenarios. Although our model is 

actually trained under a unified standard data set, it shows 

robustness to random scenes. Our car has made correct driving 

decisions under different obstacles and different environmental 

conditions. The availability of our model is fully proved. 
 

Fig. 10: The result predicted steering angle and speed of car after training. 
The first three pictures are about the operation of the lake field under 

different road conditions, while the last three pictures are about the operation 

of different road conditions in the jungle environment. 

 
V. CONCLUSION 

Experiments showed that our CNN can accomplish lane 

detection and real-time path planning very smoothly. In this 

paper, we introduce a method of learning general-purpose driver 

model for large data sets with end-to-end trainable architecture. 

The car can complete the task of automatic driving in different 

environments by processing images. CNN can learn meaningful 

road features from the data. For example, systematic learning 

detects road contours during training without requiring explicit 

labels. More work is needed to improve the efficiency of model 

training and the convergence speed in the training process. 
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