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Abstract—To observe high-speed phenomena such as discharge
plasma, it is necessary to restore minute light emissions from an
image observed by a streak camera, which includes multiple light
emissions at each time. There has been proposed CUP method
for restoring minute light emissions via a compressed sensing
scheme; however, there is a case in which artefacts occur in the
restoration results depending on initial values of the optimization
for restoration. To overcome this limitation, N-CUP method
that enables successful restoration of minute light emissions is
proposed in this paper. N-CUP method estimates initial values
suitable for the optimization by iteratively performing CUP
method. Through simulation using image datasets emulating
phenomena of fundamental light emissions, it was confirmed that
N-CUP method obtained successful restoration results.

I. INTRODUCTION

In the physics research, it is important to capture high-speed
phenomena such as discharge plasma at ultra fast imaging
speed. However, it is difficult to observe such high-speed
phenomena due to the limit of frame rates of a camera using
CCD or CMOS technologies.

To overcome this difficulty, ultra fast imaging tech-
niques has been proposed [1]–[8]. Recently proposed meth-
ods [9], [10] have enabled the ultra fast imaging for objects by
using specialized active illumination. Although the specialized
active illumination works well for the objects, these methods
cannot be applied to observe phenomena of light emissions
such as discharge plasma.

To solve this problem, compressed ultrafast photography
(CUP) [11] method, which does not need the specialized
active illumination, has been proposed. This method acquires
an observed image including multiple light emissions using a
streak camera and restores minute light emissions of each time
on the basis of a compressed sensing scheme, two-step itera-
tive shrinkage/thresholding (TwIST) algorithm [12]. However,
there is a case in which artefacts occur in the restoration results
depending on initial values of the optimization for restoration.

In this paper, we propose a new method called N-CUP
method to overcome this difficulty. N-CUP method iteratively
performs the restoration process while estimating suitable
initial values. First, by applying a TwIST algorithm to random
initial values, we obtain the restored images. Then, by setting
suitable initial values estimated from the obtained images as
new initial values, we repeatedly perform the TwIST algo-

Fig. 1. Formulation of image acquisition process.

rithm. By repeatedly generating the restored images unlike
conventional method [11], N-CUP method enables to reduce
the artefacts and accurately restore the shape of a phenomenon.
Simulation results using image datasets emulating phenomena
of fundamental light emissions show that results of restoration
by N-CUP method are quantitatively and qualitatively superior
than those by comparative methods.

II. RESTORATION OF MINUTE LIGHT EMISSIONS VIA
N-CUP METHOD

A. Formulation of Image Acquisition Process

As shown in Fig. 1, a phenomenon I ∈ RNx×Ny×Nt

(Nx and Ny being the numbers of spatial coordinates; Nt

being the number of temporal resolution) is changed to an
observed image E ∈ RNx×(Ny+Nt) through the spatial en-
coding process, the temporal shearing process and the spatio
temporal integration process. First, phenomenon I is encoded
with a random binary pattern. The spatial encoding process
is denoted by an operator C ∈ RNx×Ny , and the encoded
phenomenon is mathematically equivalent to CI . Next, the
encoded phenomenon CI temporally disperses along a spatial
axis by using a streak camera. The temporal shearing process
and the spatio temporal integration process are denoted by
operators S and T , respectively. As a result, the observed
image is mathematically formulated as

E = TSCI.

B. Image Restoration Process

An overview of the restoration process in N-CUP method
is shown in Fig. 2. We repeatedly perform CUP method [11]
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Fig. 2. Overview of the restoration process in N-CUP method.

while estimating the reliability of the restoration results; then,
we obtain the final restoration result on the basis of the
estimated reliabilities.

In each step of N-CUP method, we estimate the target phe-
nomenon I by minimizing the following objective function:

F =
1

2
∥E − TSCI∥2 + τΦ(I). (1)

Here, τ is a regularization parameter and Φ(I) is the regular-
ization function in the form of total variation (TV) [11], which
is shown as follows:
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Here, Ix, Iy, It denote the 2D lattices along the dimensions
x, y, t. ∆h

i and ∆v
i are horizontal and vertical first-order local

difference operators on a 2D lattice. The above optimization
problem can be solved by using TwIST algorithm [12]. Con-
cretely, the following equations are iteratively calculated:

I1 = Γ 2
τ
(I0),

It+1 = (1− α)It−1 + (α− β)It + βΓ 2
τ
(It).

Here, α and β are predefined parameters and Γ 2
τ

is defined as

Γ 2
τ
(I) = Ψ 2

τ
(I + (TSC)T (E − TSCI)).

Fig. 3. Scheme of estimating initial values of i-th
(= 2, 3, · · · , N) step in N-CUP method.

Here, Ψ 2
τ

represents a denoising operation defined as

Ψ 2
τ
(x) = argmin

x
{1
2
∥x− y∥2 + 2

τ
Φ(x)},

where x and y represent an original image and a noisy
observation, respectively.

In the first step of N-CUP method, I0 is initialized with the
random values. Then the initial values of the subsequent steps
are determined by using the restored images I in the previous
step (see Fig. 3). Concretely, the restored images are first
binarized using a threshold calculated by linear discriminant
analysis (LDA) [13] to separate the phenomenon and artefacts.
LDA determines a threshold that separates samples into two
classes. The separation is defined as the ratio of the variance
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(a) From left to right (b) From right to left (c) From top to bottom (d) From bottom to top

Fig. 4. Image datasets emulating phenomena of fundamental light emissions.

between the classes to the variance within the classes:

S =
σ2
between

σ2
within

=
n1(µ1 − µt)

2 + n2(µ2 − µt)
2

n1σ2
1 + n2σ2

2

.

Here, n1, µ1 and σ1 are the numbers of pixels, mean and
variance of the class that is lower than a threshold. n2, µ2 and
σ2 are the numbers of pixels, mean and variance of the class
that is higher than threshold. µt is mean of all pixel values
in an image. Next, the binarized phenomenon and the random
values are integrated. It should be noted that the integrated
values have information of the shape of the phenomenon.
Therefore, by using the integrated values as initial values of
the optimization in the next step, we can accurately estimate
the target phenomenon.

Finally, the restored images I of each step are fused based
on the reliabilities. The reliabilities of each restoration result
are defined as the inverse of the value of objective function
F in Eq. (1) when the objective function has been minimized.
In this paper, the restored images with maximum reliability
are adopted as the final restoration result. Thus, we can
successfully realize the image restoration.

III. EXPERIMENTAL RESULTS

In this section, we show experimental results to verify the
performance of N-CUP method. We emulated phenomena of
fundamental light emissions and constructed simulated image
datasets. Figure 4 illustrates the constructed image datasets.
In this simulation, the observed image contains 128 base
images. Similar to the conventional method [11], base images
are encoded with random binary pattern and then each base
image is shifted by a pixel in the space along the vertical
direction relative to the previous image. Then all base images
are projected on one plane and form a 2D image. In the image
datasets, the phenomena have same shape but move different
directions since we aim to verify the robustness of N-CUP
method for the direction of the motion.

To evaluate image restoration quality, Structural Similarity
(SSIM) [14] and Peak Signal-to-Noise Ratio (PSNR) [15]
are used. The larger SSIM and PSNR values are, the
higher image restoration quality is. The regularization pa-
rameter τ was set to one that gave the best SSIM value in
[2−3, 2−2, 2−1, 20, 21, 22, 23].

Fig. 5. Relationship between the number of times of the
restoration process (= N ) and SSIM in N-CUP method.

Fig. 6. Relationship between the number of times of the
restoration process (= N ) and PSNR in N-CUP method.

Figures 5 and 6 show the relationship between the number
of times of the restoration process (= N ) and SSIM and
PSNR, respectively. We defined the number of iterations as
nine since we can see that the restoration result was converged.
From these figures, it can be seen that the restoration accuracy
changed according to the iterations. Therefore, we can confirm
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TABLE I. Quantitative evaluations of restoration results by the following methods:
(a) Conventional method (CUP method) [11],
(b) Method that adopts restored images in the final step of N-CUP method,
(c) Method that adopts weighted mean of inverses of F in Eq. (1) in each step of N-CUP method as the reliability,
(d) N-CUP method (the proposed method).

SSIM PSNR
(a) (b) (c) (d) (a) (b) (c) (d)

From left to right 0.744 0.802 0.793 0.802 23.03 24.47 24.47 24.80
From right to left 0.650 0.743 0.732 0.743 22.52 22.48 22.48 22.48

From top to bottom 0.691 0.721 0.730 0.756 21.45 20.56 20.56 24.75
From bottom to top 0.944 0.985 0.983 0.989 36.92 34.15 34.15 36.88

Average 0.757 0.813 0.810 0.823 25.98 25.42 25.42 27.23

(a-1) (a-2) (a-3) (b-1) (b-2) (b-3)

(c-1) (c-2) (c-3) (d-1) (d-2) (d-3)

Fig. 7. For a case where a phenomenon moves from left to right, (a-1), (a-2) and (a-3) show the ground truth, restoration
results by CUP method [11] and our N-CUP method, respectively. For a case where a phenomenon moves from right to left,
(b-1), (b-2) and (b-3) show the ground truth, restoration results by CUP method [11] and our N-CUP method, respectively.
For a case where a phenomenon moves from top to bottom, (c-1), (c-2) and (c-3) show the ground truth, restoration results

by CUP method [11] and our N-CUP method, respectively. For a case where a phenomenon moves from bottom to top,
(d-1), (d-2) and (d-3) show the ground truth, restoration results by CUP method [11] and our N-CUP method, respectively.

that it is necessary to suitably fuse the multiple results for
accurate restoration.

To verify the suitable fusion method, we compare other
fusion methods. One is a method that adopts the restored
images in the final step. The other is a method that adopts
the weighted mean of the inverse of F shown in Eq. (1)
of each step. The restoration results by these fusion method
are shown in Table I. From this table, we can see that N-
CUP method that adopts the restored images with maximum
reliability provides the highest performance. In comparison
with conventional method [11], our proposed method increased
SSIM from 0.757 to 0.823. Also, PSNR increased from 25.98
to 27.23.

An example of the restoration results are shown in Fig. 7.
In Fig. 7 (a), we can see that the artefact can be reduced by
N-CUP method. Furthermore, in Figs. 7 (a), (b) and (c), we
can see that the contour of phenomenon is sharper than the

conventional method [11]. In conclusion of the experimental
results, we confirmed that the results of N-CUP method
are quantitatively and qualitatively superior than those by
comparative methods.

IV. CONCLUSION

In this paper, we proposed N-CUP method that restores
minute light emissions from an image observed by a streak
camera. In the conventional method called CUP method, there
was a case in which artefacts occur in the restoration results
depending on initial values of the optimization for restoration.
Our proposed N-CUP method overcame this limitation by iter-
atively performing CUP method while estimating initial values
suitable for the optimization. Through simulation using image
datasets emulating phenomena of fundamental light emissions,
it was confirmed that N-CUP method obtained more successful
restoration results than those by comparative methods.
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