Proceedings of APSIPA Annual Summit and Conference 2019

18-21 November 2019, Lanzhou, China

Robust Change Detection in High Resolution
Satellite Images with Geometric Distortions

Dongkwon Jin, Kyungsun Lim, and Chang-Su Kim
School of Electrical Engineering, Korea University, Seoul, Korea
E-mail: dongkwonjin@mcl.korea.ac.kr, kslim@mcl.korea.ac.kr, changsukim @korea.ac.kr

Abstract—A robust change detection algorithm for high res-
olution satellite images, which are not perfectly registered, is
proposed in this work. To achieve this goal, a change detection
technique for registered images and an image registration tech-
nique are employed in a cooperative way. Specifically, we use not
only hand-crafted features but also change detection results to
match keypoints extracted from two images. We then align the
images using the matching pairs of keypoints. Finally, we obtain
a change map from the aligned images. These steps of image
registration and change detection are alternately iterated until
the convergence. Experimental results demonstrate that proposed
algorithm outperforms the conventional change detection tech-
nique significantly, when there are geometric distortions between
temporal satellite images.

I. INTRODUCTION

Remote sensing using satellite imagery, which captures
meaningful changes on the surface [1], [2], has been applied to
a variety of applications, including environmental monitoring,
deforestation assessment, and agricultural expansion. With
the advance of satellite imaging technology, it is possible to
analyze variations in objects, such as moving vehicles and
building construction sites, by comparing two images of the
same area but taken at different time instances. However, there
are various types of distortions when acquiring high resolution
satellite images, which interfere with the detection of actual
changes. In such satellite images, tall objects, such as high-
rise buildings, look different depending on the photographic
angles of cameras. Also, there are significant color variations
due to seasonal and illumination conditions.

To distinguish actual changes from temporal distortions
between satellite images, many change detection techniques
have been proposed. An approach is to categorize regions
in two images into predefined classes and then determine
changed regions by comparing the classification results [3],
[4]. Alternatively, the difference between satellite images can
be analyzed to obtain a feature map for change detection [5].
Recently, convolutional neural networks (CNNs) have been
used in a wide range of vision applications, including change
detection [6]. CNN-based change detection techniques can
identify actual changes reliably in spite of the presence of
noise between images [7]-[11]. Especially, Lim et al. [7]
proposed three CNNs in the encoder-decoder structure to
yield change maps. Their algorithm does not require any pre-
processing, such as ortho-rectification and object classification.

Meanwhile, registration errors (or geometric distortions)
between satellite images may cause wrong results in change
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detection. Since most change detection algorithms require
correctly registered images, image registration is an impor-
tant pre-processing step for change detection [7]. It should
geometrically align two images obtained in different imaging
conditions, such as different times, various camera angles, and
different sensors. There are two types of registration: area-
based or feature-based methods [12]. Area-based methods,
such as cross-correlation (CC) and mutual information (MI),
exploit image intensities without any structural analysis [13],
[14]. Feature-based methods utilize distinctive information,
provided by local shapes and structure, and are more appro-
priate for satellite image registration [15]. Most feature-based
methods focus on the design of robust feature descriptors
invariant to imaging conditions.

Scale-invariant feature transform (SIFT) [16], [17] is a
popular feature-based registration technique for extracting dis-
tinctive features, which are invariant to affine distortions and
viewpoint changes. However, it may yield inaccurate matching
results in case of large geometric variations or repeating
structures in satellite images [18], [19]. To alleviate this
problem, many attempts have been made to modify SIFT, such
as SURF [20], BRIEF [21], and ORB [22]. But, several stud-
ies [19], [23], [24] demonstrated that the original SIFT is more
robust than its variants. On the other hand, high-level features
from CNN also can be used for image registration [25]-[27].
Also, He et al. [28] focused on registering satellite images with
background variations, but their algorithm requires a large,
annotated training dataset.

In this paper, we propose a robust algorithm to detect
actual changes in temporal satellite images with geometric
distortions. To reduce the impacts of geometric distortions,
we perform image registration and change detection collabo-
ratively. More specifically, we first extract keypoint descriptors
from two images using SIFT. We then divide the images into
blocks and find matching pairs of keypoints in corresponding
blocks. To overcome matching errors of SIFT, we select
reliable matching pairs only, by employing a change detection
result. We then align the images using an affine transform,
estimated from the matching pairs. Finally, we obtain a change
detection map from the aligned images. These two steps of
registration and change detection are repeatedly performed
until the convergence.

This work has three main contributions:

e« We propose a robust change detection algorithm for

satellite images, which are not perfectly registered.
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Fig. 2: The structure of the single long network (SLN) in [7].

o We develop a novel technique to overcome the limitation
of SIFT-based registration using change detection results.

o The proposed algorithm yields better results than the
existing change detection algorithm [7] for temporal
satellite images with geometric distortions.

The rest of the paper is organized as follows. Section II
describes the proposed algorithm, and Section III discusses
experimental results. Finally, Section IV concludes this work.

II. PROPOSED ALGORITHM

This section describes the proposed change detection algo-
rithm. The input is a pair of high resolution temporal satellite
images, which are not perfectly registered, and the output is a
binary map representing actual changes. Fig. | is an overview
of the proposed algorithm. We first extract keypoint descriptors
from the pair of images and find matching pairs of keypoints.
Second, we select reliable matching pairs, by employing a
change detection map. Third, we estimate the affine transform
from the matching pairs and align the images. Finally, we
update the change detection map using the aligned images.
The image registration and change detection are alternately
iterated until the convergence.
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Fig. 3: Keypoint matching between corresponding blocks.
Dashed white lines are block boundaries. Yellow and blue
crosses denote SIFT keypoints. Red arrows depict matching
results. The change detection between green patches is per-
formed to select reliable matching pairs.

A. Preliminary

For the sake of completeness, let we briefly review the base-
line method, Lim et al. [7], which is a CNN-based change de-
tection algorithm for high resolution temporal satellite images.
In [7], three CNNs in the encoder-decoder architecture were
developed. In the encoder-decoder architecture, the encoder
extracts a feature map from an image, and then the decoder
converts the feature map into a segmentation map. Each pixel
in the segmentation map represents the likelihood that any
change occurs at the pixel location. By connecting the encoder
and the decoder, the single short network (SSN), the single
long network (SLN), and the double long network (DLN) were
constructed. The baseline method yields segmentation maps
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Fig. 4: Three cases of change detection results between image patches: (a) correct match between the descriptor pair (fi, f2),
(b) incorrect match between (f, f7), (c) useless match belonging to an actually changed region. In C},, white and black pixels
mean changed and unchanged pixels, respectively. Also, green points represent the locations of keypoints.

from the three CNNs, respectively, and obtains a final map
using the average of the three maps. The ensemble of these
networks provides excellent performance. In this work, we use
SLN, whose network structure is illustrated in Fig. 2. Note that
we modify the backbone from VGG16 [29] to ResNet50 [30].

B. Keypoint Extraction and Matching

To find the correspondence between reference and target
images, we first extract keypoint descriptors from the two
images using the SIFT algorithm [16], [17]. SIFT consists
of a detector and a descriptor, which detects keypoints and
describes local feature for each keypoint as a 128-dimensional
vector, respectively. Let I; denote the reference image, and
I, the target image. We divide each image into blocks of size
rxr. Then, we match keypoints between corresponding blocks
in I; and I5. For each descriptor in a block of I;, we find the
best matching descriptor in the corresponding block of I with
the smallest descriptor distance. From all such matching pairs,
we keep only K matching pairs with the smallest distances,
M= {my | k=1,...,K}. Here, my is the SIFT descriptor
pair (f}, f2), where f} is the descriptor in I; and f7 is that
in I5. Fig. 3 illustrates matching results, which are depicted
by red arrows.

C. Reliable Match Selection Using Change Detection

Due to similar top appearance of buildings in satellite im-
ages, the descriptors located on buildings may be not distinc-
tive and the descriptor matching may be unreliable [18], [19].
Moreover, if matching results are obtained within changed
regions, they are useless. However, it is not easy to distin-
guish false matching results from true ones. Hence, we refine
matching results using the change detection algorithm in [7].

Given an image pair, we obtain a binary change map C
by thresholding the output of the change detection algorithm.
Note that the change detection algorithm assumes that the two
images are geometrically registered. If they are not registered,
semantically unchanged pixels can be falsely detected as
changed pixels. Thus, accurate registration tends to reduce the
number of changed pixels in C.

Let P! be a 128 x 128 patch, which is centered at the
block including fi! in I3, as shown in Fig. 3. We obtain the
corresponding patch P? based on the keypoint position of
the matching descriptor fZ in I>. From P! and P?, we get
the change map Cj. If my = (f}, f2) is a correct match,
only actual changes are detected as in Fig. 4(a). On the other
hand, if my is not correct, many false positives are detected
in Fig. 4(b). Therefore, we select only the most reliable match
among M, which minimizes the changed region. To compute
the number of changed pixels, let s denote a score function
that adds all pixel values in the change map. For each matching
pair my, in M, we compute the score s(C%). Then, we select
the pair that has the smallest score. Meanwhile, in some
cases, keypoints are included in actually changed regions, as
in Fig. 4(c). Since matching is impossible in a changed region,
we exclude such matches.

D. Affine Transform Estimation and Alignment

After selecting the most reliable matching pair of keypoints
from matching pairs of corresponding blocks, we estimate an
affine transform that maps the selected keypoints from I; to
their matching keypoints in I5. To this end, we employ the
random sample consensus (RANSAC) [31]. RANSAC divides
data into inliers that conform to the estimated model and
outliers that do not. The pruned matching pairs, obtained
by removing outliers, are used to estimate the affine trans-
form based on the least squares method. Then, we align the
reference image [; with the target image I, and find the
change map between I; and Iy using the algorithm in [7].
The change map, in turn, is used to register I; with I, as
described in Section II-C. These image registration and change
detection are iteratively performed until the convergence. After
the convergence, we obtain the final change map from the
registered images /; and I.

III. EXPERIMENTAL RESULTS
A. Dataset

We use the change detection dataset in [7] to evaluate the
performance of proposed algorithm. The dataset consists of
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(e) Proposed

(f) Ground-truth

Fig. 5: Examples of change detection results: Given a pair of temporal images with geometric distortions in (a) and (b), binary
change maps are detected by the baseline [7] in (c), SIFT + ratio test in (d), and the proposed algorithm in (e), respectively.

The ground-truth change map is in (f).

1000 bi-temporal satellite image pairs, which are geometrically
registered, and the corresponding ground-truth binary maps,
which represent changed regions. We divide the 1,000 image
pairs into 900 training and 100 test pairs. To evaluate the
robustness of the proposed algorithm, we generate image pairs
with geometric distortions from the 100 test pairs. We warp
each reference image using affine transforms, which mimic
scale, translation, and rotation distortions. Specifically, in case
A, the scale factor, translation, and rotation angle are set to
0.02, 0.02, 1°, respectively. In case B, they are set to 0.04,
0.04, and 2°.

B. Evaluation Metrics

For the performance assessment, we classify pixels in a
change detection map using the corresponding ground-truth.
True positive (TP) and true negative (TN) denote the numbers
of pixels correctly predicted as changed and unchanged pixels,
respectively. False alarm (FA) is the number of pixels predicted
as changed but actually unchanged in the ground-truth, and
miss alarm (MA) is the number of inverse cases. Then,
precision and recall are defined as

TP
TP + FA’

TP
l= ———. 1
Reca. TP £ MA (D)

Precision =

575



Proceedings of APSIPA Annual Summit and Conference 2019

18-21 November 2019, Lanzhou, China

TABLE I: Performance comparison in terms of F1- and F2-scores. The highest score in each test is boldfaced.

Models Registered Case A Case B

F1-score F2-score F1-score F2-score Fl1-score F2-score
Lim et al. [7] 67.41 72.30 57.57 63.64 45.32 53.32
SIFT + ratio test 61.32 68.87 58.40 67.73 61.49 68.43
Proposed 65.45 71.46 65.82 71.24 66.05 71.52

Also, we compute two types of F-measure. The F-measure is
defined as

Precision - Recall
(82 - Precision) + Recall

Fg=(1+p%- )
where § determines the ratio of the influence of precision and
recall. We use Fl-score, which is the traditional F-measure
with 8 = 1. It is the harmonic mean of precision and recall,
so it is influenced by precision and recall with equal strength.
We also use F2-score, which weighs recall more importantly
than precision with 3 = 2. Therefore, F2-score gets a larger
penalty by MAs than by FAs. In a surveillance system, FAs
can be double-checked by personnel, whereas MAs do not
have such opportunities. Thus, F2-score is more suitable as an
assessment tool for change detection techniques.

C. Comparison Results

Table I compares the performance of the proposed algorithm
with SLN in [7]. Note that [7] cannot be expected to provide
high performance in cases A and B. On the contrary, the
proposed algorithm yields robust performances in both cases.
In the case of registered image pairs, the proposed algorithm
provides comparable scores to [7].

Fig. 5 compares change detection results. Lim et al.’s
algorithm [7] yields lots of false positives, since the image
pair contain geometric distortions. In contrast, the proposed
algorithm provides more reliable results with fewer errors.

D. Ablation Study

We carry out an ablation study to analyze the effectiveness
of the reliable match selection using change detection. As a
baseline, in the keypoint matching phase, for each keypoint
in I;, the two closest matching keypoints are found, whose
distances are d; and do, where d; < ds. Then, the ratio
test [17] is performed, and the closest match is accepted if
d1 < 0.75 - dy. Then, for each pair of corresponding blocks,
among the accepted pairs, the best pair with the smallest
descriptor distance is selected as a reliable match pair. Table I
also includes the performance of this baseline (SIFT + ratio
test). We see that, as compared with the baseline, the proposed
algorithm provides significantly higher F-scores. Fig. 5(d)
shows change detection results of the baseline as well. Many
pixels are falsely detected due to land cover changes and
similarly looking buildings. Especially, in the second and
fifth rows, there are significant land cover changes, which

Reult map

Fig. 6: Update of change detection maps according to the
iterative registration of satellite images.

cause registration failures and yield lots of false positives. In
contrast, Fig. 5(e) shows more robust change detection results.

Fig. 6 shows how the image registration and the change
detection are collaboratively performed in the proposed algo-
rithm. We see that, as the iteration goes on, the reference image
I, is more accurately aligned with the target image I» and a
more accurate change detection map is obtained.

IV. CONCLUSIONS

We proposed a robust change detection algorithm for tem-
poral satellite images with geometric distortions. We extracted
keypoint descriptors and obtained matching pairs of descrip-
tors between two images. By employing existing change
detection and image registration techniques collaboratively,
we selected reliable matching pairs to reduce the impacts
of inaccurate matching, caused by land cover changes and
similarly looking buildings. We then estimated an affine trans-
form and aligned the two images. Finally, we obtained a
change map from the aligned images. The image registration
and the change detection were iteratively performed until the
convergence. Experimental results showed that the proposed
algorithm detects actual change regions robustly even if image
pairs are not correctly registered.
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