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Abstract—The melody extraction can be considered as a se-
quence-to-sequence task or a classification task. Many recent 
models based on semantic segmentation have been proven very 
effective in melody extraction. In this paper, we built up a fully 
convolutional network (FCN) for melody extraction from poly-
phonic music. Inspired by the state-of-the-art architecture of the 
semantic segmentation, we constructed the encoder in a dense way 
and designed the decoder accordingly for audio processing. The 
combined frequency and periodicity (CFP) representation, which 
contains spectral and cepstral information, was adopted as the in-
put feature of the proposed model. We conducted performance 
comparison between the proposed model and several methods on 
various datasets. Experimental results show the proposed model 
achieves state-of-the-art performance with less computation and 
fewer parameters.  

I. INTRODUCTION 

Melody extraction, which extracts the melody pitch con-
tour from the polyphonic music audio, is an active topic in the 
research field of music analysis and music information retrieval 
(MIR). With the advancement of deep learning, researchers de-
velop various neural networks for melody extraction. Music is 
like language, composition and arrangement are subject to cer-
tain rules. Therefore, for human, melody perception might not 
only stem from the lower level of pitch perception but also from 
the higher level of semantic analysis. Consequently, melody 
extraction can be thought of as an audio translation to a melody 
contour such that one might apply the techniques used in natu-
ral language processing on this subject to produce good results. 
For instance, some studies consider melody extraction as a se-
quence to sequence task [1] [2], where the input audio sequence 
can be one-dimensional raw data, or a two-dimensional repre-
sentation through the discrete Fourier transform or the con-
stant-Q transform (CQT). The audio sequence is then put 
through the neural network to produce a sequence of the pitch 
contour. These architectures can determine the current pitch 
through information from distant past or future to boost perfor-
mance of melody extraction in some situations. 

From another point of view, melody extraction can be 
considered as a classification problem of semantic segmenta-
tion [3] [4]. This type of approach first enhances the pitch con-
tour as the input feature, and then put the feature through a se-
mantic segmentation network. Later on, a threshold is used to 
binarize the result in a similar way to thresholding operations 
in many other music related tasks [3] [5]. The study in [6] com-
pared these two different approaches in details and showed the 

semantic segmentation method produces 3% higher overall ac-
curacy (OA) scores than the LSTM-based sequence-to-se-
quence method. It also showed the semantic segmentation 
method produces better results when melody and accompani-
ment interlace with each other. 

Context information is very important to melody extrac-
tion. In music, it is quite common to have tone change across 
time. The changing translations of the pitch contour are en-
coded as the up and down sweeping patterns on the spectro-
gram, which can be captured by the convolutional neural net-
work (CNN). Although the semantic segmentation approach 
shows good results, it possesses a tradeoff between perfor-
mance and the computational load. If the sizes of the CNN ker-
nels are not large enough, the system cannot capture a wide 
range of context information. If the kernel sizes are enlarged, a 
lot of parameters and calculations are brought into the system. 
To address this tradeoff, we used the dilated convolution in the 
fully convolutional networks (FCN). Features from different 
scales were collected using dilated convolutions with different 
sizes. In addition, the recently proposed dense connection with 
atrous spatial pyramid pooling in the DenseASPP image seg-
mentation architecture [7] was also adopted in our model to 
significantly reduce the number of parameters while retaining 
state-of-the-art performance.  

There are two main contributions in this paper. The first 
one is we proposed a model outperforming several recently de-
veloped methods on singing melody extraction. The second 
one is we successfully identified that the DenseASPP image 
segmentation architecture can be applied to the relatively dis-
tant domain of music pitch estimation. The rest of the paper is 
organized as follows. In Section II, we briefly review related 
work in literature. In Section III, we demonstrate the architec-
ture of the proposed model. We then evaluate the model and 
compare it with several recently developed methods on melody 
extraction in Section IV. Finally, the conclusion and potential 
future work are given in Section V. 

II. RELATED WORK 

Melody extraction is a long-standing topic in music infor-
mation retrieval. With the popularity of deep learning, more 
and more researchers have begun to use the deep learning ar-
chitecture for melody extraction and demonstrated much better 
performance than traditional methods [4]. Some studies are in-
spired by high-order semantic segmentation, while others con-
struct neural networks by mimicking human perception [8] [9]. 
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Inspired by DeepLabV3+ [10] [11], a novel melody extraction 
system using a semantic segmentation tool for deep convolu-
tional expansion convolution neural networks was proposed in 
[4]. The encoder was implemented by a ResNet [12], and fol-
lowed by an atrous spatial pyramid pooling layer [13]. Experi-
ment results showed the segmentation model is competitive, 
especially in reducing the rate of voice false positives. Another 
study compared the two different melody extraction ap-
proaches for symbolic music [6]. The first approach considered 
melody extraction as a sequence prediction problem and used 
recurrent neural networks (RNN) as the system architecture. 
The second approach considered melody extraction as a seman-
tic segmentation problem and used fully convolutional net-
works (FCN) as the system architecture. Experiment results 
showed the semantic segmentation approach produced more 
accurate results when using the same data set. 

For image processing, the DenseNet with the architecture of 
connecting each layer to every other layer in a feed-forward 
fashion was proposed in [14]. The study showed the DenseNet 
requires fewer parameters and fewer calculations to achieve the 
most advanced performance due to the enhanced feature prop-
agation and feature reuse. The study also showed that the 
DenseNet with convolution features exhibits a compact inter-
nal representation, which reduces functional redundancy, such 
that it is well suited for various tasks. A DenseNet-based full 
convolutional network (FCN) model was proposed for sematic 
segmentation in [15]. The study showed the DenseNet-based 
FCN can achieve higher accuracy than other methods without 
pre-training and its architecture is 10 times smaller than other 
methods that achieve the same performance. Later on, a 
densely connected atrous spatial pyramid pooling, which con-
structs with a set of atrous convolutional layers in the dense 
way, was proposed in [7] to generate multi-scale features from 
a larger scale range. 

Inspired by these studies in image processing, we propose a 
dilated-convolution based multi-scale FCN with a dense con-
nection and atrous spatial pyramid pooling for melody extrac-
tion in this paper. Experiment results show the proposed model 
achieves state-of-the-art performance in a very efficient way. 

III. PROPOSED MODEL 

A. Data Pre-processing 

We first downsampled the audio to 16 kHz sampling rate. It 
was shown the combined frequency and periodicity (CFP) fea-
ture [16] is better than features from CQT and other transfor-
mation methods for melody extraction [3] [16] such that we 
used the CFP feature as the input feature. The CFP feature con-
sists of the power-scaled spectrogram(S), generalized cepstrum 
(GC) and generalized cepstrum of spectrum (GCoS) [17] [18] 
[19]. 

The frequency range of the power-scaled spectrogram was 
set from 31 Hz to 1250 Hz with the resolution of 48 bins per 
octave. The x represents the input audio signal in the time do-
main and in the short-time Fourier transform (STFT) domain. ܅(ଶ) and ܅(ଷ) are high-pass filters for removing DC compo-
nent.	۴ is the N-point discrete Fourier transform (DFT) matrix 

and ߪ() are activation functions. The formula for calculating 
CFP are given as follows:  
 

                      z(ଵ) = |൫|۴x(ଵ)ߪ + b(ଵ)൯                       (1) 
                z(ଶ) = ۴ିz(ଵ)(ଶ)܅൫(ଶ)ߪ + b(ଶ)൯               (2) 
                 z(ଷ) = ۴z(ଶ)(ଷ)܅൫(ଷ)ߪ + b(ଷ)൯                  (3) 

 

where ߪ()(ݔ) = ൜ݔఊ					݂݅		ݔ > ݔ		݂݅								00 ≤ 0, the considerations for set-

ting ߛ can be viewed in [16][17][18][19]. 
 

 
Fig. 1   Architecture of the encoder of the proposed model 

 

B. Model Architecture 

The proposed model consists of two major modules, the en-
coder and the decoder. The architectures of the encoder and the 
decoder are respectively shown in Fig. 1 and Fig. 2. The en-
coder contains five dilated convolution layers (named 
CONV1~CONV5 in Table I) which are connected in a dense 
way with atrous spatial pyramid pooling. 
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Fig. 2   Architecture of the decoder of the proposed model 
 
First, the atrous spatial pyramid pooling is used in the en-

coder to increase the size of the receptive field [7], which can 
be calculated by: ܴ = (݀ − 1) × ܭ) − 1) + ܭ                   (4)      
where ݀ is the dilation rate of layer l, and ܭ is the kernel size 
of layer l. 

If one dilated convolutional layer is connected to another, 
the size of the receptive field after stacking is: ܴ = ܴିଵ + ܴିଶ − 1                         (5)           

 

 
Fig. 3   Illustration of different dilation rate layers stacking. The number in 

the circle represents the dilation rate. The number in the square represents the 
size of receptive field. 

 
For example, a convolutional layer 1 with the dilation rate of 

3 and the kernel size of 3 would have a receptive field of size 
7. The other connected convolutional layer 2 with the dilation 
rate of 6 and the kernel size of 3 would have a receptive field 
of size 13. Stacking these two layers would produce a new layer 
3 with receptive field of size 19. In this study, we stacked di-
lated layers of different sizes to obtain multi-scale features to 
improve the performance of the model. Fig. 3 shows the size of 
the receptive field by combining different layers with different 
dilation rates when the kernel size is 3. 

Inspired by [14], the input of each layer in the encoder is 
directly sent to all successive layers to have feature reuse. 
Meanwhile, each layer of the encoder is particularly designed 
to be "thin", that is, only very few feature maps are learned to 
reduce redundancy. In this way, the encoder would have fewer 
parameters, hence less computation, and lower change of over-
fitting. The features extracted by each layer are equivalent to a 
nonlinear transformed representation of the input data. As the 
network depth increases, the complexity of the transformation 
also increases (i.e., composite of more nonlinear functions). 
Compared with a general NN classifier, whose performance di-
rectly depends on the features of the last layer (with the most 
accumulated complexity) of the network, the DenseNet utilizes 
low complexity features such that it is easier to get a smooth 
decision function for better generalization performance. As for 
the activation function, we used the scaled exponential linear 
unit (SELU) in each layer. The formula for the SELU activa-
tion function is as follows: SELU	(ݔ) = ߣ ൜ݔ																݂݅	ݔ > ௫݁ߙ0 − ݔ	݂݅			ߙ ≤ 0	                (6) 

 
The details of the encoder settings are described below. The 

size of the kernel of the proposed FCN model is set to 3. Since 
the atrous spatial pyramid pooling is capable of combining con-
text information, a large kernel size is not necessary. Batch nor-
malization is done in each layer and the SELU is used as the 
activation function [20]. To be able to combine the output chan-
nels, the output feature maps at each stage are ensured to be 
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with the same size using zero padding. The number of the out-
put channels is set to 10. In simulations, we have also tried 20 
output channels. However, the benefit of using 20 channels is 
negligible (2% increase in the overall accuracy score) but with 
a very high computational cost of doubling parameters of the 
encoder. To have the connection of feature reuse, the input of 
the n-th layer is combined from inputs of all previous layers 
(1st, 2nd, …, (n-1)-th) and the output of the (n-1)-th layer. The 
settings of the dilation rates and the number of input/output 
channels of each layer of the encoder are shown in Table I. 
 
Table I: Architecture of the encoder. The kernel size of any 
convolutional layer was set to 3×3. Batch normalization was 
done in each layer and the activation function was SELU. Zero 
padding was used on each layer to make the feature map with 
the same size. 

Layers Input channels Output channels Dilation 
CONV1 3 10 3 
CONV2 13 10 6 
CONV3 23 10 12 
CONV4 33 10 18 
CONV5 43 10 24 
 
The decoder consists of two parts. The first part contains 

three two-dimensional convolutions (named CONV6, CONV7 
and CONV8 in Table II). The goal is to refine the features while 
reducing the number of channels. The size of the input of the 
decoder is F×T with the channel number of 77, where F and T 
are the total numbers of the frequency bin and time frame of 
the CFP features. This input contains outputs of all dilation lay-
ers in the encoder and the original CFP features. After the three 
convolutional layers, the number of channels will be reduced 
to 1. The size of the output of this first part is 1×F×T. The sec-
ond part is for melody detection. It contains an average pooling 
layer, which integrates all frequency information at a certain 
time frame, and a two-dimensional convolution (named 
CONV9 in Table II), which integrates information across chan-
nels and reduces the channel number to 1. The size of the out-
put of this second part is 1×1×T. The output of these two parts 
are combined to form the final feature with the size of 
1×(F+1)×T. The Softmax is used to get the final detection re-
sult. Details of the input/output dimensions of each layer of the 
decoder are given in Table II. If no melody is detected in a 
frame, the output pitch will be 0 Hz. If melody is detected, the 
output pitch will be the frequency value of the frequency bin 
corresponding to the classification result. 
 
Table II. Architecture of the decoder. The kernel size of any 
convolutional layer was set to 3×3. Batch normalization was 
used in each layer and the activation function was SELU. 

Layers Input size Output size 
CONV6 (77,F,T) (64,F,T) 
CONV7 (64,F,T) (32,F,T) 
CONV8 (32,F,T) (1,F,T) 
Average pooling (64,F,T) (64,1,T) 
CONV9 (64,1,T) (1,1,T) 
Softmax (1,F+1,T) - 

                                                           
1 https://github.com/eed0650745/singing_melody_extraction 

For model update, we chose the binary cross entropy as the 
loss function. The Adam optimizer was used with the learning 
rate of 0.001. The source code is given here1 for reproducing 
our results. 

IV. EXPERIMENT 

A. Datasets 

We followed previous studies [8][9] in setting up our da-
tasets. For training, we used 740 clips from the MIR1K dataset 
which contains 1000 song clips extracted from 110 Chinese 
karaoke pop songs sung by 8 female and 11 male nonprofes-
sional singers. The remaining 260 clips were used for test. We 
also used 200 clips from the iKala dataset for training, and the 
remaining 52 clips for test. The ADC2004 and MIREX05 da-
tasets were entirely used for test. Note that music clips contain-
ing singing melody were used for training and test and those 
clips with the main melody from musical instruments were not 
used. Since the frame duration of the input feature is 0.016 sec-
ond, we used the mir_eval tool [21] to resample the ground 
truth pitch label by linear interpolation. When dealing with the 
ground truth, we mapped the frequency of the label to the fre-
quency of the closest CFP frequency bin. In calculating the ac-
curacy score, the frequency of the predicted pitch needed to be 
in the upper and lower quarter tone of the true pitch so that the 
mapping operation did not produce artificial errors. 

B. Results 

For evaluation, we used the regular metrics in literature, the 
voicing recall rate (VR), the voicing false alarm rate (VFA), 
raw pitch accuracy (RPA), raw chroma accuracy (RCA) and 
overall accuracy (OA). Except the VFA measure, the higher the 
score, the better the performance. All scores were calculated by 
Python library of the mir_eval tool [17]. For comparison, we 
have implemented the latest methods of using deep learning for 
melody extraction. Comparison results for each dataset are 
showed in Table III. 

DenseASPP_10 in Table III represents the model whose en-
coder has 10 output channels in each layer. Similarly, the en-
coder of the DenseASPP_20 has 20 output channels in each 
layer. We also set all the dilations in our proposed model to 1 
to have the architecture of the DenseNet (named DenseNet in 
Table III). The purpose of this is to investigate the performance 
gain by combining atrous spatial pyramid pooling with dense 
connections. From the results, the proposed model outperforms 
the DenseNet in all metrics on all test datasets. On ADC2004, 
the OA score increases around 8%. On MIR1K and 
MIREX2005, the OA scores raise between 3% and 4%. The 
results indicate that multi-scale information plays a very im-
portant role in melody extraction. When comparing with Se-
gNet [8], the proposed model has higher RPA and RCA scores, 
which means the proposed model is more capable of capturing 
pitch. On ADC2004, the proposed model produces signifi-
cantly higher RPA and RCA scores than all other compared 
methods. It achieves at least 7% improvement, reaching 77% 
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and 79% respectively. It also produces the best VR score but 
not the best VFA score. On MIR1K and MIREX2005, the pro-
posed model produces at least 2% higher RPA and RCA scores 
than SegNet. On iKala, the proposed model produces slightly 
higher RPA and RCA scores than SegNet.  
 
Table III: Evaluation results (in %) in terms of VR, VFA, 
RPA, RCA and OA on various datasets. The bold numbers 
represent the best results of all compared methods. 

MIR1K VR VFA RPA RCA OA 

Duplex[8] 80.97 14.74 70.30 73.88 74.67 

Seg-Net[3] 85.93 6.09 81.03 82.47 84.69 

Two-stage[9] 88.27 16.65 79.27 81.67 80.46 

DenseASPP_10 87.43  8.80  83.25  84.87  85.41  

DenseASPP_20 88.68 7.66 85.00 86.14 87.04 
DenseNet 84.66 8.00 79.07 81.16 82.64 

DA_Reversed 86.37 7.18 82.85 84.30 85.60 

(a)MIR1K 

ADC2004 VR VFA RPA RCA OA 

Duplex[8] 56.65 9.88 50.20 55.03 56.54 

Seg-Net[3] 75.90 6.81 70.38 72.56 72.77 

Two-stage[9] 62.19 15.78 53.49 58.00 58.37 

DenseASPP_10 82.59  10.94 76.84  78.89  78.06  

DenseASPP_20 84.91 10.91 80.14 81.86 80.67 
DenseNet 75.71 8.96 68.46 71.62 70.68 

DA_Reversed 77.82 6.95 72.15 75.01 74.36 

(b)ADC2004 

MIREX2005 VR VFA RPA RCA OA 

Duplex[8] 81.91 7.37 74.36 76.22 80.67 

Seg-Net[3] 88.83 5.60 83.96 84.69 87.71 
Two-stage[9] 86.63 12.57 78.84 80.07 81.81 

DenseASPP_10 87.31  6.20  82.58  83.44  86.55  

DenseASPP_20 90.43 9.03 85.38 85.91 87.18 

DenseNet 89.67 10.68 82.75 83.83 85.05 

DA_Reversed 86.59 6.29 81.90 82.83 86.12 

(c)MIREX2005 

iKala VR VFA RPA RCA OA 

Duplex[8] 83.65 17.30 74.50 76.97 77.21 

Seg-Net[3] 87.16 6.27 83.16 84.27 86.56 

Two-stage[9] 89.53 15.21 80.74 82.13 82.07 

DenseASPP_10 86.54  6.49  83.18  84.38  86.32  

DenseASPP_20 90.43 9.03 85.38 85.91 87.18 
DenseNet 86.25 7.53 81.91 83.12 85.00 

DA_Reversed 85.93 5.01 83.56 84.74 87.02 

(d)iKala 
 
 
 

In addition, we also investigated another setting which was 
referred to as the DA_Reversed system. It had the order of the 
dilated rates reversed from 3-6-12-18-24 to 24-18-12-6-3 while 
keeping the same number of channels as DenseASPP_10. This 
setting was tested to see performance of the neural network 
with decreasing sizes of receptive fields. From the experi-
mental results shown in Table III, we can observe reversing the 
order of dilated rates has no significant impact on the network 
efficiency. It is because the overall size of the stacked receptive 
fields remains the same based on equations (4) and (5). In other 
words, what matters is not the order of the dilated rates but the 
overall size of the stacked receptive fields. 

Finally, we calculated the number of parameters used by dif-
ferent FCN-based models. We found that using DenseNet did 
reduce a large amount of parameters. Comparing with SegNet, 
the DenseNet uses less than 20% parameters and 30% compu-
tation as listed in Table IV in terms of #Params and GFLOPs. 
Dilation does not increase the number of parameters, but it does 
improve performance. 

 
Table IV: Number of parameters and GFLOPs used by differ-
ent FCN-based models. 
Method #Params GFLOPs 

SegNet 540.2K 18.76 

DenseASPP_10 74.5K 5.48 

DenseASPP_20 120.2K 8.79 

DenseNet 74.5K 5.48 

DA_Reversed 74.5K 5.48 
 

V. CONCLUSIONS 

In this paper, we proposed a method based on semantic seg-
mentation for melody extraction. It combined DenseNet and 
atrous spatial pyramid pooling to achieve state-of-the-art per-
formance. It outperforms other popular methods in almost all 
evaluation metrics on all test datasets. In the category of FCN-
based model, the proposed model has fewer parameters, re-
quires less computation, and achieves faster training speed. 
Significant improvement in voicing recall rate, raw pitch accu-
racy, raw chroma accuracy and overall accuracy was observed 
in experiments, which means the proposed model has great ca-
pability in capturing pitch. In the future, we will explore the 
potential usage of this model in other MIR tasks such as audio 
chord estimation. 
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