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Abstract—In this paper, we propose a robust demixing filter
update algorithm for audio source separation, which is the task of
recovering source signals from multichannel mixtures observed
in a microphone array. Recently, independent deeply learned
matrix analysis (IDLMA) has been proposed as a state-of-the-
art separation method. IDLMA utilizes the deep neural network
(DNN) inference of source models and the blind estimation of
demixing filters based on sources’ independence. In conventional
IDLMA, iterative projection (IP) is exploited to estimate the
demixing filters. Although IP is a fast algorithm, when a specific
source model is not accurate owing to an unfavorable SNR
condition, the subsequent update of filters will fail. This is because
IP updates the demixing filters in a sourcewise manner, where
only one source model is used for each update. In this paper, we
derive a new microphone-wise update algorithm that exploits all
information of the source models simultaneously for each update.
The microphone-wise update problem cannot be solved by IP, but
instead, a new type of vectorwise coordinate descent algorithm is
introduced into the proposed algorithm to realize convergence-
guaranteed parameter estimation. Experimental results show
that the proposed update algorithm achieves better separation
performance than IP.

I. INTRODUCTION

Audio source separation aims to recover source signals
from multichannel mixtures observed using a microphone
array [1]. Many types of algorithm have been proposed,
e.g., unsupervised (blind) methods [2]–[13] and supervised
(informed) methods [14]–[17]. Independent deeply learned
matrix analysis (IDLMA) [18], [19] is a state-of-the-art source
separation method combining the blind estimation of a spa-
tial model (demixing filters) and the supervised deep neural
network (DNN) inference of source models. This paper also
addresses the issue on improvement of IDLMA in a theoretical
aspect.

In conventional separation methods including IDLMA, a
computationally efficient algorithm called iterative projection
(IP) [5], [20] is exploited to estimate the demixing filters.
Although IP is a fast algorithm, when a specific source model
is not accurate owing to an unfavorable SNR condition, the
successive update of filters will fail hereafter. This is because
IP updates the demixing filters in a sourcewise manner, where
only one source model is used for each update. Therefore,
development of a robust algorithm to obtain the demixing

filters is a problem requiring urgent attention.
In order to resolve the above-mentioned problem, in this

paper, we derive a new microphone-wise update algorithm that
exploits all information of the source models simultaneously
for each update. The microphone-wise update problem cannot
be solved by IP, but instead, a new type of vectorwise
coordinate descent (VCD) algorithm is introduced into the pro-
posed algorithm to realize convergence-guaranteed parameter
estimation. Experimental results show that the proposed update
algorithm achieves better separation performance than IP. The
main contribution of this paper is the theoretical derivation and
experimental evaluation of the new microphone-wise update
algorithm. Note that further application to the DNN-based
automatic selection of sourcewise and microphone-wise update
algorithms is beyond the scope of this paper and is discussed
in [21].

II. CONVENTIONAL METHOD

A. Formulation

We denote the numbers of microphones and sources as
M and N , respectively. In this paper, we assume M = N
for simplicity. The short-time Fourier transforms (STFTs) of
the multichannel source, observed, and estimated signals are
defined as

sij = (sij1, . . . , sijN )T, (1)

xij = (xij1, . . . , xijM )T, (2)

yij = (yij1, . . . , yijN )T, (3)

where i = 1, . . . , I; j = 1, . . . , J ;n = 1, . . . , N ; and
m = 1, . . . ,M are the indexes of the frequency bins, time
frames, sources, and observed microphones, respectively, and
T denotes the transpose. We also denote their spectrograms as
Sn ∈ CI×J ,Xn ∈ CI×J , and Yn ∈ CI×J , whose elements
are sijn, xijn, and yijn, respectively. When the mixing system
is time-invariant and the window length in the STFT is
sufficiently longer than the impulse response, the following
instantaneous mixing model holds:

xij = Aisij , (4)
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Fig. 1. Overview of IDLMA.

where Ai = (ai1, . . . ,aiN ) ∈ CI×J is the mixing matrix
and ain is the steering vector of the nth source. When Ai

is a nonsingular matrix, the demixing matrix (inverse of the
mixing matrix) exists and the observed signals are separated
as

yij =Wixij , (5)

where Wi = (wi1, . . . ,wiN )H ∈ CI×J = A−1
i denotes the

demixing matrix, wH
in denotes the demixing filter for the nth

source, and H denotes the Hermitian transpose.

B. Generative Model and Cost Function

In IDLMA, the following univariate complex Gaussian
distribution is assumed as a source generative model:

p(Yn) =
∏
ij

p(yij)

=
∏
ij

1

πrijn2
exp(−|yijn|

2

rijn2
), (6)

where rijn denotes the scale parameter (source model) of the
Gaussian distribution and yij is mutually independent w.r.t. i
and j. We define the scale parameter matrix as Rn ∈ RI×J ,
whose elements are rijn. The marginal distribution of (6) w.r.t.
j is super-Gaussian when the scale parameter fluctuates and
is not constant w.r.t. the time frame.

The cost function of IDLMA is the negative log-likelihood
of observed signals, whose minimization is equivalent to the
maximization of the independence between sources. On the
basis of (6), the cost function is obtained as

L(W ) = − log p(X)

= − log p(Y )− J
∑
i

log |detWi|2

c
=
∑
i,j,n

[
|wH

inxij |2

rijn2
+ 2 log rijn

]
− J

∑
i

log |detWi|2, (7)

where c
= denotes the equality up to addition by a constant,

W = {W1, . . . ,WI} is the set of demixing matrices, X =
{X1, . . . ,XM} and Y = {Y1, . . . ,YN} are the sets of the
observed and estimated signals, respectively, and we used the

variable transformation from xij to yij on the basis of (5).
The aim of IDLMA is to blindly estimate Wi only from the
observed mixtures with the assistance of a DNN. An overview
of the separation process of IDLMA is shown in Fig. 1.

C. Row-wise Update Rule of Demixing Matrix

In [5], [20], a fast and convergence-guaranteed algorithm
called IP was proposed, which can be applied to the sum of
a negative log-determinant and a quadratic form. Therefore,
given the source scale parameter rijn, (7) is minimized by IP
w.r.t. Wi and the update rule of Wi is obtained as

Qin =
1

J

∑
j

xijx
H
ij

rijn2
, (8)

win = (WiQin)
−1en, (9)

win =
win√

wH
inQinwin

, (10)

where en denotes the unit vector with the nth element equal
to unity.

D. Update Rule of Scale Parameter Matrix by DNN

DNNn is pretrained so that the scale parameter of the source
signal S̃n ∈ CI×J is predicted from an input spectrogram
|X|.1, where X ∈ CI×J is a mixture of complex-valued
spectrograms in the training data and | · |.1 for matrices
denotes the element-wise absolute operation. X is prepared
by mixing S̃n with a random amplitude to simulate multiple
SNR conditions [19].

We denote the DNN output as DNNn(·). When we define
the output scale parameter matrix as Dn = DNNn(|X̃|.1) ≈
Rn, the loss function of DNNn is defined as

L(Dn) =
∑
i,j

|s̃ijn|2 + δ

dijn
2 + δ

− log
|s̃ijn|2 + δ

dijn
2 + δ

− 1, (11)

where s̃ijn and dijn are the elements of S̃n and Dn, re-
spectively, and δ is a small value to avoid division by zero.
Since minimizing (11) corresponds to a simulation for the
maximum likelihood estimation of rijn in (7) (only limited
to the training data), DNNn can be approximately interpreted
as an appropriate source model based on (6).

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China 

1869



update

…

……

…… …
fix update

fix

updateupdate fix fix

(a) (b)

Proposed columnwise updateConventional row-wise update

Fig. 2. (a) Conventional row-wise update of Wi. (b) Proposed columnwise update of Wi.

In inference for open data, the scale parameter matrix Rn

is estimated by the pretrained DNNn as follows:

Rn ← DNNn(|Yn|.1), (12)
rijn ← max(rijn, ϵ), (13)

where ϵ is a small value to increase the numerical stability of
IP. The input of the DNN, |Yn|.1, is the spectrogram of each
separated signal temporally obtained through the update of
Wi. Thus, in IDLMA, rijn and Wi are alternatively updated
by DNN and IP to output the most independent sources.

III. PROPOSED METHOD

A. Motivation

In IDLMA, the spatial model is updated by IP. Our pre-
liminary experiments show that the separation performance
of IDLMA is affected by the update order of the demixing
filter in IP. This is because when the demixing filter with an
inaccurate source model is updated first, the subsequent update
fails. In this paper, we propose a new microphone-wise (i.e.,
columnwise in Wi) update algorithm of the demixing matrix
that simultaneously exploits all of the source models for each
update. Fig. 2 illustrates the difference between the conven-
tional IP and the proposed columnwise update algorithm. Since
the cost function w.r.t. the columnvector of Wi cannot be
minimized by IP, we employ the VCD algorithm [23] to derive
the update rule.

B. Cost Function w.r.t. Column Vector

We denote the column vector of Wi as Wi =
(w̃i1, . . . , w̃iM ), where w̃im is a microphone-wise vector
although win is a sourcewise (row) vector. The cost function
(7) is rewritten using w̃im as follows:

L(W )/J
c
=
∑
i

[∑
n

wH
inQinwin − log |detWi|2

]
=
∑
i

[
N∑

n=1

N∑
m1=1

N∑
m2=1

w∗
inm1

Qinm1m2
winm2

− log |detWi|2
]

=
∑
i

[
N∑

n=1

N∑
m=1

w∗
inmQinmmwinm

+
N∑

n=1

N∑
m1=1

N∑
m2 ̸=m1

w∗
inm1

Qinm1m2
winm2

− log |detWi|2
]

c
=
∑
i

[
w̃H

imQ̃imw̃im + w̃H
imh̃im + h̃H

imw̃im

− log |detWi|2
]

c
=
∑
i

[
w̃H

imQ̃imw̃im + w̃H
imh̃im + h̃H

imw̃im

− log |bHimw̃im|2
]
, (14)

where

Q̃im = diag(Qi1mm, . . . , QiNmm), (15)

h̃im =

( ∑
m′ ̸=m

w∗
i1m′Qi1m′m, . . . ,

∑
m′ ̸=m

w∗
iNm′QiNm′m

)T

. (16)

Here, Qinm1m2
is the (m1,m2)th element of Qin, winm is

the mth element of win, ∗ denotes the complex conjugate, and
Bi = (bi1, . . . , biM )H is the adjugate matrix of Wi.

C. Columnwise Update Rule of Demixing Matrix

IP cannot be applied to the minimization of the cost function
(14) unlike the case of win because (14) includes the linear
terms w.r.t. w̃im, i.e., w̃H

imh̃im and h̃H
imw̃im. Accordingly, we

derive a new coordinate descent algorithm for (14), where w̃im

for each m (the microphone number) is updated by finding a
stationary point of the cost function w.r.t. w̃im under w̃im′

fixed (m′ ̸= m). Since bHim is independent of w̃im, the partial
derivative of (14) w.r.t. w̃∗

im is obtained as

1

J

∂L(W )

∂w̃∗
im

= Q̃imw̃im + h̃im −
bim

w̃H
imbim

. (17)

Hereafter, we derive the update rule of w̃im as in [23]. From
∂L(W )/∂w̃∗

im = 0, we obtain the following equation that
satisfies the stationary-point condition:

w̃im = Q̃−1
im(βimbim − h̃im), (18)

where βim = 1/(w̃H
imbim). From the definition of βim, we

have

βimw̃
H
imbim − 1 = 0. (19)

By substituting (18) for (19), we obtain

bHimQ̃
−1
imbim|βim|

2 − h̃H
imQ̃

−1
imbimβim − 1 = 0. (20)
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Since the first and third terms in (20) are real numbers, the
second term in (20) must also be a real number, which satisfies

Im
[
h̃H
imQ̃

−1
imbimβim

]
= 0, (21)

where Im[·] represents the imaginary part of the variable. From
βim ̸= 0 and (21), we have

βim = γim(h̃H
imQ̃

−1
imbim)∗ = γimb

H
imQ̃

−1
imh̃im (22)

or

h̃H
imQ̃

−1
imbim = 0, (23)

where γim ∈ R\{0}. When (22) holds, we can derive a
quadratic equation by substituting (22) into (20) as follows:

bHimQ̃
−1
imbim|b

H
imQ̃

−1
imh̃im|2γ2im − |h̃H

imQ̃
−1
imbim|

2γim − 1 = 0.
(24)

By substituting the solution γim of (24) into (22), we have

βim = − b
H
imQ̃

−1
imh̃im

2bHimQ̃
−1
imbim

(
−1±

√
1 +

bHimQ̃
−1
imbim

|h̃H
imQ̃

−1
imbim|2

)
,

(25)

where the ± sign in (25) should be positive to make L(W )
smaller. On the other hand, when (23) holds, the solution of
(20) becomes

βim =
ejϕim√

bHimQ̃
−1
imbim

, (26)

where ϕim ∈ (−π, π] denotes an arbitrary phase and j is the
imaginary unit. Since ϕim does not change the value of L(W ),
ϕim is set to satisfy ejϕim = (detWi)/|detWi|. From (18),
(25), (26), and the relation bim = (detWi)

∗(W−1
i )Hem, we

obtain the following update rules of w̃im:

uim ← (WH
i Q̃im)−1em, (27)

ûim ← Q̃−1
imh̃im, (28)

aim ← uH
imQ̃imuim, (29)

âim ← uH
imQ̃imûim, (30)

w̃im ←


uim√
aim
− ûim (âim = 0),

âim

2aim

[
1−

√
1 + 4aim

|âim|2

]
uim − ûim (âim ̸= 0).

(31)

This update of w̃im guarantees the monotonic nonincrease in
L(W ).

IV. EXPERIMENTAL EVALUATION

A. Experimental Conditions

We confirmed the validity of the proposed columnwise
update by conducting a music source separation task. We
compared five methods: independent low-rank matrix analysis
(ILRMA) [9], DNN with Wiener filtering (DNN+WF) [24],
combination of full-rank spatial covariance model and DNN
source model (FSCM+DNN) [15], conventional IDLMA with
row-wise IP (Row-IDLMA), and the proposed IDLMA with

2m

Vo.

5.66cm

40
40

T60 = 300ms

Ba. or Dr.

Fig. 3. Recording condition of impulse responses obtained from RWCP
database.

the columnwise update (Column-IDLMA). Note that ILRMA
is a “blind” (unsupervised) technique, but we show its per-
formance just for reference to understand to what extent the
supervised methods (DNN+WF, FSCM+DNN, Row-IDLMA,
and Column-IDLMA) can improve the performance. For all
methods except DNN+WF, we updated the spatial model 500
times. For FSCM+DNN, Row-IDLMA, and Column-IDLMA,
the scale parameter matrix Rn was updated by DNNn after
every 10 iterations of the spatial parameter optimization.

We used the DSD100 dataset of SiSEC2016 [25] as the
dry sources and the training dataset of DNN. The 50 songs
in the dev data were used to train DNNn and the top 25
songs in alphabetical order in the test data were used for
performance evaluation. The test songs were trimmed only in
the interval of 30 to 60 s. To simulate reverberant mixtures,
we produced two-channel observed signals by convoluting the
impulse response E2A (T60 = 300ms) obtained from the
RWCP database [26] with each source, and mixtures of bass
(Ba.) and vocal (Vo.) or drums (Dr.) and Vo. were created. The
recording condition of E2A is shown in Fig. 3. All the signals
were downsampled to 8 kHz. An STFT was performed using
a 512-ms-long Hamming window with a 256-ms-long shift.
We used the signal-to-distortion ratio (SDR) [27] to evaluate
the total separation performance.

In this paper, the number of hidden layers in the constructed
fully connected DNN was set to four. Each layer had 1024
units, and a rectified linear unit was used for the output of each
layer. To optimize the DNN, we added the term (λ/2)

∑
q gq

2

to (11) for regularization, where gq is the weight coefficient in
DNN, and ADADELTA [28] with a 128-size minibatch was
performed for 2000 epochs. The parameter ϵ was experimen-
tally optimized and set to (0.1 × (IJ)−1

∑
i,j σijn

2)
1
2 . The

other parameters were set to δ = 10−5 and λ = 10−5.

B. Results

Figs. 4 and 5 show the average SDR improvements for
Ba./Vo. and Dr./Vo. separation, respectively. The proposed
Column-IDLMA achieves the best SDR improvement among
all the state-of-the-art blind and supervised methods in both
Ba./Vo. and Dr./Vo separation. In particular, Column-IDLMA
outperforms Row-IDLMA by over 0.8 dB in Ba./Vo. These
results confirm that the proposed columnwise update algorithm
is more appropriate than IP in IDLMA, where the accuracy
of the scale parameter estimation by DNN will depend on the
type of source.
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Fig. 4. Average SDR improvement of 25 Ba./Vo. songs.

ILRMA DNN+WF FSCM
+DNN
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IDLMA

Blind
(Ref.)

Supervised

Fig. 5. Average SDR improvement of 25 Dr./Vo. songs.

V. CONCLUSIONS

In this paper, we derived a new columnwise update algo-
rithm of the demixing matrix in IDLMA, which simultane-
ously utilizes all source models for each update. Owing to
this property, the proposed update algorithm is robust against
the variance of the accuracy in the DNN inference w.r.t. the
type of source. For this purpose, we employed VCD, which
is a convergence-guaranteed algorithm applicable to the sum
of the quadric, linear, and negative log-determinant terms.
Experimental results showed that the proposed columnwise
update algorithm has superior separation performance to the
conventional row-wise update algorithm.
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