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Abstract—In this paper, we investigate the cell outage detection
in Self-Organizing Networks. The purpose of cell outage detection
is to automatically detect whether there exist some failures or
degradation in the base stations, such that users could not obtain
mobile services, or the obtained mobile services do not fulfill
their requirements. The cell outage detection in 5G is with great
challenge. The deployment of future 5G mobile communication
networks would be heterogeneous and ultra-dense. The mobile
communication environments are very complicated. They include
the multipath transmission, fading, shadowing, interference,
and so on. Users’ mobility and usage pattern also vary. In
such environments, the mobile data would be large-scale and
high-dimensional. Traditional small-scale and low-dimensional
anomaly detection methods would be unsuitable. Moreover,
operational mobile communication networks should be normal
almost all the time. Cell outage would be seldom. Therefore,
the normal data and anomaly data would be imbalanced. In
this paper, we formulate the cell outage detection problem as an
anomaly detection problem. We propose an cell outage detection
method using the autoencoder, which is a neural network that is
trained by unsupervised learning. The network could be trained
in advance even when the cell outage data is still not available.
Moreover, the autoencoder is also useful for denoising. This
proposed method could thus automatically detect the cell outage
in complicated and time-varying mobile wireless communication
environments. Comprehensive system-level simulations validate
the performance of the proposed method.

Index Terms—5G, Self-Organizing Network, Cell Outage De-
tection, Autoencoder.

I. INTRODUCTION

In the fifth generation of mobile communication systems
(5G), various key software technologies, especially those
for mobile communication network management, would be
adopted [1]. With the evolution of software technologies
and the improvement of computation capabilities, the vision
of automatic network management combined with machine
learning techniques becomes realistic.

The vision of automatic network management is already
defined as the self-Organizing Network (SON) [2], which in-
cludes Self Configuration, Self Optimization, and Self Healing.
The developing trend in 5G mobile communication networks
includes the heterogeneous network integration, ultra-dense
networks, small cell base stations. Therefore, SON gets more
and more important for 5G [3].

In this paper we investigate the cell outage detection (COD)
problem, which is one of the critical issues in Self Healing.
The objective of cell outage detection is to detect whether

there exists any malfunction of degradation in base station(s)
which leads to service unavailability or unsatisfactory. The cell
outage detection in 5G is a very challenging problem. The
deployment of 5G mobile communication networks would be
heterogeneous and ultra-dense. The communication environ-
ments include multi-path fading, noise, and interference, and
thus would be very complicated. User movement and service
demand would change rapidly. In such environments, the
mobile data would be large-scale and high-dimensional. Tra-
ditional small-scale and low-dimensional anomaly detection
methods would be unsuitable. Moreover, operational mobile
communication networks should be normal almost all the time.
Cell outage would be seldom. Therefore, the normal data
and anomaly data would be imbalanced. This data imbalance
causes challenges to traditional classification techniques using
supervised learning.

In this paper, we formulate the cell outage detection problem
as an anomaly detection problem. We propose a cell outage
detection method using the autoencoder, which is a neural
network that is trained by unsupervised learning. The data
for the network training comes from the Reference Signals
Received Power (RSRP) and Reference Signals Received
Quality (RSRQ) values from the measurement reports. The
network could be trained in advance even when the cell
outage data is still not available. Moreover, the autoencoder
is also useful for denoising. This proposed method could thus
automatically detect the cell outage in complicated and time-
varying mobile wireless communication environments. Com-
prehensive system-level simulations validate the performance
of the proposed method.

The major contributions of this paper are threefold:
1) We design a novel cell outage detection method called

the Cell Outage Detection with Autoencoder (CODA)
method. This method is unsupervised and thus avoid
the data labeling work. The network could be trained
in advance even when the cell outage data is still not
available.

2) The proposed CODA method only uses the RSRP and
RSRQ values of neighboring cells in the measurement
report from mobile stations. It does not require the
location information of mobile stations, and thus avoid
the privacy and location accuracy issues.

3) The proposed CODA method is distributed and thus
scalable to large-scale mobile service regions. The com-
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putation of the proposed CODA method could be per-
formed distributively in a cluster of several base stations
or some mobile edge computing equipment.

The rest of this paper is organized as follows. In Section
II we describe the related work in the literature. The system
model and problem formulation are presented in Section III.
The proposed CODA method is described in Section IV,
followed by the simulation results and discussions in Section
V. Finally, conclusions are presented in Section VI.

II. RELATED WORK

Klaine et.al. provided a comprehensive literature survey for
applying machine learning techniques in Self-Organizing Net-
works [4]. Moysen and Giupponi also provided the literature
survey and analysis of similar issues [5]. They all pointed that
the deep learning would be the trend of future Self-Organizing
Networks, and there exist many challenges to solve.

The 3rd Generation Partnership Project (3GPP) defined the
specification for the Minimization of Drive Tests (MDT),
which is one of the key technologies in SON [6]. MDT defines
the collection and transmission of measurement reports from
mobile stations to base station, in order to predict the signal
coverage and to save the time and cost of mobile communi-
cation service providers to perform drive tests. However, the
location information of user equipment is not always accurate.
Akbari et.al. provided an analytical model to quantify the
effect of positioning errors on the coverage prediction [7]. In
this paper, we use the measurement reports to obtain data to
train our model.

Kumar, Farooq, and Imran investigated proactive network
failure prediction methods [8]. They used realistic mobile
communication network data, and compared the performance
of the support vector machine and several neural networks.

Zoha et.al. used the MDT measurement reports and the
Fuzzy Q-Learning (FQL), which combines Fuzzy-Logic and
Q-Learning, to develop a cell outage detection platform [9].
They also use the Multi-Dimensional Scaling (MDS) to reduce
the dimensionality.

Ma et.al. also used the MDT measurement reports to inves-
tigate the cell outage detection problem [10]. They proposed
a Dynamic Affinity Propagation (DAP) algorithm. Based on
computer simulation results for heterogeneous network envi-
ronments, their proposed method could successfully detect cell
outage, and indicate specific outage areas.

Alias, Saxena, and Roy classified the states of 5G base
stations into four categories: healthy, degraded, crippled, and
catatonic [11]. They developed a Hidden Markov Model
(HMM) to automatically obtain the current states of base sta-
tions, and to predict the probability of cell outage. Simulation
results show that the prediction accuracy of their method is
80% in dense 5G heterogeneous networks.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In the system model, there exist multiple base stations, as
Fig. 1 shows. Each base station could be in the state of either
normal or outage. For those mobile stations associated with

Fig. 1. The system model of cell outage detection.

normal base stations, the mobile communication service meet
the users’ requirements. For those mobile stations associated
with outage base stations, the mobile communication service
would be unavailable or unacceptable.

The cell outage detection problem is to determine whether
there exist any outage base station(s) in the mobile com-
munication service region under consideration. This problem
could be also regarded as the anomaly detection problem, i.e.,
the problem to determine whether the mobile communication
service is normal or not.

Each mobile station measures the RSRP and RSRQ values
from the neighboring base stations, and send the measurement
report to the MDT Trace Collection Entity (TCE). The mea-
surement reports in the TCE are processed and transformed
to the ready-to-use dataset, and stored in the mobile data
warehouse. The cell outage detection method use the dataset
in the mobile data warehouse to detect the cell outage. If there
exists any cell outage, the Operations, Administration and
Management (OAM) would be notified, and then appropriate
cell outage compensation (COC) methods could be applied.

IV. PROPOSED CODA METHOD

In order to make the proposed CODA method to be scalable,
the whole mobile communication service region is divided into
multiple smaller service areas, each formed by a group of n
cells. Suppose that a mobile station generates a measurement
report x in a service area, where

x = {RSRP1,RSRP2, . . . ,RSRPn,RSRQ1,RSRQ2, . . . ,RSRQn} .
(1)

The measurement report would be high-dimensional when n
is medium to large. Since the cell outage detection problem
is equivalent to the anomaly detection problem, the proposed
CODA method uses the autoencoder to detect whether there
exists any cell outage in a service area with n cells. We use
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Fig. 2. The proposed cell outage detection method using autoencoder.

the autoencoder to detect whether the measurement report x
is normal or not.

Fig. 2 illustrates the autoencoder used in the proposed
CODA method. There are two symmetrical parts in the autoen-
coder, including the encoder and the decoder. The objective
of the encoder is to find the compressed representation of the
input features which are the RSRP and RSRQ values from
neighboring cells, so that the most important features could
be kept. This compressed representation is called the coding
of the input data. The high-dimensional measurement report
could be represented as the low-dimensional coding. The
objective of the decoder is to reconstruct the input data from
the coding. The output of the decoder is the reconstruction x̄.

The autoencoder tries to learn the identity function:

x̄ = f (x) ≈ x (2)

During the training of this autoencoder neural network, the
well-known back propagation algorithm is adopted. The opti-
mization objective is to minimize the reconstruction error L:

L (x̄,x) = ‖x̄ − x‖2 (3)

After the autoencoder is trained by using the normal dataset,
it is used to detect the anomaly of the new inputs. An appropri-
ate decision threshold is set depending on the precision-recall
consideration of mobile communication service providers.
When the reconstruction error of the new input data is below
the decision threshold, this new input data is predicted as
normal; otherwise, a cell outage is predicted.

V. SIMULATION RESULTS AND DISCUSSIONS

We use the ns-3 network simulator to generate the dataset
[12]. The ns-3 network simulator is a discrete-event network
simulator for research and educational purpose. 9 base stations
are deployed. The locations of these 9 base stations form a 3×3
squared matrix. The distance between adjacent base stations
is 500 meters. In each of the 9 cells, 50 mobile stations are
randomly deployed. Totally we deploy 450 mobile stations.

Fig. 3. The training loss and testing loss for each epoch.

The deployment radius is 250 meters. The transmission power
of each base station is set as 46 dBm. When the cell outage
occurs, the transmission power of the center base station is set
as 30 dBm. 33,528 normal measurement reports and 30,860
anomaly measurement reports are generated. After the data
processing and transformation, 2,466 normal data samples and
2,482 anomaly data samples form the ready-to-use dataset. The
total 4,948 data samples are randomly split into two parts:
the training dataset and the testing dataset. 20% of the data
samples are for testing. Thus we have 990 testing data samples.
The remaining 80% are for training. Among the training data
samples, we use the 1,959 normal data samples to train the
autoencoder. The training epoch is set as 500.

Fig. 3 shows the training loss and the testing loss for each
epoch. The loss is defined as the reconstruction error, as (3)
shows. Both the training loss and testing loss decrease quickly
for the first tens of epochs, and then keep almost consistent
after 100 epochs.

Fig. 4 shows the Receiver Operating Characteristic (ROC)
curve, which is a very useful tool to understand the perfor-
mance of anomaly detection. The ROC curve shows the true
positive rate versus the false positive rate for different decision
threshold values. The system performance is usually better
when the blue ROC curve is closer to the upper left corner.
When the false positive rate is 0.2, the true positive rate is
almost 0.8. Based on this ROC curve, we also calculate the
Area Under Curve (AUC) to be 0.86, which is good as it is
close to 1.

Precision and recall are also useful tools to understand
the performance of anomaly detection. Ideally, we want both
high precision and high recall, since high precision relates
to a low false positive rate, and high recall relates to a
low false negative rate. However, there usually exists some
tradeoff between precision and recall. Fig. 5 shows the tradeoff
between precision and recall, which is affected by the decision
threshold value. A high area under the blue curve represents
both high recall and high precision. For example, the proposed
CODA method is returning accurate results (precision = 0.8),
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Fig. 4. The ROC curve.

Fig. 5. Precision vs. recall.

as well as returning a majority of all positive results (recall ≈
0.75).

Fig. 6 and 7 shows the precision and recall for different
decision threshold values, individually. These two figures
show the trend that as the decision threshold value increases,
the precision is improved, but the recall decreases. If the
decision threshold value is set as 0.6, the precision would
be approximately 0.8, and the recall would be approximately
0.75.

While solving the cell outage detection problem, mobile
communication service providers might want to keep the flex-
ibility to find a suitable precision-recall tradeoff. For example,
0.75 recall mentioned above might not be good enough. The
decision threshold value could be decreased from 0.6 to, say,
0.55, in order to improve the recall, with the tradeoff to slightly
decrease the precision. Fig. 8 shows a scatter plot of the
reconstruction errors of the 990 testing data samples. The
reconstruction errors of the normal data samples are denoted
as blue circles, and the reconstruction errors of the outage
data samples are denoted as red crosses. This figure shows
that, most of the reconstruction errors of the normal data
samples locate at the lower part of the figure, and most of

Fig. 6. Precision vs. threshold values.

Fig. 7. Recall vs. threshold values.

the reconstruction errors of the outage data samples locate at
the higher part. This shows the effectiveness of the proposed
autoencoder-based method. The red horizontal line represents
the decision threshold value of 0.55. For those data points
below the decision threshold line, the proposed CODA method
predicts them as normal. On the contrary, for those data points
above the decision threshold line, the proposed CODA method
predicts them as outage.

Fig. 9 shows the confusion matrix of the proposed CODA
method when the decision threshold value is set as 0.55. The
true positive (403 at the lower-right) and the true negative (387
at the upper-left) occupy the majority of the 990 testing data
samples. The precision is 403/(403 + 120) = 0.77, and the
recall is 403/(403 + 80) = 0.83. Compared with the previous
case (decision threshold value = 0.6, precision = 0.8, and
recall = 0.75), the recall is improved, while the precision
slightly decreases. Mobile communication service providers
could adjust to appropriate precision-recall based on their
requirements.
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Fig. 8. Reconstruction error for normal and outage data with a decision
threshold boundary.

Fig. 9. The confusion matrix.

VI. CONCLUSION

In this paper we propose the CODA method to solve the cell
outage detection problem in 5G Self-Organizing Networks.
The proposed CODA method trains the autoencoder neural
network by the measurement reports from mobile stations, and
compares the reconstruction error of a new measurement report
with the decision threshold to predict whether there exists a
cell outage. Simulation results validate the effectiveness of the
proposed CODA method.

In the near future, we are going to investigate the possi-
bility to improve precision and recall of the proposed CODA
method. We will also investigate both the cell outage detection
and cell outage compensation solutions with deep learning /
reinforcement learning techniques.
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