
Evaluation of Multichannel Hearing Aid System by
Rank-Constrained Spatial Covariance Matrix

Estimation
Masakazu Une∗, Yuki Kubo†, Norihiro Takamune†, Daichi Kitamura‡, Hiroshi Saruwatari† and Shoji Makino∗

∗University of Tsukuba, Graduate School of Systems and Information Engineering, Ibaraki, Japan
†The University of Tokyo, Graduate School of Information Science and Technology, Tokyo, Japan

‡National Institute of Technology, Kagawa College, Kagawa, Japan

Abstract—In a noisy environment, speech extraction techniques
make hearing aid systems more effective and practical. Blind
source separation (BSS) is suitable for hearing aids because
it can be employed without any a priori spatial information.
Among many BSS methods, independent low-rank matrix anal-
ysis (ILRMA) achieves high-quality separation performance. In
a diffuse-noise environment, however, ILRMA cannot suppress
the noise since it is based on the determined situation. On the
other hand, rank-constrained spacial covariance matrix (SCM)
estimation overcomes the problem. This method utilizes spatial
parameters accurately estimated by ILRMA and compensates for
the deficiency of the spatial basis of diffuse noise. The application
of BSS methods to a multichannel binaural hearing aid system
with a smartphone has never been studied in detail thus far. To
clarify the efficacy of the BSS methods in real environments, we
record real sounds by constructing a hearing aid system with a
dummy head and a smartphone. In this study, we investigate
the applicability of BSS for a multichannel binaural hearing
aid system with microphones on a smartphone. Furthermore,
we apply ILRMA and the rank-constrained SCM estimation to
the recorded data and evaluate these methods in terms of their
separation performance.

I. INTRODUCTION

When we use a binaural hearing aid in a noisy environment,
target-speech extraction is necessary since speech is always
contaminated by noise. In binaural hearing aid systems, blind
source separation (BSS) [1] is suitable because it works
well without spatial information, e.g., microphone positions
around both ears, the head-related acoustic condition, the
target-speaker location (direction), and room reverberation.
Many BSS methods, such as frequency domain independent
component analysis [2], [3], independent vector analysis [4]–
[6], and independent low-rank matrix analysis (ILRMA) [7]–
[9], have been proposed . In particular, ILRMA achieves
effective and accurate separation by introducing nonnegative
matrix factorization (NMF) [10] to the source model. However,
these methods can be applied to only the determined or overde-
termined situations (the number of microphones ≥ the number
of sources), and their applicability is not realized when these
conditions are not satisfied (i.e., underdetermined case). On the
other hand, rank-constrained spacial covariance matrix (SCM)
estimation [11] has been proposed as an effective method for
a situation in which noise arrives from all directions, i.e.,
diffuse-noise case. Basically, this method estimates a full-

rank SCM [12], which represents spatial characteristics of the
diffuse noise, just as multichannel NMF (MNMF) [13], [14]
does. However, MNMF requires the estimation of an enormous
number of parameters, leading to a high computational cost.
In contrast, the rank-constrained SCM estimation reduces the
number of parameters by using the highly accurate spatial pa-
rameters obtained by ILRMA and restores the lost spatial basis
for diffuse noise. It was reported that the rank-constrained
SCM estimation achieves a more efficient and stable extraction
of target speech than MNMF under the simplified computer-
simulation-based acoustic condition, but the evaluation in real
situations remains a problem.

In this paper, first, we propose a new multichannel hearing
aid system composed of a distributed microphone array in-
cluding binaural ear-attached microphones and smartphone mi-
crophones. We utilize eight microphones that are synchronized
with the same sampling rate. Although all the microphone
positions are not specified in advance owing to variations
in user head sizes and smartphone location, BSS is fully
applicable to the distributed configuration. To the best of our
knowledge, there has been no study on BSS applied to such
a system. Second, we implement the rank-constrained SCM
estimation as a speech extraction algorithm in this hearing
aid system. We prepare a head-and-torso dummy with a
smartphone to imitate a person (hearing aid user) holding a
smartphone, and record the real diffuse noise at the multiple
microphones. On the basis of the results, we evaluate the
speech extraction performance of the rank-constrained SCM
estimation. The experimental results show that the proposed
method outperforms the conventional ILRMA in a realistic
situation.

II. FORMULATION AND BSS ALGORITHMS

A. Formulation

Let us consider separating the observed signals, which
are obtained by M microphones capturing the signals arriv-
ing from N sources. The source, observed, and separated
signals in each time-frequency slot are denoted as sij =
(sij,1, . . . , sij,N )> ∈ CN , xij = (xij,1, . . . , xij,M )> ∈ CM ,
and yij = (yij,1, . . . , yij,N )> ∈ CN , where i = 1, . . . , I ,
j = 1, . . . , J , and n = 1, . . . , N indicate the indexes of
the frequency bins, time frames, and sources, respectively.
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The operator ·> indicates transpose. When each source is a
directional target source and the window length of short-time
Fourier transform (STFT) is sufficiently larger than that of
the impulse response of the object space, the observed signal
and the mixing matrix Ai = (ai,1 · · ·ai,N ) ∈ CM×N in each
frequency bin have the relation

xij = Aisij , (1)

where ai,n is the steering vector for each source. If the number
of microphones is equal to that of sources (M = N ) and
Ai is not a singular matrix, the separated signal yij can be
obtained by estimating the demixing matrix W i = A−1i =
(wi,1 · · ·wi,N )H ∈ CN×M as

yij = W ixij , (2)

where the operator ·H denotes the Hermitian transpose.

B. ILRMA [7]

In ILRMA, the component of the nth source in each time-
frequency slot is assumed to be generated from a statistical
model that follows the univariate complex Gaussian distribu-
tion as

sij,n ∼ Nc

(
0,
∑
l

til,nvlj,n

)
, (3)

where til,n ≥ 0 and vlj,n ≥ 0 are NMF variables, l = 1, . . . , L
is an index of the NMF basis, and L is the number of
bases. Simultaneously, the observed signal xij follows the
multivariate complex Gaussian distribution because of the
reproductive property, i.e.,

xij ∼ Nc

(
0,
∑
n

rij,nai,na
H
i,n

)
, (4)

rij,n =
∑
l

til,nvlj,n, (5)

where rij,n corresponds to the nth source model that approx-
imates the power spectrogram using nonnegative values til,n
and vlj,n. The steering vector ai,n corresponds to the spatial
model as the rank-1 SCM constructed by the spatial basis
for the nth source. These NMF variables til,n, vlj,n and the
demixing matrix W i are obtained by maximum-likelihood es-
timation based on the maximization of statistical independence
between the sources.

C. Rank-Constrained SCM Estimation [11]

The rank-constrained SCM estimation focuses on a situation
where one directional target source and diffuse noise are
mixed. As the strategy of this method, the full-rank SCM
is estimated using the spatial basis of the one directional
target source and the noise SCM is estimated by ILRMA.
First, we apply ILRMA to xij and obtain one a ”noise-
contaminated target speech” component and M − 1 ”noise-
only” components (see [15] for the physical mechanism of
this phenomenon). Second, we calculate the noise SCM using
the above-mentioned components. Since the ILRMA-estimated

noise SCM lacks a rank corresponding to the target source
direction, which results in the rank-(M − 1) SCM, rank-
constrained SCM estimation is used to estimate the parameters
to compensate for the lack of the rank. Finally, multichannel
Wiener filtering is applied to suppress the noise diffusing
toward the target source. The overview of the algorithm is
described below.

The rank-constrained SCM estimation assumes the observed
signal xij as the sum of the source image vector hij =
(hij,1, . . . , hij,M )> and the diffuse noise image vector uij =
(uij,1, . . . , uij,M )>; i.e.,

xij = hij + uij . (6)

The source image vector hij is expressed using a vector
corresponding to the target source, a(h)

i =: ai,nh
out of the

spatial bases ai,1, . . . ,ai,N obtained by ILRMA, and the target
source image s(h)ij as follows:

hij = a
(h)
i s

(h)
ij , (7)

s
(h)
ij ∼ Nc

(
0, r

(h)
ij

)
, (8)

where nh indicates the index corresponding to the target
source and r

(h)
ij is the variance of the target source (power

spectrogram).
The variance of the target source r(h)ij is assumed to have

sparsity and the prior distribution follows an inverse gamma
distribution given by

p(r
(h)
ij ;α, β) =

βα

Γ(α)

(
r
(h)
ij

)−α−1
exp

(
− β

r
(h)
ij

)
, (9)

where α > 0, β > 0, and Γ(·) are the shape parameter, scale
parameter, and gamma function, respectively. On thie other
hand, the diffuse noise uij follows the following multivariate
complex Gaussian distribution and is statistically independent
of the target source hij :

uij ∼ Nc
(
0, r

(u)
ij R

(u)
i

)
, (10)

where r
(u)
ij and R

(u)
i are the variance and the full-rank

SCM of the diffuse noise, respectively. Here, N separated
signals ŷij,1, . . . , ŷij,N are obtained by ILRMA, and the SCM
of the diffuse noise R

(u)
i is represented as

R
(u)
i = R′

(u)
i + λibib

H
i , (11)

R′
(u)
i =

1

J

∑
j

ŷ
(u)
ij

(
ŷ
(u)
ij

)H
, (12)

ŷ
(u)
ij =

∑
n6=nh

ŷij,n, (13)

where R′
(u)
i is the noise SCM estimated by ILRMA whose

rank is M − 1, bi is a unit eigenvector corresponding to zero
eigenvalue of R′

(u)
i and λi is the weight variable. Note that,

in R
(u)
i , only λi is the variable to be optimized because R′

(u)
i

and bi are given by ILRMA as fixed values in advance. By
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modeling the prior distribution of the target source variance in
(9), we express the negative log likelihood function L of the
rank-constrained SCM estimation as

L(r
(h)
ij , r

(u)
ij , λi) =

∑
i,j

[
xH
ij(R

(x)
ij )−1xij + log detR

(x)
ij

+ (α+ 1) log r
(h)
ij +

β

r
(h)
ij

]
+ const.,

(14)

where const. does not depend on the objective variables.
The parameters of this negative log likelihood function L are
optimized by a maximum a posteriori estimation based on the
expectation–maximization (EM) algorithm [11].

The Q function is defined by the expected complete-
data log-likelihood values regarding the a posteriori proba-
bility p(s(h)ij ,uij | xij ; Θ̃) as

Q(Θ; Θ̃) =
∑
i,j

[
−(α+ 2) log r

(h)
ij −M log r

(u)
ij − log detR

(u)
i

−
r̂
(h)
ij + β

r
(h)
ij

−
tr
((

R
(u)
i

)−1
R̂

(u)

ij

)
r
(u)
ij

]
+ const.,

(15)

where Θ = {r(h)ij , r
(u)
ij , λi} is set of the set of parameters to

be updated, Θ̃ = {r̃(h)ij , r̃
(u)
ij , λ̃i} is the up-to-date parameters,

and r̂(h)ij and R̂
(u)

i are the sufficient statistics obtained by the
E-step. The update rules in the E-step are expressed as

R̃
(u)

i =R′
(u)
i + λ̃ibib

H
i , (16)

R
(x)
ij =r̃

(h)
ij a

(h)
i (a

(h)
i )H + r̃

(u)
ij R̃

(u)

i , (17)

r̂
(h)
ij =r̃

(h)
ij −

(
r̃
(h)
ij

)2 (
a
(h)
i

)H (
R

(x)
ij

)−1
a
(h)
i

+

∣∣∣∣r̃(h)ij xH
ij

(
R

(x)
ij

)−1
a
(h)
i

∣∣∣∣2 , (18)

R̂
(u)

ij =r̃
(u)
ij R̃

(u)

i −
(
r̃
(u)
ij

)2
R̃

(u)

i

(
R

(x)
ij

)−1
R̃

(u)

i

+
(
r̃
(u)
ij

)2
R̃

(u)

i

(
R

(x)
ij

)−1
xijx

H
ij

(
R

(x)
ij

)−1
R̃

(u)

i .

(19)

In the M-step, a coordinate ascent algorithm is applied to the
Q function, i.e.,

r
(h)
ij ←

r̂
(h)
ij + β

α+ 2
, (20)

Ki =
1

J

∑
j

1

r̃
(u)
ij

R̂
(u)

ij , (21)

λi = bHi Kibi, (22)

R
(u)
i ← R′

(u)
i + λibib

H
i , (23)

r
(u)
ij ←

1

M
tr

((
R

(u)
i

)−1
R̂

(u)

ij

)
. (24)

TABLE I
RECORDING CONDITIONS

Recording location Studio
Reverberation time (T60) 300 ms

Microphone C417 PP (AKG)
Loudspeaker ADIVA11 (Anthony Gallo)

Microphone preamplifier Octamic II (RME)
Audio interface 828x (MOTU)

TSP length 65536 samples
Recording sampling freq. 48 kHz

Fig. 1. (a) Overall view of head-and-torso dummy, (b) right-ear microphone
array, (c) smartphone microphones, and (d) left-ear microphone array.

After the convergence of the EM algorithm, we can construct
the multichannel Wiener filter [11] using the estimated r

(h)
ij ,

r
(u)
ij , and R

(u)
i with λi, and output the extracted target speech

component.
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III. MULTICHANNEL HEARING AID SYSTEM

A. Specification of Apparatus

In this experimental scheme we assume the situation where
a person wearing a multichannel hearing aid talks with some-
one facing him/her. We constructed the recording system and
recorded impulse responses and diffuse noise using eight
microphones that are synchronized with the same sampling
rate. Figure 1(a) shows the head-and-torso dummy, which
imitates a person wearing a binaural hearing aid and holding a
smartphone. Three microphones are attached to each ear [see
Figs. 1(b) and (d)]. The smartphone is attached 20 cm apart
from the chest and two microphones with the interelement
spacing of 4 cm are set on the smartphone [see Fig. 1(c)].
For convenience, we number each microphone as shown in
Figs. 1(b)–(d). The height of the dummy head is set to 170 cm
and the loudspeaker is set in front of the dummy head to
mimic the situation of conversation. Accordingly, the height
of the loudspeaker is set at 152 cm, corresponding to the mouth
position of the conversation partner whose head is of the same
height as the dummy head.

B. Recording of Impulse Response and Diffuse Noise

The time stretched pulse (TSP) signal is adopted in the
measurement. The conditions are shown in Table I. Eight
microphones are synchronized by the audio interface in this
research. When the proposed hearing aid system is used in an
actual situation, it is necessary to apply the following methods
to synchronize these microphones [16], [17]. The distance
from the dummy head to the loudspeaker is varied by 75,
100, and 150 cm, and the angle is varied by −20, 0, and 20◦,
where 0◦ means the normal to the dummy head. The overview
of the positions in nine recordings is shown in Fig. 2.

The diffuse noise is supposed to be a sound in a crowded
place, where many people talk and walk freely. We instructed
the volunteer subjects to walk around the dummy head and
read the designated sentences aloud. Assuming that the noise
sources surround the target source, we instructed them to walk
outside the 150 cm radius of the front half circle of the dummy
head.

IV. EXPERIMENTAL EVALUATION

A. Experimental Conditions

The purpose of this experiment is to evaluate the applicabil-
ity of ILRMA and the rank-constrained SCM estimation for a
multichannel hearing aid system in a real environment. Female
utterance was convolved with the impulse response to produce
the target speech. We used the utterances from the JNAS
database [18] and the recorded impulse response described
in Sec. III-B. Since the sampling rate of the corpus is 16 kHz,
the impulse response and diffuse noise were down-sampled
from 48 to 16 kHz. The observed signal was generated by
mixing the recorded diffuse noise and the target signal at
the input SNRs of −10, −5, and 0 dB. In ILRMA, the
observed signal was preprocessed by sphering transformation
by principal component analysis. In the rank-constrained SCM

Dummy head

75 cm
100 cm
150 cm

+ 20°- 20°

150 cm

Fig. 2. Position of loudspeaker (mouth of conversation partner) for nine
recordings.

TABLE II
EXPERIMENTAL CONDITIONS FOR BSS

Sampling freq. 16 kHz

FFT length 1024 sample
(50% overlap)

Window Hamming window
Number of bases

in low-rank model 10

Number of iterations
in ILRMA 50

Initialization of W i in ILRMA Identity matrix
Number of iterations
in rank-constrained

SCM estimation
10

estimation, the shape parameter α was experimentally chosen
and set to 0.5, 1.1, 10, and 20, and the scale parameter β
was set to 10−16. Initialization trials were conducted ten
times using different random values. The other conditions are
shown in Table II. We used source-to-distortion ratio (SDR)
improvement [19] as the objective measurement citation.

B. SDR Improvement Behavior

Figure 3 shows that the average SDR tended to improve
for every iteration under the −10 dB input SNR condition at
microphone 1 (nearest right external auditory canal). From
the figure, we can confirm that the rank-constrained SCM
estimation outperforms ILRMA in all recordings. The value
of the hyperparameter α greatly affects the SDR improvement
and it is better to set α large. Moreover, the rank-constrained
SCM estimation can achieve the highest SDR improvement
by the second or third iteration, showing the advantage of the
fast convergence.

C. SDR Improvement at Various Input SNRs

We concentrate our attention on the target speech angle of
0◦ and investigate SDR improvements by ILRMA and rank-
constrained SCM estimation in each input SNR. Note that
the second iteration score of the the rank-constrained SCM
estimation was adopted on the basis of the results in Sec. IV-B.

QCY
打字机文本

QCY
打字机文本

QCY
打字机文本

QCY
打字机文本
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Fig. 3. Average SDR improvements for each iteration at microphone 1 under
−10 dB input SNR condition.

Figure 4 shows the average SDR improvement at micro-
phone 1 in each input SNR. From Fig. 4, ILRMA achieves ac-
ceptable separation performance compared with the observed
signal. The SDR improvements by the rank-constrained SCM
estimation are higher than those by ILRMA especially at
lower input SNRs (i.e., −10 and −5 dB). Furthermore, we
can confirm that the sparse prior corresponding to a larger α
improves the separation performance in all the recordings.

V. CONCLUSIONS

In this study, we investigate the applicability of ILRMA
and the rank-constrained SCM estimation with a binaural
hearing aid system including microphones on a smartphone
in a real environment. We construct the experimental system
to record the impulse response and diffuse noise. Using the
recorded data, we evaluate the separation performance of
ILRMA and the rank-constrained SCM estimation . The ex-
perimental results show that ILRMA and the rank-constrained
SCM estimation work well for a the binaural hearing aid
scheme. Furthermore, the separation performance of the rank-
constrained SCM estimation is higher than that of ILRMA
especially under low-SNR conditions.
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