
Discrimination between Handwritten and
Computer-Generated Texts

using a Distribution of Patch-Wise Font Features
Naoki Hamasaki, Kazuaki Nakamura, Naoko Nitta, and Noboru Babaguchi

Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka, 565-0871 Japan.
E-mail: hamasaki@nanase.comm.eng.osaka-u.ac.jp

Abstract—Recently developed deep learning techniques allow
us to generate images of handwritten-like texts that closely
resemble a target writer’s actual handwriting. Although these
models are applicable to useful systems (e.g. communication
tools for hand-impaired people), they also could be misused
for document forgery by a malicious user. To cope with this
problem, in this paper, we propose a text-independent method
for discriminating between the computer-generated texts (CGTs)
and actual handwritten texts (HWTs). Our proposed method only
takes a single text image and recognizes whether the image is
a CGT or a HWT. Characters in HWT images have various
shapes even when the same writer writes the same sentence.
This property is difficult to perfectly mimic even by state-of-the-
art CGT generation methods. To capture this difference between
HWTs and CGTs, we use the distribution of patch-wise font
features. The proposed procedure for discriminating HWTs and
CGTs is as follows: First, we divide a given text image into
several patches and classify each patch into one of pre-determined
standard font classes. Then we compute the histogram of the
standard fonts, which is finally fed into the recognizer that
discriminates between HWTs and CGTs. In our experiments,
the proposed method achieved more than 96% of discrimination
accuracy, which demonstrates the effectiveness of the proposed
method.

I. INTRODUCTION

Recently, with the development of deep learning techniques
such as autoencoders (AEs) [1], generative adversarial net-
works (GANs) [2], and recurrent neural networks with long
short-term memory (RNN-LSTM) [3], there have been pro-
posed a lot of methods for automatically generating images of
a handwritten-like text that closely resembles a target writer’s
actual handwriting. These methods are useful both socially and
academically; they are applicable to rich communication tools,
especially for hand-impaired people, as well as offer a huge
amount of training dataset for handwriting text recognition and
transcription.

On the other hand, automatically generated text images
could be misused for document forgery, e.g., forging a testa-
ment, receipt, and so on. This is a serious threat for our society
since handwritten texts are widely used for identity verification
even today. Hence, in this paper, we tackle the problem of
discriminating between the images of the computer-generated
texts (CGTs) and those of handwritten texts (HWTs) actually
written by humans. Our proposed method takes an image
of a single-line sentence consisting of several words as an
input. We refer to such a single-line sentence as “text” in the

remainder of this paper. We aim to make the proposed method
text-independent because CGT generation methods allow us to
obtain images of an arbitrary text.

In the past two decades, several studies have focused on
the task of separating HWTs and machine-printed texts that
are not handwritten-like ones [4], [5], [6]. Unlike them, our
focusing CGTs are quite similar with HWTs owing to deep
learning techniques; they are more difficult than the printed
texts to separate from HWTs. In this sense, to the best of
our knowledge, this is the first work that considers a threat
of CGT-based document forgery and proposes a method for
discriminating between CGTs and HWTs. This is the main
contribution of this work.

This paper is organized as follows. After describing about
the related work in Section II, we make a detailed explanation
of our proposed method in Section III. Then we experimentally
evaluated the performance of the proposed method in Section
IV and finally conclude this paper in Section V.

II. RELATED WORK

Our target task is somewhat related to signature verification,
because the problem of forged texts has been partially con-
sidered in most of the existing signature verification studies.
Hence, we first review them and clarify the difference between
signature verification and our target task in Section II-A. After
that, we describe about CGT generation methods in Section
II-B in order to clarify the characteristics of CGTs generated
by deep learning techniques.

A. Methods for Signature Verification

Signature verification is the task of judging whether a given
signature data of a target person is actually obtained from
him/herself or not. Methods for signature verification can be
roughly divided into two categories: offline and online. In
offline methods, the signature data is just an image. On the
other hand, in online methods, a sequence of two-dimensional
pen-tip locations is given as the data. For both categories,
skilled forgeries are assumed as negative samples. Comparing
a given data with the target person’s template, the methods
judge whether it is a skilled forgery or a genuine signature.

As an example of the offline methods, Bhattacharya et
al. proposed to use a pixel matching technique [7]. In this
method, a given signature image is first rotated and resized

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China 

1665978-988-14768-7-6©2019 APSIPA APSIPA ASC 2019



so that its angle and scale are exactly matched to those of
the template image. Then both the images are binarized and
compared with each other pixel-by-pixel. If the number of
pixels whose color is consistent in the two images exceeds
a threshold, the given image is judged as genuine data. This
method is computationally efficient but not so powerful in
terms of verification accuracy due to its simplicity. To improve
the performance, Hafemann et al. proposed to automatically
learn a good feature representation by a convolutional neural
network (CNN) [8]. In this method, a given image is first
pre-processed (e.g., resized) and fed into the trained CNN to
extract a feature vector. Then the feature is further fed into a
support vector machine (SVM) to perform final verification
process. Since CNNs are a recent trend due to its high
performance, a lot of offline signature verification methods
using CNNs have been proposed in the last five years [9],
[10], [11]. In CNN-based methods, signature images first have
to be resized to the fixed size. Maergner et al. regarded this
point as a problem and proposed to use two kinds of graph-
based representations called keypoint graph and inkball model,
which are flexible in size [12]. With these representations, their
method achieved a good performance.

For online methods, Sharma et al. proposed a Gaussian
mixture model (GMM)-based descriptor to represent online
signature data [13]. In their method, they first extract the pen-
tip location, velocity, acceleration, and so on as temporally
local features from a template signature data. With this pro-
cess, the template is represented as a distribution of the local
features. Next, the distribution is approximated by a GMM,
whose parameter is used as the descriptor. Then, the same
kind of local features are extracted from a given signature data,
which are matched to the GMM in order to verify whether it
is a genuine data or not. Instead of directly using a sequence
of pen-tip locations, Diaz et al. converted it to a sequence of
anthropomorphic robot poses that can reproduce the pen-tip
location sequence, and extracted a new feature from the robot
pose sequence, which is used as a feature for verification [14].

As reviewed above, there are a lot of offline and online
methods for signature verification. However, most of them
only consider the skilled forgeries written by another person;
they do not consider the forged signature data automatically
generated by deep networks. Moreover, a template data can
be used in signature verification because a person’s signatures
always consist of the same characters. Unlike this, since our
focus is a text-independent method for discriminating CGTs
from HWTs, we cannot use the template whose original text
is same with an input image. These are the main difference
between our target task and the signature verification.

B. Methods for Generating CGTs

There are two types of CGT generation strategy: sentence-
wise generation and character-wise generation. In sentence-
wise generation, an image of a single-line text is generated at
once. On the other hand, in character-wise generation, images
of each characters are separately generated and then integrated
into a single image of a sentence.

Sentence-wise generation is often employed for generat-
ing alphabetical text images. This is because neighboring
characters tend to be continuously written in alphabet-based
languages including English. A typical example of this kind
of methods was proposed by Graves [15], where a sequence
of two-dimensional pen-tip locations is generated by RNN-
LSTM. Chung et al. extended this method by using variational
RNN [16], which is a combination of a variational autoencoder
[17] and RNN-LSTM, to achieve better generation perfor-
mance. Aksan et al. further extended the variational RNN by
introducing a variable representing the type of font style [18].
This allows us to generate CGTs with a specified font style.
There are also several methods directly generating images of
CGTs instead of pen-tip locations. The method of Haines et
al. [19] first constructs a database of sample glyphs actually
written by a target writer. Next, for each character in a given
arbitrary text, the method selects the optimal glyph from the
constructed database considering the neighboring characters’
position, ligature, texture, and so on. Finally, the selected
glyphs are connected into a single CGT image after a slight
deformation.

Character-wise generation is suitable to the language in
which each character tends to be independently written, such
as Chinese. In Chinese, most characters can be regarded as
a combination of limited kinds of components. Based on this
property, Lin et al. proposed to construct a set of sample glyphs
for each component from a training dataset and appropriately
combine them to generate a handwritten-like image of each
character [20]. Zong et al. also employed the similar strategy
[21]. In their method, each Chinese character is decomposed
into strokes, which are then deformed by affine transforms.
After that, the deformed strokes are combined to generate a
handwritten-like image of the character.

Some of the above methods always generate the exact
same image for the same character. This is not the case
with HWTs; the shapes of handwritten characters are at least
slightly different with each other even if the same writer
writes the same character. We refer to this property as within-
person variety of handwriting, which can be an important
clue for discriminating between HWTs and CGTs. Note that
there are also some CGT generation methods employing a
probability process for mimicking the within-person variety of
handwriting. However, since the probability process is chosen
in an ad hoc manner, the shape distribution of the characters
generated by these methods is significantly different from that
of HWTs. Hence, the shape distribution resulting from the
within-person variety of handwriting is expected to be still a
good feature.

III. DISCRIMINATION BETWEEN HWTS AND CGTS
USING FONT FEATURE DISTRIBUTION

In this section, we propose a method for discriminating
between HWTs and CGTs. After describing the overview in
Section III-A, we describe each step of the proposed method
in detail in the subsequent subsections.

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China 

1666



Fig. 1. Overview of the proposed method

A. Overview

As mentioned in Section II-B, the shape distribution of the
characters in a given text image would be a good feature for
our target task. We propose to extract this as follows: First,
we divide a given text image into a set of local patches. Next,
for each patch, we extract a local descriptor that represents
the shape of the characters in the patch. Then we compute
the histogram of the local descriptors like bag-of-visual-words
approach, which is finally used as a feature vector of the given
text image.

In the above method, it plays an important role which kind
of local descriptor is employed in the second step. Of course,
we should employ a descriptor that can well capture the shape
of characters. In general, the shape of a character is determined
by the following two factors: the kind of the character and a
font style. Among the two, the local descriptor should only
capture the latter. If the local descriptor captures the former,
the quite similar histograms would be obtained from a HWT
image and a CGT image whose original texts are same, which
have less ability to discriminate between HWTs and CGTs.
Based on the above consideration, we propose to use a font
estimator for local descriptor extraction. The font estimator
takes a local patch as an input and tries to classify the font style
of the characters in the patch into one of the pre-determined
standard fonts. With this font estimator, we can obtain the
similarity between an input patch and each standard font,
which is used as the local descriptor of the patch.

The overview of the proposed method is shown in Fig. 1,
which is summarized as follows:

Step 1) Dividing a given image
Divide a given text image I into a set of patches
{pn | n = 1, · · · , N}, where pn is the n-th patch
whose size is w ×w pixels and N is the number of
patches.

Step 2) Extracting font features
Feed each patch pn into the font estimator and get
its output sn, where sn = (sn1 · · · snK)

⊤ is a

K-dimensional vector each of whose elements sni
indicates the similarity between the characters in
pn and the i-th standard font. Note that K is the
number of the pre-determined standard fonts. In the
remainder of this paper, we refer to sn as a font
feature.

Step 3) Computing font feature distribution
Compute the histogram of the font features based on
{sn | n = 1, · · · , N}. The computed histogram v
represents the character shape distribution well.

Step 4) Recognition
Recognize whether I is a HWT image or a CGT
image, using v as a feature vector.

Hereafter, we describe the details of steps 2, 3, and 4 in Section
III-B, III-C, and III-D, respectively.

B. Training a Font Estimator

We design the font estimator as a CNN in the proposed
method. To train the CNN, a lot of training samples are
required. We collect them as follows: First, for each pre-
determined standard font, we prepare several document images
in which multi-line sentences are written in the font. Fig. 2
shows some examples of the prepared document images. Next,
we extract a lot of patches from the document images, where
the location of each patch is randomly set and the patch size
is fixed to w × w. In this process, patches with no characters
(or almost white patches) are sometimes obtained. Since these
patches are inappropriate as the training samples, we remove
them as seen in Fig. 3. More specifically, we count the number
of the black pixels m in each patch and calculate the ratio of
m to the total number of pixels, i.e.,

R =
m

w2
. (1)

If the R is less than a certain threshold, we remove the patch.
Using the training dataset collected by the above procedure,

we train a CNN-based font estimator. The network structure
is shown in Fig.4, which is inspired by Half DeepWriter [22].

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China 

1667



Fig. 2. Examples of the document images used to collect the training sample for the font estimator.

Fig. 3. Patch extraction and removal from the document images.

Fig. 4. Network structure of the font extimator.

In this figure, Conv. means a convolutional layer, MP means a
max pooling layer, and FC means a fully-connected layer. In
addition, #Channels and KS means the number and the kernel
size of convolution filters, respectively, and #Units means the
number of units in each FC layer. We employ ReLU as the
activation function of the convolutional layers and FC layers.
Moreover, we employ the dropout technique in FC layers,
where the dropout ratio is set as 0.5. The number of units
in the output layer is K. Applying the softmax function to the
K-dimensional output vector, we can obtain sn in the form
of probability.

C. Computing Font Feature Distribution

Before describing how we compute the font feature his-
togram v, we first describe how we divide an input text image
into patches. In the proposed method, we slide a w×w window

Fig. 5. The way to divide an input image into patches.

in the input image as shown in Fig. 5 and densely extract fixed-
size patches. We set the stride of the sliding window as w

2 , thus
the neighboring patches are half-overlapped with each other.

All patches obtained by the above process are then fed
into the trained font estimator, resulting in a font feature set
{sn | n = 1, · · · , N}. As mentioned in the previous section,
we can obtain each sn in the form of probability. This means

∀i ∈ {1, · · · , K} sni ≥ 0 (2)

and
K∑
i=1

sni = 1 (3)

are satisfied for all sn. Using this property, we compute the
font feature histogram v as

v =
1

N

N∑
n=1

sn . (4)

This is so called a soft histogram, which is computed by voting
sni for i-th bin of the histogram and normalizing the final
voting result.

D. Discrimination between HWTs and CGTs

To recognize whether the computed v is obtained from a
HWT image or a CGT image, we employ a supervised ma-
chine learning technique again. More specifically, we employ
a support vector machine (SVM) with a radial-basis function
(RBF) kernel. To train the SVM, we collect a number of HWT
images and CGT images, from which a font feature histogram
v is extracted by the same process with Sections III-B and
III-C. After that, using the extracted histograms as a training
dataset, we train the SVM for discriminating between HWTs
and CGTs.

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China 

1668



Fig. 6. Example images of HWT and CGT used in the experiments

IV. EXPERIMENTS

To evaluate the performance of the proposed method, we
conducted two experiments. In this section, we report the
results of the experiments in detail.

A. Experimental Setup

In general, there are two approaches for acquiring HWT
images: scanning papers and using touch-pen devices. We
collected HWT images acquired by both approaches. For the
former, we used IAM Handwriting Database (abbreviated as
IAM) [23]. This dataset has 16,752 HWT images written by
657 writers that were acquired by scanning papers. HWTs
in these images are written in various types of pens (e.g.
color and thickness) and their background color is not always
white. On the other hand, for the latter, we used IAM On-
Line Handwriting Database (abbreviated as IAM Online) [24].
This dataset has 13,017 HWT images written by 217 writers
that were acquired by using a touch-pen device. These images
were drawn by connecting the pen-tip locations, which were
acquired by the touch-pen device, with a black line of the fixed
thickness. Hence, the character color and thickness are always
same as well as the background color is always white.

For collecting CGT images, we used Graves’s method [15],
which is the most famous CGT generation method and whose
source code is publicly available. To train Graves’s generator,
a lot of sequences of pen-tip locations are required as a
training dataset. For this purpose, we used all data samples
in IAM Online. Once the generator was trained, it can mimic
any human writer’s style only by initializing the generator’s
internal state with his/her actual handwriting data. This is
a strength of Graves’s method. Based on this property, we
used the trained generator to obtain 10,100 CGT images that
mimic the actual handwriting of 202 different writers in IAM
Online. The character color and the background color of these
images are always same. This is because the output of Graves’s
generator is a sequence of pen-tip locations, similar with
IAM Online. For the thickness of characters, we adopted the
following two settings. One is the fixed thickness, which is
the same condition with IAM Online. The other is variable
thickness, which is the similar condition with IAM. In this
condition, we randomly set the character thickness for each
CGT image. For both conditions, we separately generated
10,100 CGT images with the above procedure. We refer
to these two datasets as Fixed-thickness CGT and Variable-
thickness CGT in the remainder of this section. Fig. 6 shows

TABLE I
STANDARD FONTS USED FOR TRAINING THE FONT ESTIMATOR.

ID example ID example ID example

1 11 21

2 12 22

3 13 23

4 14 24

5 15 25

6 16 26

7 17 27

8 18 28

9 19 29

10 20 30

TABLE II
ACCURACY OF FONT ESTIMATION AND THAT OF THE MAIN TASK WITH

VARIOUS SETTINGS OF w.
w acc. of font estimation acc. of the main task
32 75.3% 92.4%
40 82.1% 92.6%
48 84.9% 92.2%

an example image of HWTs in IAM and that in IAM Online as
well as an example of CGTs generated by Graves’s method.

For constructing the font estimator, we selected 30 kinds
of handwritten-like fonts from Microsoft Office 2016 fonts
and used them as the pre-determined standard fonts. This
means K = 30 in our experiments. TABLE I shows example
images of the selected fonts with their font IDs. Note that
it is still unclear whether K = 30 is the optimal setting or
not. Theoretically, larger K allows us to better represent the
character shape distribution of text images, resulting in higher
discrimination accuracy between HWTs and CGTs. We will
experimentally examine the relationship between K and the
accuracy in our future work.

B. Setting of Patch Size

We first examined the effect of the patch size w in order to
appropriately set its value.

Since a smaller patch is less informative, the performance of
the font estimator is expected to degrade with smaller w. This
might make a negative effect on the performance of the main
task, i.e., discrimination between HWTs and CGTs. On the
other hand, with larger w, only a fewer number of patches can
be extracted from an input text image. This also might make
a negative effect on the performance of the main task. To test
these hypotheses and find a good value of w, we evaluated the
accuracy of the font estimation and that of the main task. For
this purpose, we used 500 HWT images from IAM and 500
images from Variable-thickness CGT as training samples for
the main task. To evaluate the accuracies, we used other 500
HWT images and 500 CGT images from the same dataset as
test samples. For constructing the font estimator, we prepared
2,500 patches as training samples for each of the 30 standard

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China 

1669



TABLE III
DISCRIMINATION ACCURACY ON IAM AND Variable-thickness CGT

Recognizied label

HWT CGT

Ground truth label
HWT 97.7% 2.3%

CGT 3.7% 96.3%

Fig. 7. Discrimination accuracy with various number of training samples on
IAM and Variable-thickness CGT

fonts. The result is shown in TABLE II.
As seen in TABLE II, higher performance of the font

estimation is achieved with larger w. This is consistent with the
above hypothesis. On the other hand, the performance of the
main task is almost same for any settings of w. This is because
the negative effect of smaller patches and the positive effect
of the more number of patches are balanced with each other.
This result indicates that the setting of w is not so important
in the proposed method. Hence, we used the setting of w = 32
in the subsequent experiments, considering that the processing
time becomes shorter with smaller w.

Note that the optimal value of w might depend on the size
of the characters in a given text image. This will also be
experimentally examined in our future work.

C. Results and Discussion

1) IAM vs. Variable-thickness CGT: Using the above set-
ting of w, we evaluated the performance of discriminating
between HWTs in IAM and CGTs in Variable-thickness CGT.

As previously mentioned, the character color and the back-
ground color of HWT images in IAM have a variety, whereas
those of CGT images in Variable-thickness CGT are fixed.
To eliminate this difference, we binarized each image as a
preprocessing. After the preprocessing, we equally divided
IAM and Variable-thickness CGT into two subsets, one of
which was used as a training set and the other was used as
a test set. Note that we made the training set and the test set
not contain the same writer’s images. The result is shown in
TABLE III, in which more than 96% of accuracy is achieved
for both HWTs and CGTs.

To check the effect of the size of the training set, we var-
iously changed the number of training samples and evaluated
the performance under each setting. Fig. 7 shows the result,
where the almost same performance is achieved in any cases

TABLE IV
DISCRIMINATION ACCURACY ON IAM Online AND Fixed-thickness CGT

Recognizied label

HWT CGT

Ground truth label
HWT 100.0% 0.0%

CGT 0.4% 99.6%

Fig. 8. Discrimination accuracy with various number of training samples on
IAM Online and Fixed-thickness CGT

of using more than 1,000 training samples. This indicate that
1,000 training samples are enough for constructing a good
recognizer that can successfully discriminate between HWTs
and CGTs.

2) IAM Online vs. Fixed-thickness CGT: Next, we con-
ducted another experiment using HWTs in IAM Online and
CGTs in Fixed-thickness CGT.

In this experiment, we did not perform any preprocess-
ing. Similar with the previous experiment, the datasets were
equally divided into two subsets, one of which was used as
a training set and the other was used as a test set. TABLE
IV shows the result, in which more than 99% of accuracy is
achieved for both HWTs and CGTs. Moreover, the effect of
the size of the training set was also evaluated, whose result
is shown in Fig. 8. In this result, a very high accuracy is
achieved even in the case of using only 250 training samples.
This indicates that HWTs in IAM Online is easier than those
in IAM to discriminate from CGTs.

3) Comparison of Font Feature Distributions: Finally, we
qualitatively compared the distribution of the font features in
IAM, that in IAM Online, and that in Variable-thickness CGT.
To this end, we computed the average of the font feature
histogram v for each dataset. Fig. 9 shows the result. As
seen in this figure, the averaged distribution of IAM and that
of IAM Online have a common characteristic. For instance,
both datasets have a lot of patches classified into the font
ID 1, 9, 10, 13, 19, and 28. In contrast, Variable-thickness
CGT rarely has these kinds of patches; instead, it has a lot
of patches classified into the font ID 4, 5, 6, 20, and 24,
which rarely appear in IAM and IAM Online. From this result,
we can conclude that HWT images have a certain common
characteristic regardless of its acquiring approach, which is
not common in CGT images.

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China 

1670



Fig. 9. Comparison of font feature distributions of IAM, IAM Online, and
Variable-thickness CGT

V. CONCLUSION

In this paper, we proposed a method for discriminating
between HWTs and CGTs using the distribution of patch-wise
font features. Human’s actual handwriting has within-person
variety, which is difficult to perfectly mimic even by state-of-
the-art CGT generation methods. This means the distribution
of patch-wise font features is a good feature for our target task.
We demonstrated this through several experiments, in which
more than 96% of discrimination accuracy was obtained.
Moreover, we qualitatively analyzed the difference between
the font feature distribution of HWT images and that of
CGT images. We found from the result of the analysis that
HWT images have a common characteristic regardless of its
acquiring approach.

We only focused on Graves’s CGT generation method in our
experiments. However, there are many other CGT generation
methods proposed recently. It is an important future work
to conduct further experiments using these CGT generation
methods with various hyper parameters in order to examine
the generality of the proposed method.

This work was supported by JSPS KAKENHI Grant Num-
ber JP16H06302.

REFERENCES

[1] G. Hinton and R. Salakhutdinov: “Reducing the Dimensionality of Data
with Neural Networks,” Science, Vol.313, No.5786, pp.504–507, 2006.

[2] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio: “Generative Adversarial Nets,”
in Proc. of 27th Int’l Conf. on Neural Information Processing Systems,
Vol.2, pp.2672–2680, 2014.

[3] A. Graves and J. Schmidhuber: “Framewise Phoneme Classification with
Bidirectional LSTM and Other Neural Network Architectures,” Neural
Networks, Vol.18, No.5–6, pp.602–610. 2005.

[4] J.K. Guo and M.Y. Ma: “Separating Handwritten Material from Machine
Printed Text using Hidden Markov Models,” in Proc. of 6th Int’l Conf.
on Document Analysis and Recognition, pp.439–443, 2001.

[5] K. Zagoris, I. Pratikakis, A. Antonacopoulos, B. Gatos, and N. Papa-
markos: “Distinction between Handwritten and Machine-Printed Text
Based on the Bag of Visual Words Model,” Pattern Recognition, Vol.47,
No.3, pp.1051–1062, 2014.

[6] S. Das, P. Banerjee, B. Seraogi, H. Majumder, S. Mukkamala, R.
Roy, and B.B. Chaudhuri: “Hand-Written and Machine-Printed Text
Classification in Architecture, Engineering & Construction Documents,”
in Proc. of 16th Int’l Conf. on Frontiers in Handwriting Recognition,
pp.546–551, 2018.

[7] Bhattacharya, P. Ghosh, and S. Biswas: “Offline Signature Verification
using Pixel Matching Technique,” Procedia Technology, Vol.10, pp.970–
977, 2013.

[8] L.G. Hafemann, R. Sabourin, and L.S. Oliveira: “Learning Features for
Offline Handwritten Signature Verification using Deep Convolutional
Neural Networks,” Pattern Recognition, Vol.70, pp.163–176, 2017.

[9] Z. Xing, F. Yin, Y. Wu, and C. Liu: “Offline Signature Verification using
Convolution Siamese Network,” in Proc. of 9th Int’l Conf. on Graphic
and Image Processing, 9 pages, 2017.

[10] A. Rehman, S.U. Rehman, Z.H. Babar, M.K. Qadeer, and F.A. Seelro:
“Offline Signature Recognition and Verification System using Artificial
Neural Network,” University of Sindh Journal of Information and
Communication Technology, Vol.2, No.1, pp.73–80, 2018.

[11] S. Lai and L. Jin: “Learning Discriminative Feature Hierarchies for Off-
Line Signature Verification,” in Proc. of 16th Int’l Conf. on Frontiers in
Handwriting Recognition, pp.175–180, 2018.

[12] P. Maergner, N. Howe, K. Riesen, R. Ingold, and A. Fischer: “Offline
Signature Verification via Structural Methods: Graph Edit Distance and
Inkball Models,” in Proc. of 16th Int’l Conf. on Frontiers in Handwriting
Recognition, pp.163–168, 2018.

[13] A. Sharma and S. Sundaram: “Histogram-Based Matching of GMM
Encoded Features for Online Signature Verification,” in Proc. of 16th
Int’l Conf. on Frontiers in Handwriting Recognition, pp.169–174, 2018.

[14] M. Diaz, M.A. Ferrer, and J.J. Quintana: “Robotic Arm Motion for
Verifying Signatures,” in Proc. of 16th Int’l Conf. on Frontiers in
Handwriting Recognition, pp.157–162, 2018.

[15] A. Graves: “Generating Sequences with Recurrent Neural Networks,”
arXiv:1308.0850, 43 pages, 2014.

[16] J. Chung, K. Kastner, L. Dinh, K. Goel, A.C. Courville, and Y. Bengio:
“A Recurrent Latent Variable Model for Sequential Data,” in Proc.
of 28th Int’l Conf. on Neural Information Processing Systems, Vol.2,
pp.2980–2988, 2015.

[17] D.P. Kingma and M. Welling: “Auto-Encoding Variational Bayes,” in
Proc. of 2nd Int’l Conf. on Learning Representations, pp.1–14, 2014.

[18] E. Aksan, F. Pece, and O. Hilliges: “DeepWriting: Making Digital
Ink Editable via Deep Generative Modeling,” in Proc. of 2018 CHI
Conference on Human Factors in Computing Systems, 14 pages, 2018.

[19] T.S.F. Haines, O.M. Aodha, and G.J. Brostow: “My Text in Your
Handwriting,” ACM Trans. on Graphics, Vol.35, No.3, 19 pages, 2016.

[20] J. Lin, C. Hong, R. Chang, Y. Wang, and S. Lin: “Complete Font
Generation of Chinese Characters in Personal Handwriting Style,” in
Proc. of 34th IEEE Int’l Performance Computing and Communications
Conf., 5 pages, 2015.

[21] A. Zong and Y. Zhu: “StrokeBank: Automating Personalized Chinese
Handwriting Generation,” in Proc. of 28th AAAI Conf. on Artificial
Intelligence, pp.3024–3029, 2014.

[22] L. Xing and Y. Qiao: “DeepWriter: A Multi-Stream Deep CNN for
Text-Independent Writer Identification,” in Proc. of 15th Int’l Conf. on
Frontiers in Handwriting Recognition, pp.584–589, 2016.

[23] U. Marti and H. Bunke: “A Full English Sentence Database for Off-
Line Handwriting Recognition”, in Proc. of 5th Int’l Conf. on Document
Analysis and Recognition, pp.705–708, 1999.

[24] M. Liwicki and H. Bunke: “IAM-OnDB — an On-Line English Sentence
Database Acquired from Handwritten Text on a Whiteboard”, in Proc.
of 8th Int’l Conf. on Document Analysis and Recognition, pp.956–961,
2005.

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China 

1671




