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Abstract—In this paper, we propose a novel energy manage-
ment algorithm based on the reinforcement learning to optimize
the net bit rate in energy harvesting (EH) networks. By uti-
lizing deep deterministic policy gradient (DDPG), the proposed
algorithm is applicable for the continuous states and realizes
the continuous energy management. With only one day’s real
solar data and the simulative channel data for training, the
proposed algorithm shows excellent performance in the validation
with about 800 days length of real solar data. Compared with
the state-of-the-art algorithms, the proposed algorithm achieves
better performance in terms of long-term average net bit rate.

I. INTRODUCTION

In the literature, different energy management strategies
have been proposed for the energy harvesting wireless com-
munications, and the most typical and effective ones are
the water-filling algorithm, Markov decision process (MDP)
and Lyapunov algorithm. Water-filling algorithm is based on
the convex optimization with the Karush-Kuhn-Tucher (KKT)
condition, and is only capable of optimizing the convex
objective within a finite horizon. In [1], Ulukus et al. reviewed
the water-filling algorithms for different reward optimizations,
models and constraints. Ozel et al. in [2] optimized the
average throughput with finite epochs of an energy harvesting
communication system with the KKT condition.

In order to derive effective online energy management
algorithms, MDP has been widely utilized in energy harvesting
communications [3], [4], [5], [6]. In [3], Ku et al. optimized
the long-term average net bit rate in energy harvesting commu-
nications with an energy-modulation management algorithm
using MDP. In energy harvesting cooperative communications,
Ku et al. [4] applied MDP to minimize the expected symbol
error rate in one-way relay energy harvesting network with the
decode-and-forward (DF) protocol, while Li et al. [5] used
MDP to minimize the long-term average outage probability
in two-way relay energy harvesting networks with both DF
and amplify-and-forward (AF) protocols. In [7], the authors
presented a partially observable MDP to manage the energy in
energy harvesting sensors. While MDP is an effective tool for
designing an effective online energy management algorithm,
it faces the curse of dimensionality when the number of states
is large.

To overcome the shortcomings of MDP, many researchers
tried to use Lyapunov optimization to optimize the long-term
objectives. Unlike the MDP method, Lyapunov optimization

works with the continuous state and action, i.e., discretiza-
tion is not necessary. In [8], [9], [10], Qiu et al. applied
Lyapunov optimization theory to optimize different energy
harvesting wireless networks. The results showed that Lya-
punov optimization can achieve better performance compared
with MDP [3], especially at the high signal-to-noise ratio
(SNR) regimes. In [11], Amirnavaei et al. maximized the
long-term average throughput in energy harvesting wireless
networks with Lyapunov optimization. Their algorithm showed
better performance than the results in [2]. In [12], Cui et
al. utilized Lyapunov optimization to study the delay-aware
resource control problem, where the system throughput, the
sum delay and the power consumption were jointly optimized.

With the development of the reinforcement learning, more
and more works have focused on solving the energy harvesting
problems with the aid of reinforcement learning. By utiliz-
ing the Q-learning, Blasco et al. [13] proposed algorithms
to maximize long-term expected throughput of the point-to-
point energy harvesting wireless communications. Based on
SARSA, Ortiz et al. proposed a power allocation policy to
maximize the throughput at the receiver of a two-hop energy
harvesting communications in [14]. However, the existing
works that applied the model-free reinforcement learning
framework all have to discretize the continuous variables.
Therefore, researchers began to use the actor-critic algorithm
in reinforcement learning to handle with the continuous data.
Aoudia et al. in [15] used actor-critic algorithm to manage
the energy to maximize the quality of service while avoiding
power failures for energy harvesting wireless sensor networks.

In this paper, we investigate continuous energy management
to maximize the net bit rate in energy harvesting wireless
communications using DDPG [16]. Instead of optimizing the
long-term throughput based on Shannon capacity, we try
to deploy DDPG for maximizing the average net bit rate
which is a non-convex problem. To resolve the optimization
problem with DDPG, we propose to re-write the problem
into a state, action and reward form. Moreover, in order to
achieve better results, we propose a state normalization to
preprocess the input. We also theoretically derive the time and
space complexity of the training and the validation processes.
Simulations are conducted to evaluate the performance of
the proposed policy. The results show that, compared with
the state-of-the-art algorithms, our trained policy has better
performance especially at the low SNR region.
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The rest of the paper is organized as follows. In section II,
we briefly review DDPG. Then, the system models of energy
harvesting wireless networks are introduced in section III. The
energy management policy using DDPG is proposed in detail
in section IV. Section V shows the simulation results and
section VI concludes this paper.

II. BRIEF REVIEW OF DDPG

DDPG has two main networks: the critic net and the actor
net. Both the critic net and the actor net contains two sub-nets:
the online net and the target net, whose architectures are the
same. These four neural networks are composed of various
layers, and all layers contain their corresponding parameters.
All parameters in a specific network are denoted as θ. The
critic net is trained to simulate the real Q-table using neural
networks without the curse of dimensionality. The actor net
is trained for generating a deterministic policy instead of
the policy gradient which chooses a random action from a
determined distribution.

In policy gradient, the agent’s behavior a is determined by
π, which maps states to a probability distribution over the
actions. Given the instantaneous state st and the action at, if
the action’s policy is deterministic, denoted as μ, we can avoid
the inner expectation and write the Q-table as

Qμ(st, at)=Ert,st+1∼Ψ

[
r(st, at)+γ[Qμ(st+1, μ(st+1))]

]
. (1)

where r(st, at) represents the reward of the state st and the
action at, γ stands for the discount factor in Bellman equation
and Ψ is the corresponding expectation distribution for st+1

and rt.
When the deterministic policy μ is generated from a ran-

domly initialized stochastic policy ψ, with the approximative
Q-table parameterized by θQ, the loss of the critic net is
defined to measure the distance between the two side of the
Bellman equation, which can be expressed as

L(θQ) = Est∼ρψ,at∼ψ,rt∼Ψ

[
(Q(st, at|θQ)− yt)

2
]
, (2)

where ρψ represents the distribution of the state st under the
current deterministic policy ψ, θQ can be considered as the
variables in deep Q network and yt is defined as follows

yt = r(st, at) + γQ(st+1, μ(st+1)|θQ). (3)

The actor net updates the policy with the aid of the critic
net, where the policy’s updating gradient can be written as
follows

∇θμJ≈Est∼ρψ

[
∇aQ(s, a|θQ)|s=st,a=μ(st)∇θμμ(s|θμ)|s=st

]
(4)

where θμ can be considered as the variables of the online actor
net.

The procedure of an entire training process can be described
as follows. Firstly, with the action μ(st) given by the actor
net after the previous training, DDPG adds some noise nt and
generates the action at = μ(st) + nt. Then with the action at
working on the environment, DDPG can get a reward rt and
a next state st+1. DDPG will store the set (st, at, rt, st+1)

in the experience replay buffer. After that, DDPG randomly
chooses N sets in the buffer to make up a mini-batch and
inputs it to both the actor net and the critic net. With the
mini-batch, the target net of the actor net outputs the action
μ′(si+1) with regard to θμ

′
to the critic net. With the mini-

batch and μ′(si+1), the target net of the critic net can calculate
yi based on (3) and input it to the online net.

With a given optimizer, e.g., Adamoptimizer, the critic
net will update its own online net. Afterwards, the ac-
tor online net gives the mini-batch action a = μ(si) to
the critic online net to achieve the action a’s gradient
∇aQ(s, a|θQ)|s=si,a=μ(si). With its own optimizer, the pa-
rameter θμ’s gradient ∇θμμ(s|θμ)|s=si can be derived. With
the above two gradients, the actor net can update the actor
online net with the following approximation

∇θμJ≈ 1

N

∑

i

[
∇aQ(s, a|θQ)|s=si,a=μ(si)∇θμμ(s|θμ)|s=si

]
. (5)

Finally, DDPG softly updates the target nets in both critic
net and actor net with a small constant τ , i.e.,

θQ
′ ← τθQ + (1− τ)θQ

′
,

θμ
′ ← τθμ + (1− τ)θμ

′
. (6)

III. SYSTEM MODELS OF ENERGY HARVESTING
WIRELESS NETWORKS

As shown in Fig. 1, in this paper, we consider the energy
management for two energy harvesting networks: the point-
to-point network [3] and one-way relay network [4]. In the
point-to-point network, the transmitter with energy harvesting
capability sends the packets to the destination with the energy
in the battery while the energy harvester keeps collecting
the renewable generations and stores them in the battery. In
particular, the energy harvested at present is only available in
the subsequent periods, i.e., the harvest-store-use (HSU) model
is used in this paper [17]. Thus, the energy in the battery can
be written as follows

bt+1 = min{bt − ωt + EH,t, bmax}, (7)

where t is the time index, EH,t is the collected energy, ωt ∈
[0, bt] means the consumed energy, and bmax represents the
battery capacity.

In the one-way relay network, there exist two phases in
an entire transmission period. In the first phase, the source
broadcasts the packets to the relay and the destination, and the
relay decodes the packets. In the second phase, if the decoding
in the first phase succeeds, the relay transmits the re-encoded
packets to the destination. Different from the point-to-point
network, the energy harvester collects the energy in both two
phases but only consumes the energy in the second phase.
In both networks, the channels are assumed to be i.i.d. with
Rayleigh fading.

In this paper, we use the net bit rate, which represents
the expected good bits per packet transmission [3], as the
system objective. The net bit rate can be influenced by many
factors, including the number of bits per packet, the packet
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(a) (b)

Fig. 1. Energy harvesting wireless networks: (a) point-to-point network; (b) one-way relay network.

error rate and the rate of sending packages. According to [3],
the instantaneous net bit rate can be written as follows

R(ζt, ωt, bt) =

{
χmLS

Tp
(1− Pe)

χmLS , ω �= 0,

0 , ω = 0,
s.t. 0 ≤ ωt ≤ bt (8)

where χm, LS , Tp, Pe and ζt represent the bit number per
symbol, the symbol number per packet, the packet transmis-
sion duration, the bit error rate, and the instantaneous channel
power, respectively.

Equation (8) means the number of correct bits received per
unit time. It is mainly determined by the bit error rate Pe and
the number of bits transmitted per unit time, i.e., χmLS

Tp
. With

the bit error rate, the probability of one packet transmission
without any bit error is (1−Pe)

χmLS . Then, we can calculate
the net bit rate by multiplying the decoding success probability
with the total number of bits per unit time. The condition with
ω = 0 is written separately because when a transmitter turned
off, the transmission will stop.

The bit error rate Pe is determined by the SNR, which is
different for different networks. In the point-to-point network,
we choose an approximation of the bit error rate as in [3],
which can be expressed as

Pe(ζt, ωt, bt) =
∑

r

α(m, r) · 1
2
erfc

⎛

⎝
√

β(m, r)ωtζt
2N0TL

⎞

⎠ ,

s.t. 0 ≤ ωt ≤ bt (9)

where erfc(·) represents complementary error function, N0 is
the noise power, ζt

N0
stands for the instantaneous channel-to-

noise ratio, α(m, r) and β(m, r) are two parameters related
to the modulation m, which are shown in Table I [3], and r
represents the specific constants determined by modulation m.
The instantaneous SNR of the point-to-point network is written
as ωtζt

N0TL
in (9), which significantly affects the bit error rate

Pe.
Similarly, based on the SNR in the one-way relay network

with the decode-and-forward (DF) protocol, the corresponding

TABLE I
MODULATION RELATED PARAMETERS

Modulation schemes Parameters(α(m, r), β(m, r))

QPSK (α(m, 0), β(m, 0)) = (1, 1)

8PSK
(α(m, 0), β(m, 0)) = ( 2

3
, 2sin2(π

8
))

(α(m, 1), β(m, 1)) = ( 2
3
, 2sin2( 3π

8
))

16QAM
(α(m, 0), β(m, 0)) = ( 3

4
, 1
5
)

(α(m, 1), β(m, 1)) = ( 1
2
, 9
5
)

bit error rate can be written as

Pe(ζt, ωt, bt)=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∑
r
α(m, r) 12erfc

(√
β(m,r)[(ωt/TL)ζrd,t+Ψsζsd,t]

2N0

)
,

d = 1;
∑
r
α(m, r) 12erfc

(√
β(m,r)Ψsζsd,t

2N0

)
,

d = 0,
s.t. 0 ≤ ωt ≤ bt (10)

where d = 1 corresponds to the case where the decoding
in the relay is successful, Ψs represents the transmission
power of the source node, and ζsd and ζrd are the channel
power of the source-to-destination (SD) link and the relay-to-
destination (RD) link, respectively. The decoding condition d
is determined by the SNR of the source-to-relay link, and d is
equal to 1 only if Ψζsr

N0
≥ T, where T is a constant standing

for the decoding capacity threshold. The SNR of the one-way
relay network is determined by both of the relay route and the
source route, which is written as [(ω/TL)ζrd+Ψsζsd]

N0
in (10).

IV. ENERGY MANAGEMENT WITH DDPG

A. Problem Formulation

The system objective in this paper is to maximize the long-
term average net bit rate in the point-to-point network and the
one-way relay network, i.e.,

max
ωt

lim
T→+∞

1

T

T−1∑

t=0

R(ζt, ωt, bt),

s.t. 0 ≤ ωt ≤ bt, (11)
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where the bit error rate in the long-term objective function is
defined in (9) and (10) for the point-to-point network and the
one-way relay network, respectively.

In DDPG, the neural networks are trained from the set
(st, at, rt, st+1). Therefore, we have to define the state and
action sets of our problem for DDPG. Moreover, with the
constraint of the energy for transmission, we have to define
a different action for DDPG instead of directly deploying the
ωt. In the following, we describe in detail the state set, the
action set, and the reward.

1) The set of states st: In the point-to-point communica-
tions, the states needed to be considered in a management
period include bt, ζt and EH,t, where bt determines the max-
imum energy the transmitter node can consume, ζt influences
the bit error rate directly, and EH,t affects bt+1. Therefore,
for the point-to-point network, the sets are st = (bt, ζt, EH,t).

On the other hand, there exist three independent fading
channels in the one-way relay network. Nevertheless, the
states contain only the channel power of the SD link ζsd,t
and the channel power of the RD link ζrd,t, i.e., st =
(bt, ζsd,t, ζrd,t, EH,t). The reason of ignoring the channel
power of the SR link ζsr,t is that ζsr,t only influences the
decoding condition. In the training process, if the decoding
fails in the first phase, the training will be directly skipped. In
the validation process, if the decoding fails in the first phase,
the relay will not manage the energy for transmission. The SR
link only influences whether the relay is on or off, but has no
impact on the energy management.

2) The set of actions at: In this paper, we set the continuous
possible action at ∈ [0, 1] since bt varies with different t
and the actor function in DDPG has to be bounded by some
constants. With such an action set, the final energy consumed
for transmission is at × bt, which can guarantee that the
consumed energy will not exceed the remaining energy in the
battery. Thus, the action in this paper can be written as

at = μ((bt, ζt, EH,t)|θμ), (12)

or

at = μ((bt, ζsd,t, ζrd,t, EH,t)|θμ), (13)

with the range of [0, 1].
3) Reward: With the Q-table in Q-learning, the long-term

average net bit rate can be written using the Bellman equation
as follows

Qμ(st, at)=Ert,st+1∼E

[
R(st, at)+γ[Qμ(st+1, μ(st+1))]

]
, (14)

where the reward R(s, a) is chosen as the corresponding net bit
rate in (8). Now the problem is to find an action to maximize
the Q value in (14) with DDPG.

B. State Normalization

In deep learning, the distribution of each layer’s inputs
keeps changing, which slows down the training by requiring
lower learning rates and careful parameter initialization. Ioffe
et al. proposed the batch normalization in [18] to allow
the training to use much higher learning rates and relaxed

Algorithm 1 State Normalization
Require:

All instantaneous variables needed to be normalized: bt
,ζt (ζsd,t, ζrd,t) and EH,t;
Scale factors: λ1, λ2;
Means and standard deviations of the variables: ηEH

, ηζ ,
σEH

and σζ ;
Ensure:

Normalized variables b̂t, ζ̂t (ζ̂sd,t, ζ̂rd,t) and ÊH,t

1: b̂t =
bt
λ1

ζ̂t =
ζt−ηζ

σζ

ÊH,t =
EH,t−ηEH

λ2σEH

2: return b̂t, ζ̂t (ζ̂sd,t, ζ̂rd,t) and ÊH,t

initialization. Similar to the batch normalization, we propose
a state normalization to preprocess the training sample states
for a much easier and faster training.

The three variables bt, ζt, and EH,t in the state set may lie
in different ranges, which may cause problem in the training
process. To prevent such a problem, we normalize the variables
bt, ζt, and EH,t separately. The state normalization is shown
in the Algorithm 1, where we use two extra scale factors in
the normalization. The reason can be explained as follows.
According to (7), the energy in the battery is in the form
of a queue and it will be influenced by the action. In such
a case, it is difficult to use a constant value to approximate
the average energy in the battery. Thus, we scale down the
remaining energy in the battery of all epoches. We also scale
the value of the normalized ÊH,t to adjust the balance between
the influence of EH,t and bt.

C. Complexity Analysis

From the above discussions, we can see that the training
algorithm includes the normalization, the replay buffer and
four neural networks, while the validation algorithm is only
made up of the normalization and the online actor net. In the
following, we will derive the time complexity (computations)
with regard to FLOPS (floating point operations per second)
and space complexity (memory) of the training and validating
algorithms, respectively.

1) Training: The state normalization is conducted at every
epoch of the training because without action we cannot know
the value of bt. Thus, the time complexity of state normaliza-
tion is N (s), where N (s) is the number of the variables in the
state set. The space complexity is related to the number of the
variables in the state, i.e., 2N (s) because the algorithm has
to record the means and standard deviations to avoid repeated
calculation. The experience replay buffer in DDPG occupies
some space to store the state sets, hence the space complexity
is N .

Since the input state of the energy harvesting communica-
tions is different from that of the image/video, there is no
convolution layer in both the actor net and the critic net. For
dot products of a P vector and an P ×Q matrix, the FLOPS
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computations is (2P−1)Q because for every column in matrix
we need to multiply P times and add P − 1 times.

We also have to derive the computations of activation
layers. When calculating FLOPS, we usually count addition,
subtraction, multiplication, division, exponentiation, square
root, etc as a single FLOP. The computations is Q with Q
inputs for Relu layers, 4 × Q for sigmoid layers, and 6 × Q
for tanh layers.

Assuming that the actor net contains J fully connected
layers and the critic net contains K fully connected layers,
considering the bias adding in fully connected layers the time
complexity can be calculated as

vactivationui + 2×
J−1∑

j=0

uactor,juactor,j+1

+2×
K−1∑

k=0

ucritic,kucritic,k+1

=O

⎛

⎝
J−1∑

j=0

uactor,juactor,j+1 +

K−1∑

k=0

ucritic,kucritic,k+1

⎞

⎠(15)

where ui means the unit number in the ith layer, u0 equals the
input size and vactivation means the corresponding parameters
determined by the type of the activation layer.

For a fully connected layer, there is a P×Q matrix and a Q
bias vector. Hence, the memory of one fully connected layer is
(P + 1)Q. Because the activation do not need saved weights,
the space complexity of the neural networks is formulated as:

J−1∑

j=0

(uactor,j + 1)uactor,j+1 +
K−1∑

k=0

(ucritic,k + 1)ucritic,k+1

=O

⎛

⎝
J−1∑

j=0

uactor,juactor,j+1 +
K−1∑

k=0

ucritic,kucritic,k+1

⎞

⎠ .(16)

Therefore, the overall time complexity of our training algo-
rithm is

2×
J−1∑

j=0

uactor,juactor,j+1 + 2×
K−1∑

k=0

ucritic,kucritic,k+1

+vactivationui +N (s)

=O

⎛

⎝
J−1∑

j=0

uactor,juactor,j+1 +
K−1∑

k=0

ucritic,kucritic,k+1

⎞

⎠

+O(N (s)), (17)

and the overall space complexity of our training algorithm is
J−1∑

j=0

(uactor,j + 1)uactor,j+1 +

K−1∑

k=0

(ucritic,k + 1)ucritic,k+1

+2×N (s) +N

=O

⎛

⎝
J−1∑

j=0

uactor,juactor,j+1 +

K−1∑

k=0

ucritic,kucritic,k+1

⎞

⎠

+O(N (s)) +O(N)). (18)

TABLE II
DDPG ARCHITECTURE (THE COMPLEXITY IS EVALUATED WITH FLOPS,

I.E., THE NUMBER OF FLOATING-POINT MULTIPLICATION-ADDS).

Net Layer Units Activation FLOPS Params
Actor Fully connected 60

Fully connected 30
Fully connected 1 Sigmoid 4.02K 2.10K

Critic Fully connected 60 RELU
Fully connected 60
Fully connected 60 Tanh
Fully connected 60
Fully connected 60 RELU
Fully connected 1 29.88K 15.00K

2) Validating: Since the critic net is generated to help the
actor net have a faster and easier training, there is no critic
net and replay buffer in the validation process. Only the state
normalization and the online net in the actor net is needed.
Therefore, the time complexity of the validation algorithm is

O

⎛

⎝
J−1∑

j=0

uactor,juactor,j+1

⎞

⎠+O(N (s)), (19)

and the space complexity is the same

O

⎛

⎝
J−1∑

j=0

uactor,juactor,j+1

⎞

⎠+O(N (s)). (20)

V. NUMERICAL SIMULATIONS

A. EH Communications and DDPG Setup

In our simulations, we use the real solar power data collect-
ed in every five minutes from 7am to 5pm in June from 2010
to 2012 [19]. The solar panel size is 4cm2 and the energy
conversion efficiency is assumed to be 20%. The Rayleigh
fading channel is generated with the aid of Jakes model, which
can guarantee that the channel varies in a smooth way. We
assume that each packet contains 1000 symbols (LS = 1000)
and the packet duration TP = 0.01s. One management period
is set as 5 × 60 seconds, while for the one-way relay energy
harvesting communication the length of one phase is 150
seconds. Additionally, for the one-way relay energy harvesting
network, the extra settings are shown as follows. The source
node’s transmission power is set as 40 mW and the decoding
capacity threshold T is set as 15 dB. Finally, the SNR of the
SR channel is limited to 40dB, independent from the other
two channels.

The architecture of the actor net and the critic net is shown
in Table II. In DDPG, we use three fully connected layers to
build the online subnet and the target subnet for the actor net,
while double fully connected layers are used to generate the
critic net. In the actor net, we only use the sigmoid activation
to ensure that our final output action is bounded by 0 and 1. For
the critic net, aside from more layers and units, we also add
two Relu activation layers and one tanh activation layer. This
is because that the net bit rate is a complex non-linear function
which includes the complementary error function (erfc). Hence
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Fig. 2. Convergence of training P2P policy with different learning rate.

more layers and activations are helpful to approach the non-
linear Q-table. We only use three layers in the actor net mainly
for reducing the complexity of the energy management policy,
especially in real applications.

The parameter settings of DDPG are shown as below. For
the point-to-point network, the training sample number is 120,
where we only use the solar data of June 1st for training.
The length of the training epochs is 2000, the replay buffer’s
capacity is 40000 and the size of the mini-batch is 80. The
learning rate of the actor net and the critic net are both set to
be 2×10−4. The discount factor γ of the Q-table is 0.999 and
the target subnet soft update factor τ is set to be 0.01. With
the behavior noise, the initialized noise’s average value is set
as 10 and the noise’s decay factor κ is set as 0.9995. Finally,
the scale factors for the state normalization λ1 and λ2 are set
as 100 and 2, respectively.

For the one-way relay network, the length of the training
sample is 240, where we apply the solar data of June 1st and
June 2nd. We use more training samples since there exists
a probability of the failed decoding. If the decoding fails, the
policy in energy harvesting relay cannot be trained. The length
of the training epochs is 1500, the learning rates of the actor
and critic net are both 4× 10−4, and the discount factor γ in
Q-table is set as 0.9. The other parameters are the same as
those of DDPG in the point-to-point network.

B. Convergence with different learning rates

The influence of the learning rate of DDPG can be inferred
from Fig.2 and Fig.3, where the modulations are both QP-
SK, the channel-to-noise ratio in the peer-to-peer network is
−10dB and the SNR in the one-way relay network is 4dB. The
learning rates of the critic net and the actor net are assumed
the same.

From Fig.2, we can see that when the learning rate is
0.01, there is no advantage in the training since the policy
turns to a greedy algorithm in this case. With a learning rate
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Fig. 3. Convergence of training one-way relay policy with different learning
rate.

of 0.001, the result fluctuates with the development of the
epochs. If the learning rate goes smaller, e.g., 0.0002, the result
generally maintains improving with slight fluctuations. When
the learning rate becomes 10−5, we can see that the result
grows slowly but still with slight fluctuations.

In Fig.3, we observe similar phenomenon as that in Fig.2.
If the learning rate is too large, the average net bit rate will
quickly saturate at a bad value. In a reasonable range, with a
higher learning rate, the result can grow faster but with larger
fluctuations. On the other hand, if the learning rate is smaller,
fluctuations will be reduced at the sacrifice of the speed of the
performance growth. Therefore, the learning rate should be
selected properly, neither too large nor too small. Compared
with Fig.2, we find that it is harder for DDPG to converge at
a good result in the one-way relay network. This is because
we artificially make the relay off if the decoding d in (11) is
0. This may make the state input in DDPG not continuous in
time and cause more difficulty in training a good action.

C. Performance Comparison

We first compare the average net bit rate performance a-
mong the proposed DDPG method, the Lyapunov optimization
[8], and the Greedy algorithm, under different modulations.
The results are shown in Fig.4, Fig.5 and Fig.6. For the one-
way relay network, the SNR refers to the signal-to-noise ratio
of the SD link, i.e., Ψsζsd

N0
and the channel noise power of

the SD link and RD link is the same. For the point-to-point
network, since there is no relay, the average channel-to-noise
ratio is set to be SNR-10.

Fig. 4 shows the average net bit rate with the QPSK
modulation under different methods. From the figure, we can
see that the proposed method performs the best in both the
point-to-point network and the one-way relay network, while
the Lyapunov optimization performs better than the greedy
algorithm. At the low SNR region, the performance gap among
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Fig. 4. Average net bit rate under the QPSK modulation.

different methods is significant. When the SNR is 0dB, the
achieved average net bit rate with the proposed method is
around 8×103, which raises approximately 4 times compared
with the Lyapunov optimization, and 10 times compared with
the greedy strategy. For the point-to-point network, the gap is
much smaller. This is mainly because there is no link with
constant power supply in the point-to-point network, due to
which the received SNR will be affected significantly. With the
growth of SNR, the average net bit rate of different methods
all saturates at the value of 2× 105, which corresponds to the
case with zero BER in (8).

Fig. 5 and Fig. 6 show the performance comparison of
different policies with the 8PSK and 16QAM modulations.
Similar to the results in Fig. 4, the performance of the proposed
method is the best, and the Lyapunov optimization performs
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Fig. 5. Average net bit rate under the 8PSK modulation.
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Fig. 6. Average net bit rate under the 16QAM modulation.

better than the greedy algorithm, especially at the low SNR
region. With the increase of the SNR, the net bit rate of all
schemes saturates at the value of χmLS

TP
, i.e., 3 × 105 and

4× 105. However, compared with the results in Fig.4, we can
see that the gaps among different strategies in Fig. 5 and Fig.
6 are much larger. The reason is that with the same energy
consumed for transmission, the probability of successfully
transmitting an entire packet under 16QAM and 8PSK will
be much smaller than that under QPSK. With the proposed
method, the energy management is much more careful, which
thus leads to much better performance.

Fig.7 illustrates the performance comparison of the pro-
posed method and the MDP algorithm in the point-to-point
network. We do not evaluate the MDP in the one-way relay
network since the equation (14) in [3] cannot be derived with
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Fig. 7. Comparison between our method and MDP[3].
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two channel links. The interval number of the solar, battery,
channel and action in MDP are set as 4,8,4,8, respectively.
From the figure, we can see that at the low SNR region,
the proposed method has a similar performance with the
MDP algorithm, regardless the modulation. However, with the
growth of the SNR, the performance of MDP finally converges
at a much smaller value than that of the proposed method. This
phenomenon may be due to the following reason. In MDP,
if the average harvesting rate of the solar power is smaller
than the basic action level, the transmitter has to wait several
epoches for a basic energy quantum for transmission. As a
result, in some management periods the transmitter are not
capable of transmitting any bits because the energy amount in
battery cannot reach the basic action power [3].

Finally, we compare the proposed method with the basic
actor-critic method [20]. The structures of the actor net and
the critic net in the basic actor-critic method are the same as
the proposed method. Moreover, the learning rates and other
setup parameters are the same as those in our methods, and
the normalization has also been applied. The main difference
is that in the basic actor-critic method there is no replay buffer
and the action is estimated by a distribution instead of a deter-
ministic function. From the result in Fig. 8, we can see that the
basic actor-critic method is not able to learn an efficient state-
action strategy in the stochastic energy harvesting problems.
The energy management strategy cannot converge at a good
value in the point-to-point network, and in one-way relay
network the strategy cannot make any improvement with the
actor-critic learning. Therefore, the basic actor-critic method
cannot learn the complex state-action pattern in the stochastic
energy harvesting wireless communications.

VI. CONCLUSION

In this paper, we studied the energy management problem
in energy harvesting wireless networks. Our objective was
to maximize the long-term average net bit rate in the point-

to-point network and one-way relay network. We employed
DDPG to train an optimal energy management policy to
optimize the net bit rate. We proposed a state normalization
algorithm to make the training much faster and easier. We
also theoretically analyzed the time and space complexity of
the proposed training and validating algorithms. Compared
with the state-of-the-art algorithms, the proposed algorithm
achieves better performance in terms of long-term average net
bit rate.
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