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Abstract—The recursive least-squares (RLS) algorithm should
be explicitly regularized to achieve a satisfactory performance
when the signal-to-noise ratio is low. However, a direct imple-
mentation of the involved matrix inversion results in a high
complexity. In this paper, we present a recursive approach to the
matrix inversion of the dynamically regularized RLS algorithm
by exploiting the special structure of the correlation matrix.
The proposed method has a similar complexity to the standard
RLS algorithm. Moreover, the new method provides an exact
solution for a fixed regularization parameter, and it has a good
accuracy even for a slowly time-varying regularization parameter.
Simulation results confirm the effectiveness of the new method.

I. INTRODUCTION

Though the recursive least-squares (RLS) algorithm is com-
putationally inefficient compared to the well-known least-
mean-square (LMS) algorithm, it is still preferred in many
applications due to the potential fast convergence [1]. There
are two key parameters in the RLS algorithm, i.e., the for-
getting factor and the regularization parameter. Recently, it
has been well realized that the regularization parameter also
plays an important role for the algorithm stability [2]–[6].
In the standard RLS algorithm, the regularization parameter
exponentially decays as time progresses [1], which results in
a poor stability when the signal-to-noise ratio (SNR) is low or
the correlation matrix is poorly conditioned [2], [3].

To address this problem, an explicit regularization parameter
is added to the diagonal elements of the correlation matrix
prior to the inversion, which could reduce the eigenvalue
spread and thus enhance the stability. Many criteria for choice
of the regularization have been presented in [2]–[7]. However,
the involved matrix inversion cannot be solved using the
recursive method in the standard RLS algorithm. The direct
implementation methods, e.g., Gaussian elimination method
or Choleski decomposition, are too expensive, although they
can provide an exact solution. The dichotomous co-ordinate
descent (DCD) algorithm has been recommended to solve the
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norm equations [3], [8]–[9]. The DCD method does not require
the multiplication operation, which is appreciated especially
for the FPGA platform. The potential issue of the DCD method
may be that the accuracy depends highly on the number of
iterations and the input signal characteristics.

In this paper, we present an alternative solution to the
matrix inversion in the dynamically regularized RLS algo-
rithm, which is achieved by exploiting the structure property
of the correlation matrix in the transversal structure. The
partitioned matrix inversion lemma is employed to derive
the recursive update equation for the matrix inversion [10]–
[12]. Our approach provides an exact solution for the fixed
regularization parameter, and the performance of the new
method is very close to that of the exact matrix inversion
for a time-varying regularization parameter. In addition, the
proposed method has a similar complexity as the oracle RLS
algorithm. The convergence performance of the new algorithm
is verified by computer simulations in different experimental
conditions.

This paper is organized as follows. We briefly review the
standard RLS algorithm and the regularized version in Section
II. Section III presents the proposed solution to the matrix
inversion in the regularized RLS. We then carry out extensive
computer simulations to verify the proposed method in Section
IV. Finally, Section V concludes the paper.

II. REGULARIZED RLS
In the context of system identification, we assume that the

desired signal arises from the linear model

d(n) = wTx(n) + v(n), (1)

where (·)T denotes the transpose operator, w =
[w0, w1, ..., wL−1]

T is the unknown system vector with
length L, x(n) = [x(n), x(n− 1), ..., x(n− L+ 1)]T is the
input signal vector, and v(n) denotes the system noise.

The standard RLS algorithm is derived using the cost
function [1]

J(n) =
n∑

i=0

λn−i[d(i)− xT (i)ŵ(n)]
2
+ λnη‖ŵ(n)‖2 (2)

where ‖·‖ denotes the Euclidean norm, ŵ =
[ŵ0, ŵ1, ..., ŵL−1]

T is the estimated weight vector, η is
the initial regularization parameter, and λ is the forgetting
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factor with 0 < λ ≤ 1. Minimizing J(n) with respect to
ŵ(n), we have

ŵ(n) = (Rx(n) + λnηI)
−1

p(n) (3)

where I denotes the identity matrix, and

Rx(n) =
n∑

i=0

λn−ix(i)xT (i)

= λRx(n− 1) + x(n)xT (n)

(4)

is an estimate of the correlation matrix of the input signal, and

p(n) =

n∑

i=0

λn−ix(i)d(i). (5)

is the estimate of the correlation between the input signal and
the desired signal. The standard RLS algorithm can be updated
as [1]

e(n) = d(n)− xT (n)ŵ(n− 1) (6)

ŵ(n) = ŵ(n− 1) +R−1(n)x(n)e(n) (7)

where

R(n) = Rx(n) + λnηI, (8)

e(n) is the a priori estimation error, and R−1(n) is calculated
recursively using the matrix inversion lemma.

As shown, Eq. (8) corresponds to a time-varying regular-
ization parameter λnη at time index n, which fades quickly
as time progresses. However, we expect that an independent
and time-varying regularization parameter ε(n) is used in
many applications [2]–[7]. Thus, we need to invert the matrix
R(n) = Rx(n)+ ε(n)I. In this situation, the matrix inversion
lemma cannot be adopted to compute R−1(n) recursively
since ε(n) �= λε(n−1). A direct approach toward computation
of the matrix inversion is via the Gaussian elimination method
or Choleski decomposition, which usually requires O(L3)
multiplications per iteration and hence is too expensive. The
DCD approach can be used to solve the normal equations
with a complexity of O(L) [3], but the accuracy relies on the
number of iterations and the input signal characteristics.

III. PROPOSED SOLUTION

We now present an alternative solution to the matrix inver-
sion R−1(n) by exploiting the time-shift property of the input
vector. Defining the weighted input correlation

ρi(n) =
m=n∑

m=0

λn−mx(m)x(m− i), (9)

the correlation matrix R(n) can be rewritten in the following
two forms

R(n) =

[
r0(n) αT (n)

α(n) R̃(n)

]
(10)

R(n) =

[
R̄(n) β(n)

βT (n) r1(n)

]
(11)

where

r0(n) = ρ0(n) + ε(n), (12)

r1(n) = ρ0(n− L+ 1) + ε(n), (13)

α(n) = [ρ1(n), ρ2(n), · · · , ρL−1(n)]
T , (14)

β(n) = [ρL−1(n), ρL−2(n− 1), · · · , ρ1(n− L+ 2)]T (15)

R̃(n) is the bottom-right (L−1)×(L−1) submatrix of R(n),
and R̄(n) is the top-left (L−1)× (L−1) submatrix of R(n).

The (i, j)-th entry of the matrix Rx(n) is ρ|i−j|(n −
min(i, j)). For a fixed regularization parameter, we can then
obtain an important relation

R̃(n+ 1) = R̄(n). (16)

In some applications, the regularization parameter ε(n) varies
slowly, and thus the approximation R̃(n+ 1) ≈ R̄(n) holds.
It should be mentioned that the matrix property in (16) only
hold for the transversal structure.

Using (10) and the partitioned matrix inversion lemma, the
inverse matrix R−1(n) can be calculated as [13]

R−1(n) =

[
0 0

0 R̃−1(n)

]
+

a(n)aT (n)

Ea(n)
(17)

where

Ea(n) = r0(n)−αT (n)R̃−1(n)α(n), (18)

a(n) =

[
1

−R̃−1(n)α(n)

]
, (19)

and 0 is an all-zero vector. When R̃−1(n) is available, we
can compute the matrix inversion R−1(n) according to (17).
Using (11) and the partitioned matrix inversion lemma, the
inverse matrix R−1(n) can also be calculated as [13]

R−1(n) =

[
R̄−1(n) 0

0 0

]
+

b(n)bT (n)

Eb(n)
, (20)

where

Eb(n) = r1(n)− βT (n)R̄−1(n)β(n), (21)

b(n) =

[
−R̄−1(n)β(n)

1

]
. (22)

Because R−1(n) has been calculated as per (17), we could
obtain R̄−1(n) using (20). But this can be achieved without
the explicit computation of the vector b(n). Defining c(n) as
the last column of R−1(n) and θ(n) as the (L − 1, L − 1)-
element of R−1(n), we then obtain the relations

c(n) =
b(n)

Eb(n)
(23)

and

θ(n) =
1

Eb(n)
. (24)

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China 

1073



TABLE I
PROPOSED ALGORITHM

Step Equation Multiplications
Initialization R̃−1(0) = ε0I with ε0 a constant

1 Compute r0(n) and α(n) using (12) and (14) 2L
2 Compute Ea(n) using (18) L2 + L
3 Update a(n) using (19) 0

4 Update R−1(n) using (17) L2+3L
2

5 Update R̄−1(n)) using (25) L2+3L
2

6 R̃−1(n+ 1) = R̄−1(n) 0
7 Calculate the error signal e(n) using (6) L
8 Update the weight vector ŵ(n) using (7) L2 + L

We can then compute R̄−1(k) as
[

R̄−1(n) 0
0 0

]
= R−1(n)− c(n)cT (n)

θ(n)
. (25)

Recalling the relation in (16), it has R̃−1(n+ 1) = R̄−1(n),
which is then used for the calculation of (17). For a fixed
regularization parameter, i.e., ε(n) is constant, the proposed
method could provide an exact solution to the matrix inversion.
For a variable regularization parameter, the proposed approach
can also track the exact solution very quickly and provides a
satisfactory solution as shown in the simulations.

We summarize the proposed algorithm in Table 1. As seen,
the proposed method requires 3L2+8L multiplications per
sample, which is only slightly higher than that of the standard
RLS algorithm. However, the proposed method can adopt
a variable regularization parameter, while the standard RLS
cannot.

IV. SIMULATION RESULTS

Computer simulations are carried out to evaluate the perfor-
mance of the proposed method. The standard RLS algorithm
and the regularized RLS algorithm with an exact matrix
inversion are involved for comparison. The system impulse
response is taken from ITU-T G.168 Recommendation with
length L = 120 [14]. Two types of signal are adopted as
input. The first one is an AR(1) process that is obtained
by filtering the white noise through the transfer function
H(z) = 1/(1 − 0.9z−1), and the second one is a speech
signal. White noise is added to the desired signal to generate
different SNRs. For all the algorithms, we use the forgetting
factor λ = 1 − 1/(2L) ≈ 0.9958. The normalized misalign-
ment is adopted for the convergence evaluation, defined as
20log10(‖w − ŵ(n)‖ / ‖w‖). The impulse response is multi-
plied by -1 in the middle of the iteration to model an abrupt
system change.

In the first set of experiments, we adopt a fixed regu-
larization parameter ε(n) = 4σ2

x, where σ2
x = E[x2(n)]

is the variance of the input signal. The standard RLS is
initialized as R−1(0) = 1

4σ2
x
I. Fig. 1 and Fig. 2 present the

misalignment curves of the three algorithms with SNR = 30
dB using AR(1) and speech as input, respectively. As seen,
the standard RLS algorithm performs worst among the three
algorithms. This is because that the equivalent regularization
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Fig. 1. Misalignment curves of the three algorithms with a fixed regularization.
SNR = 30 dB, AR(1) as input.
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Fig. 2. Misalignment curves of the three algorithms with a fixed regularization.
SNR = 30 dB, speech as input.

of the standard RLS decays as time and its effect becomes
rather small. The learning curves of the proposed method and
the regularized RLS algorithm with an exact matrix inversion
become indistinguishable.

In the second set of experiments, we investigates the con-
vergence performance of the proposed method with a time-
varying regularization parameter. A low SNR = 10 dB is used.
The time-varying regularization parameter for the regularized
RLS algorithm is calculated using the method in [5], [7] as
follows

ε(n) =
L[1 +

√
1 + γ(n)]

γ(n)
σ2
x (26)

where γ(n) is the SNR, which could be estimated by

γ(n) =
σ̂2
ŷ(n)∣∣∣σ̂2

d(n)− σ̂2
ŷ(n)

∣∣∣
(27)
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Fig. 3. Misalignment curves of the three algorithms with a time-varying
regularization. SNR = 10 dB, AR(1) as input.

The power estimates in (27) can be evaluated in a recursive
manner as

σ̂2
d(n) = κσ̂2

d(n− 1) + (1− κ)d2(n), (28)

σ̂2
ỹ(n) = κσ̂2

ȳ(n− 1) + (1− κ)ŷ2(n), (29)

where κ is the smoothing factor, and ŷ(n) = xT (n)ŵ(n− 1).
We use κ = 0.98 in this paper. It should be mentioned that
any other variable-regularization approach could be used.

We present the learning curve and the corresponding reg-
ularization parameter in Figs. 3(a) and 3(b) for AR(1) input,
and that in Fig. 4 for speech input. The dynamic range of the
regularization parameter for speech input is much larger than
that for the AR(1) input. It is apparent that the convergence
performance of the proposed method is very close to that of the
exact regularized RLS algorithm for both AR(1) and speech
inputs. This verifies that the proposed method can also perform
well even for a variable regularization parameter.

V. CONCLUSION

This paper has presented a recursive method to solve the
matrix inversion in the regularized RLS algorithm with a com-
plexity of O(3L2). The complexity of the proposed method
is between the exact solution with O(L3) and inexact DCD
method with O(L). However, the proposed approach provides
an exact solution for a fixed regularization parameter and also
gives a satisfactory result for a time-varying regularization
parameter. Computer simulations confirmed the effectiveness
of the proposed method.
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Fig. 4. Misalignment curves of the three algorithms with a time-varying
regularization. SNR = 10 dB, speech as input.
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