
Blockchain-based P2P multimedia content
distribution using collusion-resistant fingerprinting

Amna Qureshi and David Megías
Internet Interdisciplinary Institute (IN3), Universitat Oberta de Catalunya (UOC),

Center for Cybersecurity Research of Catalonia (CYBERCAT)

Av. Carl Friedrich Gauss, 5, 08860, Castelldefels, Spain

E-mail: {aqureshi,dmegias}@uoc.edu

Abstract—Due to the popularization of low-cost broadband
Internet access, the amount of the digital data that is illegally
redistributed is growing, making content creators and owners
lose their income. Fingerprinting, a watermarking-based tech-
nology for embedding buyer identifications in legally distributed
contents, has emerged as a promising approach to fight illegal re-
distribution. On the other hand, the blockchain technology is also
shaping up to handle the challenge of digital copyright protection.
With blockchain, media producers can authorize and manage
their copyrights on a public ledger. In this paper, we present
a blockchain-based distribution system which blends different
technologies (collusion-resistant fingerprinting, perceptual hash
functions, and a peer-to-peer file distribution network) to provide
copyright protection, collusion resistance, atomic payment, piracy
tracing, transparency, proof-of-delivery, revocable privacy (to a
buyer), and dispute resolution. The paper also analyzes several
security and privacy compromising attacks and countermeasures.

Keywords—Collusion-resistant fingerprinting; Blockchain; Pri-
vacy; Security; Smart contracts; Cryptography.

I. INTRODUCTION

In recent years, the prosperity of digital and information

technologies has opened limitless channels for distribution

of multimedia content. In the past, the content distribution

was limited to tightly controlled broadcasts or the sale of

analog media, but, with the digital revolution, the Internet has

emerged as an efficient content distribution channel. Examples

of content distribution include, but are not limited to, bulk

data transfer, streaming continuous media, shared data appli-

cations, and interactive gaming. The content providers need to

distribute their respective content efficiently to end users.

The cost-effective multimedia content distribution over peer-

to-peer (P2P) networks has become very popular in recent

years. However, from P2P file-sharing services to streaming

continuous media, copyrights of content producers are not

respected. These systems have been used on a large scale for

illegal purposes such as downloading of copyrighted materi-

als. Such practices have a detrimental effect on multimedia

producers who are being robbed of their royalties because

of unpaid and unauthorized downloads. Lack of copyright

protection mechanisms within these systems prevent content

providers from adopting this technology despite its advantages

such as scalability, cost-efficiency, fault tolerance, etc. Also,

traceability of copyright violators within a P2P system is

a tedious task. Thus, content protection mechanisms (e.g.,

digital rights management (DRM), watermarking, etc.) are

required in P2P-based content distribution systems to ensure

fair and legal usage of copyrighted multimedia content. A

content protection technique, digital fingerprinting, addresses

the problems of both copyright protection and traitor tracing.

It involves the generation of a fingerprint (a user specific

identification mark), the embedding operation and traceability

from redistributed copies. A few examples of P2P systems

based on digital fingerprinting are [1], [2], [3], [4], [5], [6].

Though the distribution systems based on digital fingerprinting

address the problems of copyright protection and traceability,

these is no effective mechanism to provide proof-of-delivery of

the digital content to the end users (buyers). Also, the buyers

are required to deposit the payment of the content before its

delivery. This proof-of-delivery is necessary that ensures the

buyer that after the payment has been made, he/she receives

untampered and as requested digital content. Also, within

these content distribution systems, income transmission from

the buyer to the content provider lacks transparency. Often

these systems use centralized trusted third parties for payment

mechanism, which are vulnerable to single point-of-failure,

compromise and hacking attacks.

A decentralized and transparent content distribution system

with proof-of-delivery is possible using blockchain technol-

ogy [7], which is known for being immutable, traceable,

and tamper-proof with a distributed ledger. The blockchain

technology is relevant to anything that requires a transaction

verification leading to authenticity, integrity and trust. This

technology has contributed to several solutions, not only

in finance, but also in health care, supply-chain manage-

ment, and intrusion detection. The key features of blockchain

technology –i.e., decentralization, traceability, scalability and

transparency– provide novel ideas for copyright protection

and traceability. Using blockchain, the results of copyright

generation and transaction recording, transmission and storage

are trustworthy, and the recorded information cannot be tam-

pered once it is generated. Recently, many systems have been

proposed to provide copyright protection using blockchain,

but these are based on DRM approach. The combination

of copyright protection schemes based on watermarking or

fingerprinting, and the blockchain has not received much at-

tention from the researchers. In [8], blockchain is used to store

watermark securely and provides timestamp authentication

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China

1606978-988-14768-7-6©2019 APSIPA APSIPA ASC 2019

for multiple watermarks (multiple copyrights) to confirm the

creation order. The authors in [9] have proposed a scheme for

the protection of network copyright transaction of images. The

realization structure of copyright market transaction based on

blockchain technology is introduced, and a specific business

model of image copyright transaction is described. In [10],

the authors have designed and implemented an Ethereum

application, BMCProtector, which is based on blockchain and

smart contract technologies, to protect music copyright and

rights of copyright owners. To prevent piracy, encryption and

digital watermarking are used.

In the above mentioned schemes and a few others [11], [12],

either digital watermarking or DRM is used as a tool to provide

copyright protection. In this paper, we propose a content distri-

bution system that combines collusion-resistant fingerprinting

and blockchain technologies to provide copyright protection,

collusion resistance, piracy tracing, transparency, proof-of-

delivery, and revocable privacy (to a buyer). Various algo-

rithms are designed to be incorporated within the Ethereum

[13] smart contract to execute secure content delivery from

the content owner to the buyer, automate payment between

the content provider and the buyer in Ether cryptocurrency

without the involvement of any centralized trusted third party

(for payment), settle payment between the content provider

and the buyer to end the transaction, trace copyright violator

in case of illegal copy redistribution, and resolve disputes if

arisen. Also, in the proposed system, the Ethereum blockchain

is integrated with the InterPlanetary File System (IPFS) [14],

a P2P file system that is run by multiple nodes, storing files

submitted to it. After the generation of copyrighted content,

the content provider uploads it to IPFS, which assigns a unique

hash code for it in the blockchain.

The rest of the paper is organized as follows. Section II

defines the basic building blocks of the proposed system.

In Section III, the design and functionality of the proposed

system is described in detail. Section IV describes the func-

tionality of the smart contract. Section V analyzes the security

and privacy properties of the system. Finally, in Section VI,

we present the conclusions of this work.

II. BUILDING BLOCKS

Collusion-resistance fingerprint protocol, Quantization In-

dex Modulation (QIM) watermarking, a homomorphic encryp-

tion scheme, blockchain and smart contracts, IPFS, and hash

functions are the basic technologies that are combined to build

the proposed blockchain-based content distribution system.

A. Collusion-resistant Secure Codes

Nuida et al.’s codes [15] are used in the proposed system

to provide collusion-resistant against colluders. The algorithm

for the fingerprint generation takes parameters ε, N and c as

inputs, and outputs a collection F = (f1 . . . fN) of binary

codewords fi of size m and a secret vector p. The codeword

fi is meant to be embedded into a content of a buyer i. The

details of Nuida et al.’s codes construction and traitor-tracing

algorithm can be found in [15].

B. Quantization Index Modulation Watermarking

QIM is a watermark embedding technique that embeds a

fingerprint bit f by quantizing selected values (e.g. DWT

coefficients) by choosing between a quantizer with even or

odd values, depending on the binary value of f . It is important

to consider an optimal selection of the embedding quantizer

step size δ and a scaling factor so that the best tradeoff

between robustness and minimum quality degradation can

automatically be achieved. In our system, a blind, robust and

secure QIM-based watermarking technique [16] is employed

to embed Nuida et al.’s codewords into the content.

C. Homomorphic Encryption

Homomorphic encryption systems allow operations to be

performed on encrypted data without compromising the en-

cryption. These schemes are used in asymmetric fingerprinting

protocols to provide buyer frameproofness against a dishon-

est content owner. In our system, we have used a Paillier

cryptosystem [17], which is homomorphic with respect to

the addition operation, to insert an encrypted Nuida et al.’s

fingerprint codeword into the encrypted multimedia content.

D. Blockchain and Smart Contracts

Blockchain is an open distributed ledger that records all

transactional details referred as blocks. Each record or block

is time-stamped and linked to a previous block using a

cryptographic hash. Data written to a blockchain is immutable

and, thus, provides an auditable record of events and logs

that cannot be modified or deleted. Also, an exact copy of

blockchain is maintained in a large number of independent

locations and, therefore, there is no central point of failure. It

operates in a peer-to-peer fashion by allowing transactions to

be verified without the need of supervision by any trusted third

party. Instead, multiple nodes are used to form a consensus on

whether a transaction is valid or not. Invalid transactions are

not acknowledged and rejected. A transaction will only be

added to a block when it obtains the majority consensus after

verification by all nodes.

A smart contract [7] is a self-executing program that runs on

a blockchain with a unique address. A smart contract allows

transactions to be carried out between different entities without

the need of a central authority, and enables the code to execute

autonomously upon meeting specified conditions. It can store

information as internal state variables and define custom

functions to manipulate or update its state. The operations in a

smart contract are published as transactions. These operations

are deterministic and verifiable by transaction nodes to ensure

their validity. Each smart contract creates events and logs that

help in tracing. Etherium, a public, open-source, immutable

blockchain, allows execution of smart contracts without any

third party interference and offers Turning-complete languages

with more expressive expressions. A smart contract consists

of the following entities:

• Functions: Methods that are used to have the tasks done

by the involved entities.

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China

1607

• Modifiers: Used to set and modify state variables based

on meeting certain requirements of the contract.

• Events: Raised by the execution of any function call,

they notify the involved parties about updates regarding

transactions taking place in the chain.

• Variables: Values that change depending on the condi-

tions. A variable can store specified data type depending

on the contract conditions.

In this system, we make use of security, reliability, and

pseudo-anonymity features of blockchain to keep all records of

the transactions between the content owner and the buyer for

tamper-proof verifiable integrity of the content. We use smart

contracts on an Etherium blockchain to ensure the reliability of

copyright transactions involving an asymmetric fingerprinting

protocol between the content owner and the buyer.

E. InterPlanetary File System (IPFS)

IPFS is a high-throughput and content-addressed peer-to-

peer file storage system, in which each peer stores a collection

of hashed files. A user who wants to retrieve any of these files

can access a friendly abstraction layer, where he/she inputs the

hash of the file that he/she wants. IPFS then searches through

the peers and supplies the user with the required file. Duplicate

entries (files with the same content) are removed across the

file system and version history is tracked for every file. IPFS

enables high volume data distribution with high efficiency

and persistent availability of content secured and verified by

cryptographic hashing. Data is verified with its checksum.

Hence, if the hash changes, the IPFS will know the data is

tampered. IPFS is interoperable with smart contracts, and thus,

can add reliable and low-cost storage capacity to a blockchain

ecosystem. In the proposed system, IPFS is used as an external

distributed storage medium that stores fingerprinted and non-

fingerprinted multimedia files. Also, IPFS is used within a

blockchain transaction to place immutable and permanent

content links in the blockchain.

F. Hash Functions

Conventional hash functions are not suitable for the multi-

media domain because they are too sensitive to data modifi-

cation. If the data is changed by one bit, a cryptographic hash

value will change completely. A solution to this shortcoming

is a perceptual hash function that is based on extracting robust

and distinctive features from multimedia data. These features

are resistant to incidental distortion, such as compression,

noise addition or other signal processing operations, and make

perceptual hashing a promising tool for multimedia identifica-

tion and authentication. In the proposed system, a perceptual

hash function [18] is used to calculate the hash value of the

multimedia file as its ID number, which is recorded in the

blockchain to be used later in the PaymentSettlement(·) func-

tion of the proposed smart contract to verify the authenticity

of the downloaded content. A multihash function [14] is also

used in the proposed system to provide content addressing in

IPFS. It is a function for differentiating outputs from various

well-established hash functions, addressing size and encoding

considerations. Additionally, SHA-1 is used to provide data

integrity and authenticity of the messages exchanged between

different parties.

III. PROPOSED SYSTEM

This section describes the design and functionality of the

proposed system. In Section III-A, we describe the role of each

entity. Section III-B defines the functionality requirements and

the security assumptions. An attack model is described for the

system in Section III-C.

A. System Entities

The proposed system consists of six basic entities whose

functionality is defined as follows:

• Content owner: A content owner CO is an entity that

owns a digital content and is interested in selling the

copyrighted content to interested buyers by registering

the content on a blockchain through the smart contract.

It is involved in seven functions of the smart contract:

content registration and agreement, fingerprint generation,

base and supplementary files generation and distribution,

traceability and arbitration.

• Buyer: A buyer B is an entity who is interested in

buying content(s) from the content owner by request-

ing it through the smart contract. It is involved in the

following functions of a smart contract: content query

and agreement, Ether deposit, acquisition of base and

supplementary files from IPFS, payment settlement, and

a dispute resolution, in case he/she is found guilty of

copyright violation.

• Monitor: A monitor (MO) is a trusted party which is

responsible for the generation of Nuida et al.’s fingerprint-

ing codes. The existence of MO ensures that the generated

fingerprints are not revealed to CO and the buyer, thus

resolving the problems of customer’s rights and non-

repudiation. The hashes of the fingerprints and encrypted

fingerprints along with associated details (transaction ID,

timestamp, etc.) are registered to a blockchain to be

later used in the traceability phase. Also, MO provides

traceability of a copyright violator by executing a Nuida

et al.’s [15] traitor-tracing algorithm in case of a piracy

claim by CO.

• Arbitrator: An arbitrator is assumed to be a trusted party

which is involved in dispute resolution process of the

smart contract to resolve disputes between CO and the

buyer. Based on the results, a refund may take place.

• IPFS: IPFS is a file server that stores the base and sup-

plementary files generated by CO. An interested buyer,

upon depositing the content payment, can download the

files against the provided hashes of the base and sup-

plementary files from IPFS through the smart contract.

Also, IPFS notifies the smart contract when the files are

downloaded successfully by the buyer.

• Certification Authority: The Certification Authority (CA)

is a trusted entity that is responsible for generating

cryptographic key pairs, and issuing these key pairs to the

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China

1608

requesting users upon successful authentication. For each

new transaction, the CA generates and issues temporary

key pairs to the authenticated system users.

B. Design Requirements and System Assumptions

In this section, the design requirements, security assump-

tions and threat model of the proposed system are described.
1) Design Requirements: Following are the design require-

ments of the system:

• Non-repudiation: The buyer accused of redistribution of

an unauthorized copy should not be able to claim that the

copy was created by CO.

• Buyer-frameproofness: CO should not be able to frame

an honest buyer for illegal redistribution.

• Traceability: CO should be able to trace and identify an

illegal redistributor in case of finding a pirated copy with

the help of trusted parties (MO and CA).

• Collusion-resistance: The scheme should be collusion re-

sistant against a given number of colluders c as specified

by Nuida et al.’s codes [15].

• Dispute resolution: The arbitrator, with the help of trusted

third parties, should be able to resolve the disputes

between two conflicting parties (CO and B).

• Watermarking properties: The embedding process should

be blind and the embedded fingerprint should be imper-

ceptible and robust against common signal processing

attacks.

• Privacy: The real identity of the buyer should remain

anonymous during content purchase unless he/she is

proven guilty of copyright violation.

• Secure transfer of files: Transfer of the base and supple-

mentary files from CO to IPFS, and IPFS to the buyer

must be secure.

• Efficiency: The data expands on conversion from a plain-

text to an encrypted representation of signals due to

the use of an additive homomorphic cryptosystem. The

homomorphic encryption should be performed in such a

way that the size of the encrypted base file remains small.

• Fairness: At the end of the smart contract, the buyer

obtains a valid content and CO obtains his/her payment.

In case of a dispute, an Arbitrator should resolve it and

settle the payment.

• Revocable agreement: If the buyer is found guilty of

copyright violation, the agreement between CO and the

buyer should be revoked. Also, the buyer should be

punished by making a deduction of cryptocurrency equal

to the cost of that content from his/her account.

2) System Assumptions: The underlying design and security

assumptions of our scheme are described as follows:

• There are six major players involved: content owner,

buyer, monitor, Arbitrator, IPFS and CA.

• CA is a trusted entity. Hence, CA will not form a coalition

with any other party (CO, MO or Arbitrator) to break any

user’s privacy.

• CA is the only party who knows the real identity and the

pseudonyms associated with it. CA keeps track of all the

pseudo-identities to be sure that they remain unique, and

also to revoke an identity of a malicious entity.

• CO and the buyer do not trust each other but they both

trust MO and Arbitrator. In case of traitor tracing and

arbitration, it is expected that neither MO nor Arbitrator

forms a coalition with any other party to frame a buyer.

• A secret key (sk) used by CO to select fingerprint embed-

ding positions remains constant for multimedia contents

with the same perceptual hashes (i.e. different versions of

the same content that are distributed to different buyers).

The encrypted sk is recorded on the blockchain by CO.

The same content for different buyers must have the same

encrypted sk.

• Each entity has a pair of keys (of length 1024-bits) for

encryption/decryption of data, and signing/verification of

signatures.

• The reconstruction of the original file from the base

and supplementary files is performed at the buyer’s end

without his/her assistance. The base file cannot be shared

or redistributed.

• The proposed system makes use of Ethereum smart con-

tract, and payments are made in Ether (the cryptocurrency

token for Etherium blockchain). The payments are to be

made to the smart contract that distributes it fairly to both

CO and the buyer.

• Each entity has an Ethereum contract with an Ethereum

Address (EA) and an asymmetric key pair.

• The functions of a smart contract can only be executed

by authorized entities (entities with authorized Ethereum

addresses). The buyer can register his/her EA so as to

obtain access to specific functions.

• The generation of a fingerprint, the creation of the base

and supplementary files, content downloading, the file

reconstruction at buyer’s end, and traitor tracing are

performed off-chain, whereas all other functions of the

smart contract are performed on chain.

• IPFS hashes of base and supplementary files are stored

within the smart contract.

• A buyer is provided with the IPFS hashes of the base and

supplementary files, and a unique token per transaction

to download the content from the IPFS network.

• Cryptographic primitives and constructions used in the

system are secure and verifiable.

• The system assumes a TLS channel between a buyer

and IPFS to establish a secure channel to download the

content.

• At the end of a successful content transfer, the buyer

receives half of his/her initial deposit, whereas the other

half is paid to CO.

C. Attack Model

This section describes the main attacks that may be aimed

to break either the security or the privacy properties of the

proposed system.

1) Framing Attack: When the fingerprint is inserted solely

by CO, he/she may benefit from a framing attack on an

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China

1609

Smart Contract
Buyer

Content OwnerMonitor

Arbitrator

3. Query Content
4. Create Agreement
5. Verify Agreement
6. Deposit

8. Gen. Fingerprint
9. Embed Fingerprint

10
. T

ra
ns

fe
r F

ile
s

11. Provides IPFS Hashes

12. Download Request against Token

13. Verifies Token

14. Download Content

16. Payment Settlement

Arbitration

Traitor Tracing

Provide keys

Provide keys

Provide keys

Provide keys

Certificate Authority

Smart Contract
Buyer

Content OwnerMonitor

Arbitrator

3. Query Content
4. Create Agreement
5. Verify Agreement
6. Deposit

8. Gen. Fingerprint
9. Embed Fingerprint

10
. T

ra
ns

fe
r F

ile
s

11. Provides IPFS Hashes

12. Download Request against Token

13. Verifies Token

14. Download Content

16. Payment Settlement

Arbitration

Traitor Tracing

Provide keys

Provide keys

Provide keys

Provide keys

Certificate Authority

Fig. 1. Overview of the system

innocent buyer. This attack is successful if CO is able to

prove to the Arbitrator that illegal copies of the marked content

belongs to a particular buyer even though that buyer has not

bought this content, or has bought this content but did not

redistribute copies of it illegally.

2) Attacks on a Smart Contract: We consider the following

possible attacks on a smart contract by an adversary:

• The adversary may attempt to alter the messages

exchanged between the participating entities on the

Ethereum blockchain.

• The adversary may eavesdrop on off-chain communica-

tion between different entities such as a buyer and IPFS

or CO and MO.

• A malicious entity may attempt to mimic a buyer’s EA

to obtain the fingerprinted content.

• The adversary may attempt to call a specific function of

the smart contract to gain access to a token or any other

private information.

• An attacker may attempt to prevent the publication of a

valid transaction in the blockchain.

The security against these attacks is discussed in Section V.

IV. OVERVIEW OF THE SYSTEM

Fig. 1 illustrates the general architecture of the proposed

content distribution system highlighting its main entities (CO,

buyer, MO, Arbitrator IPFS, and CA) who interact with

the smart contract. The proposed system makes use of an

Ethereum smart contract, which consists of functions and

events to execute secure content distribution between CO and

the buyer.

Fig. 2 shows the possible sequence flow of transactions

occurring from different functions among system entities. It

shows the complete sequence of events beginning with the

content registration and ending with the dispute resolution. A

function, Registration(·), is initiated by CO to register his/her

content on blockchain. Upon its registration, CO is notified

about it with an event. CO verifies and attests the contract by

examining its code and hash value. Upon successful verifica-

tion, the content becomes available for the buyers to purchase

it. Only the registered users of the Ethereum blockchain are

permitted to query the content by executing QueryContent(·)
function.

If interested, the buyer initiates CreateAgreement(·) func-

tion to create an agreement between CO and him/her. The

created agreement (AGR) may include details such as title,

publishing year, digital rights, content signature, CO’s signa-

ture, public key and EA, buyer’s temporary public key (K∗
pB)

and pseudo-identity, and content price. Once AGR is created,

an event notifies CO about it. The buyer verifies AGR by either

agreeing or disagreeing to its terms and conditions. Upon

verification, the buyer initiates the DepositEther(·) function

to pay for the content. The buyer deposits twice the amount

of the total price to ensure secure transaction and payment

settlement. If the buyer fails to deposit this much amount, the

transaction aborts. On receiving the deposit, the smart contract

informs CO with an event, and then CO provides an encrypted

token for a buyer (a unique token encrypted with K∗
pB) to

download the content by calling the ProvideToken(·) function,

following which CO initiates an off-chain communication

with MO, who is responsible for providing an encrypted

collusion-resistant fingerprint to CO for embedding it into

the content. MO registers hash of both fingerprint and en-

crypted fingerprint along with other details on chain by calling

ProvideEncFingerprint(·) function. Meanwhile, CO generates

two files: a fingerprinted base file and a supplementary file,

which are then transferred to the IPFS network (since storing

the multimedia files on chain would be expensive, these files

are stored here). IPFS registers hash of both files on the chain

by calling ProvideIPFSHashes(·) function. These hashes are

provided to the buyer for accessing the files from IPFS. Upon

receiving the hash values, the buyer requests for the content

transfer off-chain from IPFS against the provided encrypted

token. IPFS verifies the encrypted token stored on chain, and

upon successful verification, allows the buyer to download

the content off-chain against IPFS hashes. Once the buyer

downloads the files, IPFS sends a confirmation to the buyer

off-chain. The buyer reconstructs the file by combining the

base and supplementary files, and computes a perceptual hash

of the content to end the transaction and settle the payment.

VerifyPerceptualHash(·) function is called by the buyer to

evaluate if the computed hash and the hash stored on chain

are equal. If the returned result is true, then the smart contract

settles the payments to the involved entities, i.e., pay half of

the deposit (price of the content) to CO, and refund half of

it to the buyer. If the returned result is false, the Arbitrator is

requested to resolve the dispute between CO and the buyer.

At anytime after a successful transaction, in case an illegal

redistributed copy is found by CO, the Traceability(·) and

Arbitration(·) functions are called.

A. Setup

Ethereum blockchain provides pseudo-anonymous accounts,

i.e., public addresses composed of random hash values for

users to perform transactions. It is globally accessible to

anyone with Internet access and allows users to generate

any number of blockchain accounts to minimize the iden-

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China

1610

Smart ContractBuyerContent Owner Monitor ArbitratorIPFS

Registration (∙)

Registration Done

VerifyRegistration (∙)

Verification Successfull

QueryContent (∙)

Query Response

CreateAgreement (∙)

Agreement Created

VerifyAgreement (∙)

Verification Successfull

DepositEther (∙)

Deposit Done

Deposit Done

ProvideToken (∙)

Provides Token

Gen. Fingerprint

Sends Encrypted Fingerprint
ProvideEncFingerprint (∙)

Fingerprint Embedding
Transfer Files

ProvideIPFSHashes (∙)

Provides IPFS Hashes Request Content against
Token VerifyToken (∙)

Token Verified

Token Verified

Download Content

Content Downloaded Successfully

VerifyPerceptualHash (∙)

Verification Successfull

Payment Settlement (∙)

Payment Settlement (∙)

Arbitration (∙)

Provides Details of Colluder(s)

Function

Event

Off-chain

DisputeResolution (∙)

Traceability (∙)

Content Downloaded Successfully

Smart ContractBuyerContent Owner Monitor ArbitratorIPFS

Registration (∙)

Registration Done

VerifyRegistration (∙)

Verification Successfull

QueryContent (∙)

Query Response

CreateAgreement (∙)

Agreement Created

VerifyAgreement (∙)

Verification Successfull

DepositEther (∙)

Deposit Done

Deposit Done

ProvideToken (∙)

Provides Token

Gen. Fingerprint

Sends Encrypted Fingerprint
ProvideEncFingerprint (∙)

Fingerprint Embedding
Transfer Files

ProvideIPFSHashes (∙)

Provides IPFS Hashes Request Content against
Token VerifyToken (∙)

Token Verified

Token Verified

Download Content

Content Downloaded Successfully

VerifyPerceptualHash (∙)

Verification Successfull

Payment Settlement (∙)

Payment Settlement (∙)

Arbitration (∙)

Provides Details of Colluder(s)

Function

Event

Off-chain

DisputeResolution (∙)

Traceability (∙)

Content Downloaded Successfully

Fig. 2. Message flow of transactions

tifiability of account holders. However, the requirement of

buyer’s revocability in case he/she is found guilty of illegal

redistribution implies the need for traceable user accounts.

Thus, a mechanism is required that provides traceable iden-

tities while protecting the sensitive personal information on

the blockchain. The proposed system employs public key

cryptography to manage users’ identities and provide confiden-

tiality. CA is responsible to provide each entity a cryptographic

public/private key pair of length 1024-bits. For each different

transaction, the buyer generates a pseudo-identity with the help

of the CA, who stores the user’s real identity and the pseudo-

identity (PIB) in its database. For each new transaction, the

buyer obtains a temporary key pair (K∗
pB ,K

∗
sB) from CA. The

buyer records PIB in the blockchain as his/her public identity

(EA) for purchasing content from CO.

B. Registration

Fig. 3 illustrates the Registration(·) function of the smart

contract. CO uses a cryptographic hash function to obtain

the cryptographic hash value of this content as a content

signature. Then, CO use perceptual hash function to calculate

the perceptual hash value of this content. CO generates a secret

embedding key (sk) depending on the perceptual hash of the

content, and stores it in its database. All version of the same

content (the same perceptual hashes) will use the same sk. CO
encrypts sk with the Arbitrator’s public key and records the

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China

1611

Original
Content

1. Cryptographic
Hash5.

 C
on

te
nt

 D
et

ai
ls

Smart Contract

5.
 C

on
te

nt
 O

w
ne

r D
et

ai
ls

Content Owner

2. Content Signature

4. Multimedia Sample (KB)

5. Perceptual Hash

7.
 C

on
te

nt
 C

re
at

ed

8.
 V

er
ify

 R
eg

ist
er

ed
 C

on
te

nt

9.
 V

er
ifi

ed
 R

eg
ist

er
at

io
n

Su
cc

es
s

Secret
Embedding key

6.
 C

on
te

nt
 O

w
ne

r S
ig

na
tu

re

key

Original
Content

1. Cryptographic
Hash5.

 C
on

te
nt

 D
et

ai
ls

Smart Contract

5.
 C

on
te

nt
 O

w
ne

r D
et

ai
ls

Content Owner

2. Content Signature

4. Multimedia Sample (KB)

5. Perceptual Hash

7.
 C

on
te

nt
 C

re
at

ed

8.
 V

er
ify

 R
eg

ist
er

ed
 C

on
te

nt

9.
 V

er
ifi

ed
 R

eg
ist

er
at

io
n

Su
cc

es
s

Secret
Embedding key

6.
 C

on
te

nt
 O

w
ne

r S
ig

na
tu

re

Fig. 3. Registration Function

encrypted sk on the blockchain to be later used in the payment

settlement phase. A small sample of this content (audio or

video) of a limited size (in KBs) is provided by CO to enable

the buyers to check if the quality of the content will suffice to

their needs of watching the video or listening the audio, or if

any particular codecs are required at the buyers’ end to play the

content. CO generates his/her digital signature using his/her

personal information, the content’s metadata (such as title,

type, publishing year etc.) and the perceptual hash value of the

content. Using the content signature, the sample, the perceptual

hash, the encrypted sk, and his/her own digital signature, CO
initiates the Registration(·) function of the smart contract to

record this transaction in the blockchain. Once the transaction

is successfully recorded on chain, an event triggered by the

smart contract notifies about it to CO, who can then verify the

SHA hash of the content.

C. Agreement

The buyers searches in the blockchain for a content he/she

is interested in. On finding the desired content, the buyer

initiates an Agreement(·) function with the smart contract

to setup an agreement (AGR) with CO. This AGR uniquely

binds the content to this particular transaction between CO and

the buyer. In this transaction, the buyer uses PIB as EA to

preserve his/her privacy. The smart contract upon receiving the

request, creates AGR between CO and the buyer, stating the

rights and obligations of both parties, credentials of CO (EA)

and the buyer (EA), public keys of both CO and the buyer, and

the specific details of the content (title, price, etc.). The buyer

and CO are notified with an event about the creation of AGR.

CO generates a transaction ID (TID) for keeping a record of

AGR between him/her and the buyer. Then, the buyer verifies

the terms and conditions stated in AGR. Upon agreeing, he/she

is allowed to deposit Ether twice the actual cost of the content

to make a purchase, else the transaction is terminated. The

interested buyer is required to deposit twice the actual price

to incentivize honesty. Upon receiving the deposit, the smart

contract notifies both the buyer and CO, who then creates a

unique token for the buyer that has a validity depending on the

type of the requested content. This unique token is generated

by CO to allow only the privileged party to download the

content. Since it is registered on chain, it is possible that it

can be viewed by anyone. Therefore, it is necessary to record

the encrypted token on chain, thus, CO encrypts the token

with K∗
pB and records it on the smart contract making the

encrypted token available to the buyer to enable him/her to

download the content.

D. Generation of the Base and Supplementary Files

Once CO is notified about deposit of Ether against AGR, it

initiates a function that generates two files –a base file (BF)

and a supplementary file (SF)– based on the design proposed

in [2]. BF is designed to have a small size than the original

file and contains the most important information. Without this

information, the file reconstructed by the buyer would be

unusable. SF is absolutely useless without the corresponding

BF. SF can be shared or redistributed among IPFS users

without any condition, whereas, BF cannot be shared or

redistributed by the buyers.

1) Fingerprint Generation: CO sends a request for a finger-

print to MO by sending TID, AGR, the signed AGR (signed

using its own secret key), his/her public key, K∗
pB , PIB ,

and the timestamp. MO validates the signatures of both CO
and the buyer from CA. After successful verification, MO
generates a Nuida et al.’s c-secure codeword fi of length

m against a TID sent by MO. The details of the Nuida et

al.’s fingerprint generation algorithm can be found in [15].

Then, MO encrypts the fingerprint with K∗
pB , and sends the

encrypted fingerprint, the signed encrypted fingerprint (signed

using its secret key), the signed AGR, the public key of CO,

the timestamp, and TID to CO. MO stores AGR, the signed

AGR, the encrypted fingerprint, the hashes of both fingerprint

and encrypted fingerprint, the public key of CO, K∗
pB and PIB

against TID at its end. MO interacts with the smart contract to

record the hashes of fingerprint and the encrypted fingerprint,

TID, the timestamp, AGR, the signed AGR, PIB , K∗
pB and

the public key of CO on the blockchain. Upon receiving the

encrypted fingerprint from MO, CO records hash of encrypted

fingerprint, the content signature, the perceptual hash, AGR,

the signed AGR, TID, PIB , K∗
pB , the timestamp, and his/her

own public key on the blockchain.

2) Fingerprint Embedding: Figure 4 shows the generation

of BF and SF. CO employs the Discrete Wavelet Transform

(DWT) to split the content into approximation (low-frequency)

and detail (high-frequency) coefficients. An approximation

coefficient is then itself split into a second-level approximation

and detail coefficients, and the process is repeated as many

times as desired (levels of decomposition). In order to embed

an encrypted fingerprint obtained from MO in the approxima-

tion coefficients to form BF, the additive homomorphic prop-

erty of public-key cryptosystems is applied to encrypt approx-

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China

1612

DWT
Transform

Original
ContentContent Owner

Approximation Coefficients

Detail Coefficients Supplementary File
 (SF)

Base File (BF)

Encrypted fi

Encrypted Approximation
Coefficients

3. Embed encrypted
fi

Smart ContractBuyer

1. DWT

2. Encrypt 4.Transfer BF

4.Transfer SF

5. Sends hash of BF

5. Sends hash of SF

6. Sends hash of BF

6. Sends hash of SF

Inverse DWTDWT
Transform

Original
ContentContent Owner

Approximation Coefficients

Detail Coefficients Supplementary File
 (SF)

Base File (BF)

Encrypted fi

Encrypted Approximation
Coefficients

3. Embed encrypted
fi

Smart ContractBuyer

1. DWT

2. Encrypt 4.Transfer BF

4.Transfer SF

5. Sends hash of BF

5. Sends hash of SF

6. Sends hash of BF

6. Sends hash of SF

Inverse DWT

Fig. 4. Fingerprint Embedding

imation coefficients with K∗
pB . Since additive homomorphic

cryptosystems cannot work on real-valued DWT coefficients,

these approximation coefficients are quantized to integer val-

ues. In the quantization process, the approximation coefficients

are quantized to the nearest even/odd integers depending on

the value of quantization step size δ, that is a positive integer

such that all the quantized coefficients are encrypted. Before

quantization, CO selects the fingerprint embedding positions

by using sk, which is also used to extract the fingerprint from

the redistributed copies. The selected quantized coefficients

are encrypted coefficient-by-coefficient with K∗
pB . To embed a

single bit of a Nuida et al.’s codeword into one of the selected

quantized and encrypted coefficient, SD-QIM watermarking

technique [16] is performed. Also, CO encrypts the remaining

scaled and quantized approximation coefficients that do not

carry a fingerprint so as to hide these embedding positions.

These approximation coefficients are encrypted in a block

form with K∗
pB instead of encrypting individual individual

coefficients to get a reduced BF size. All these approximation

coefficients, i.e., the quantized and encrypted approximation

coefficients and the embedded coefficients are recombined to

constitute BF. On the other hand, an inverse L-level DWT is

performed on the detail coefficients to obtain SF.

Upon generation of BF and SF, these files are automatically

transferred to the IPFS network off-chain for buyers’ down-

loads. Also, CO records content signature, perceptual hash,

AGR, signed AGR, TID, encrypted fingerprint and its hash,

encrypted sk, his/her own public key, K∗
pB , PIB , hash of

BF and SF, and timestamp on the blockchain. IPFS generates

the hash of BF and SF, thus, indicating successful upload on

the network. IPFS initiates ProvideIPFSHashes(·) function to

record both IPFS hashes of BF and SF on the blockchain.

Upon successful creation of this transaction, the smart contract

notifies the buyer about the availability of the purchased

content on IPFS by providing him/her these hashes.

E. Content Delivery

A TLS channel is assumed between a buyer and the IPFS

network for secure transfer of messages (setting up of TLS

channel is out of scope of this paper). Upon receiving the

IPFS hashes of BF and SF, the buyer interacts with the

IPFS network to download the content using the provided

encrypted token. IPFS, upon receiving the demand from the

buyer, initiates VerifyToken(·) function for verification of the

received token. If the received token (from IPFS) and the token

stored on the blockchain are the same, the smart contract sends

a successful verification notification to IPFS and the buyer,

who then calls the hashes from IPFS to download BF and SF
off-chain. Upon successful download, IPFS notifies the buyer

off-chain. Also, IPFS sends a notification with an event to the

smart contract about the successful file transfer.

1) Payment Settlement: Once files are downloaded, the

buyer performs decryption on the encrypted BF using K∗
sB

and apply the inverse DWT to get a fingerprinted BF, which

is then recombined with SF to obtain the complete content.

The buyer uses the perceptual hash algorithm [18] to compute

a perceptual hash of the generated content to end the trans-

action and settle the payment with the smart contract. The

VerifyPerceptualHash(·) function within the smart contract is

called by the buyer to compare the computed hash with the

hash stored on chain. If the returned result is true, then the

smart contract settles the payments to the involved entities,

i.e., pay half of the deposit (total price of the content) to CO,

and refunds half of it to the buyer, else DisputeResolution(·)
function is initiated with the Arbitrator to resolve the dispute

between CO and the buyer. Here there can be three possi-

bilities: (1) file reconstruction error at the buyer’s end; or

(2) malicious act by CO; or (3) manipulation of fingerprinted

content by the buyer.

In either case, the smart contract requests the Arbitrator to

step in to resolve the dispute between CO and the buyer by

providing him/her all the details regarding the content purchase

against TID. The Arbitrator requests the buyer to send him/her

the downloaded BF. Upon receiving the decrypted BF, the

Arbitrator extracts the fingerprint by decomposing BF with the

same wavelet basis used in the fingerprint insertion step. This

gives the approximation coefficient matrix in which the finger-

print code is embedded. The Arbitrator retrieves encrypted sk
against TID from the blockchain, decrypts it using its secret

key, and extracts the code from secret embedding positions.

The details of fingerprint extraction technique can be found in

[2]. After the extraction of the fingerprint code, the Arbitrator

computes the hash of the extracted code and compares it with

the hash of the fingerprint code retrieved from the blockchain.

If both hashes are equal, the Arbitrator notifies the buyer to try

to download the content again from the IPFS network. Upon

second attempt, if the buyer again complains about mismatch

between perceptual hashes, the Arbitrator notifies the smart

contract about a malicious CO and requests the refund of

the buyer’s deposit. In case both hashes are not equal, the

Arbitrator notifies the smart contract to revoke AGR of CO
with the dishonest buyer, and requests to punish him/her by

deducting Ether equal to the total cost of the content from

his/her account.

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China

1613

F. Traceability

Upon finding a pirated copy of the content, CO initiates

Traceability(·) function with the help of MO. CO calculates

a perceptual hash of the content and looks into its database

against it to find the corresponding sk to extract the pirated

code. CO then sends the pirated code to MO, who executes

Nuida et al.’s codes tracing algorithm to identify the col-

luder(s). The details of the tracing algorithm can be found

in [15]. This tracing algorithm outputs a user or a set of

users with the highest score. MO sends the pseudo-identities

of the colluder(s) to the Arbitrator, who then initiates the

Arbitration(·) function. Also, the pseudo-identity of a colluder,

CO’s signature and public key, TID, the content signature,

AGR, the signed AGR and the timestamp are recorded by

MO on the blockchain.

G. Arbitration

Upon receiving information from MO, the Arbitrator sends

a request to CA to reveal the real identity of the colluder(s)

by sending it the pseudo-identity of this entity. CA looks into

its database for an entry against the provided pseudo-identity

and sends the real identity to the Arbitrator, who notifies

the smart contract to revoke AGR with the colluder(s), and

punish him/her by deducting Ether equal to the total cost of

the content from his/her account. In case MO did not find

any colluder, it notifies the Arbitrator, who then requests the

smart contract to refund the buyer’s deposit and revoke AGR

between dishonest CO and the buyer.

V. SECURITY AND PRIVACY ANALYSIS

This section analyzes the privacy and security properties of

the system according to the design requirements and the attack

model presented in Sections III-B1 and III-C, respectively.

A. Content Owner’s Security

The proposed system is secure and fair from the perspective

of CO because a buyer has no idea about the embedded

fingerprint, which is generated by MO, an entity trusted by

both the buyer and CO (as described in Section III-B2). Thus,

the buyer cannot accuse MO of collaborating with CO to

frame him/her. Also, the buyer cannot claim that a pirated

copy is created by CO since only he/she can decrypt the

encrypted BF with his/her secret key. Moreover, the fingerprint

is embedded into the selected positions of the content. Thus,

the probability to find the exact locations of the embedded

fingerprint is quiet low. Furthermore, a malicious buyer’s claim

of innocence can be rejected by the Arbitrator by using the

hash of the fingerprint stored on the blockchain. Moreover,

a traitor-tracing mechanism is proposed to unambiguously

identify a copyright violator once a pirated copy is found.

B. Buyer Security

CO knows only about the encrypted fingerprint (encrypted

with K∗
pB) and the encrypted BF and has no knowledge about

K∗
sB . Therefore, CO does not know about the fingerprinted

copy that the buyer obtains after decrypting the encrypted

BF. Furthermore, the transaction recorded on chain by MO
containing the hashes of the fingerprint and the encrypted

fingerprint, AGR, the signed AGR, K∗
pB , PIB , and CO’s

public key explicitly binds the fingerprint to AGR, which

specifies the purchased content. Thus, it is impossible for CO
to frame the buyer. Also, the buyer uses a different K∗

pB and

EA (PIB) for the transaction with CO that prevents CO to

frame the buyer by sending BF from a previous transaction.

Therefore, framing an honest buyer by CO is not possible

since he/she cannot forge any evidence.

C. Traitor tracing

Upon finding a pirated copy, CO executes the traitor-tracing

algorithm of Nuida et al.’s codes [15] involving MO to trace

the copyright violator(s). The traitor-tracing algorithm employs

a scoring technique that outputs guilty user(s) with the highest

score(s). The pseudo-identity of the guilty buyer is provided

to the Arbitrator, who requests CA to reveal the real identity

of the copyright violator.

D. Collusion Resistance

Nuida et al.’s codes [15] are c-secure with ε-error with

l ≤ c (l is the number of colluders). In our system, we

have considered c = 3. As long as l remains lower than

c, the traitor-tracing algorithm is followed, the colluder can

be identified successfully. Thus, the proposed scheme offers

resistance against three colludes. The value of c > 3 can

also be considered. However, this large value of c results in

increased length m of the codeword, which will provide high

collusion resistance but at a cost of lower content quality. The

value of c can be chosen keeping in mind the desired security

level of the system.

E. Privacy

The essential protection of the buyer’s privacy is by taking

advantage of the pseudo-identity generated with the help of

CA. The buyer uses this pseudo-identity as his/her Ethereum

address (EA) to purchase the content from CO via smart

contract. To minimize the identifiability, a buyer is allowed to

use different EAs (pseudo-identities) for different purchasing

transactions. However, privacy provided to the buyer is revoca-

ble since pseudo-identity generated for a transaction with CO
is registered with CA. Under CA’s existence, the buyer can

keep his/her real identity unexposed unless he/she is found

guilty of copyright violation by the Arbitrator.

F. Buyer Frameproofness

A malicious CO may attempt to collude with MO in a

traitor-tracing protocol to frame an honest buyer for illegal

redistribution. However, this attack can be disregarded since

MO is an entity that is trusted by both CO and the buyer

(as described in Section III-B2). In case MO acts maliciously

and colludes with CO to frame the buyer, the accused buyer

can request the Arbitrator to settle the dispute. The Arbi-

trator would retrieve the encrypted sk from the blockchain

against TID provided by the buyer. The Arbitrator would

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China

1614

decrypt the encrypted sk using its secret key, and extract

the fingerprint from secret embedding positions. Then, the

Arbitrator would retrieve the hash of the fingerprint recorded

against TID in the blockchain, and compare it with the hash of

the extracted fingerprint. If both are identical, CO is proved

guilty of framing an honest buyer for illegal redistribution.

CO cannot deny of his/her malicious act since the hash of

the fingerprint embedded in the buyer’s content was recorded

on the blockchain by MO during the fingerprint generation

process (Section IV-D1).

G. Smart Contract Security

In this system, the messages exchanged between entities

within smart contracts are time-stamped and encrypted using

cryptographic keys. Only hashed data values and enciphered

information are published on the blockchain. Therefore, an

attacker cannot learn any significant information from the

blockchain, thus, ensuring data integrity and confidentiality.

The off-chain communication between the IPFS network

and the buyer is secured with a unique token that is communi-

cated to him/her through the smart contract, and the existence

of a TLS channel between two parties (as described in Section

III-B2). Similarly, the off-chain communication between CO
and MO is secure though public key encryption. Therefore, the

communication is secure against man-in-the-middle attacks.

The perceptual hash of the content is stored in the

blockchain that allows the buyer to compare the stored hash

and the perceptual hash computed from the downloaded con-

tent to ensure that the purchased content is valid.

A buyer uses a pseudo-identity as his/her Ethereum address

to purchase the content from CO via smart contract. This

pseudo-identity is obtained from a cryptographic hash func-

tion. Thus, any attempt of an attacker to impersonate the buyer

to obtain the fingerprinted purchased content is withstood by

the collision resistance of the hash function. Furthermore, the

impersonator cannot use the pseudo-identity of another buyer

because he/she does not know the secret number r shared

by the buyer with CA. Also, an encrypted unique token is

provided to the buyer by CO. The attacker will not be able to

obtain the content from the IPFS network because he/she does

not have the private key of the buyer to decrypt the token.

All functions of the smart contract can only be accessed

by the authorized entities (as described in Section III-B2). If

the initiator of the function call is identified as an intruder, an

error occurs and all states are reverted.

A possible attempt by an adversary to prevent publication

of a valid transaction in the blockchain, e.g., by attempting

a denial-of-service (DDoS) attack against a data usage event,

is withstood by the proposed system as all transactions are

recorded and stored on the public Ethereum blockchain in a

decentralized manner. Thus, it is not subject to a single point

failure, hacking or compromise. The Etheruem blockchain

is robust to DDoS attacks as it is distributed globally and

protected by thousands of mining nodes across the globe.

Certainly, the attacker needs to have the control on more than a

half of these mining nodes, which is assumed to be unfeasible.

VI. CONCLUSION

In this paper, a multimedia content distribution system

is presented that combines blockchain technology, collusion-

resistant fingerprinting and IPFS. All transactions and interac-

tions between participating entities during the content purchase

are controlled by Ethereum smart contract. The proposed

system is a proof-of-concept, which can be extended in future

by implementing and testing it on the Etheruem blockchain.

ACKNOWLEDGMENTS

This work was partly funded by the Spanish Government

through grants INCIBEC-2015-02491 “Ayudas para la exce-

lencia de los equipos de investigaciòn avanzada en ciberseguri-

dad”, RTI2018-095094-B-C22 “CONSENT” and TIN2014-

57364-C2-2-R “SMARTGLACIS.”

REFERENCES

[1] D. Megías and J. Domingo-Ferrer, “Privacy-aware peer-to-peer content
distribution using automatically recombined fingerprints,” Multimedia
Systems, vol. 20, no. 2, pp. 105–125, 2014.

[2] A. Qureshi, D. Megías, and H. Rifà, “Framework for preserving security
and privacy in P2P content distribution systems,” Expert Systems with
Applications, vol. 42, no. 3, pp. 1391 – 1408, 2015.

[3] A. Qureshi, D. Megías, and H. Rifà-Pous, “PSUM: Peer-to-peer mul-
timedia content distribution using collusion-resistant fingerprinting,”
Journal of Network and Computer Applications, vol. 66, pp. 180–197,
2016.

[4] D. Megías, “Improved privacy-preserving p2p multimedia distribution
based on recombined fingerprints,” IEEE Transactions on Dependable
and Secure Computing, vol. 12, no. 2, pp. 179–189, 2014.

[5] D. Megías and A. Qureshi, “Collusion-resistant and privacy-preserving
p2p multimedia distribution based on recombined fingerprinting,” Expert
Systems with Applications, vol. 71, pp. 147 – 172, 2017.

[6] M. Kuribayashi and N. Funabiki, “Decentralized tracing protocol for
fingerprinting system,” APSIPA Transactions on Signal and Information
Processing, vol. 8, pp. 1–8, 2019.

[7] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
[8] Z. Meng, T. Morizumi, S. Miyata, and H. Kinoshita, “Design scheme

of copyright management system based on digital watermarking and
blockchain,” in COMPSAC’18, vol. 02, 2018, pp. 359–364.

[9] C. Zhao, M. Liu, Y. Yang, F. Zhao, and S. Chen, “Toward a blockchain
based image network copyright transaction protection approach,” in
SICBS’19, 2019, pp. 17–28.

[10] S. Zhao and D. O’Mahony, “Bmcprotector: A blockchain and smart
contract based application for music copyright protection,” in ICBTA’18,
2018, pp. 1–5.

[11] J. Kishigami, S. Fujimura, H. Watanabe, A. Nakadaira, and A. Akutsu,
“The blockchain-based digital content distribution system,” in CCBD’15,
2015, pp. 187–190.

[12] F. Miao, W. Yang, W. Fan, Y. Xie, Q. Guo, Y. You, Z. Liu, and
L. Liu, “Digital copyright works management system based on dosa,”
in CSAE’18, 2018, pp. 179:1–179:9.

[13] K. Christidis and M. Devetsikiotis, “Blockchains and smart contracts for
the internet of things,” IEEE Access, vol. 4, pp. 2292–2303, 2016.

[14] “IPFS is the Distributed Web,” https://ipfs.io/, accessed on August 24,
2019.

[15] K. Nuida, S. Fujitsu, M. Hagiwara, T. Kitagawa, H. Watanabe,
K. Ogawa, and H. Imai, “An improvement of tardos’s collusion-secure
fingerprinting codes with very short lengths,” in AAECC’07, 2007, pp.
80–89.

[16] J. P. Prins, Z. Erkin, and R. L. Lagendijk, “Anonymous fingerprinting
with robust qim watermarking techniques,” EURASIP Journal on Infor-
mation Security, vol. 20, pp. 1–7, 2007.

[17] P. Paillier, “Public-key cryptosystems based on composite degree resid-
uosity classes,” in Eurocrypt’99, 1999, pp. 223–238.

[18] L. Weng, “Perceptual multimedia hashing,” Ph.D. dissertation,
Katholieke Universiteit Leuven, 2012, accessed on August 24, 2019.

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China

1615

