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Abstract—In this paper, we propose a new method for rare
sound event detection. Compared with conventional Convolu-
tional Recurrent Neural Network (CRNN), we devise a Dilated-
Gated Convolutional Neural Network (DGCNN) to improve
the detection accuracy as well as computational efficiency.
Furthermore, we propose a new loss function. Since frame-
level predictions will be post processed to get final prediction,
continuous false alarm frames will lead to more insertion errors
than single false alarm frame. So we adopt a discriminative
penalty term to the loss function to reduce insertion errors. Our
method is tested on the dataset of Detection and Classification
of Acoustic Scenes and Events (DCASE) 2017 Challenge task 2.
Our model can achieve an F-score of 91.3% and error rate of
0.16 on the evaluation dataset while baseline achieves an F-score
of 87.5% and error rate of 0.23.

I. INTRODUCTION

Recently, sound event detection (SED) has become increas-

ingly popular in the field of acoustic signal processing. The

goal of sound event detection is to detect the sound event and

the time boundaries.

Several challenges have been organized on the topic of

SED. The first Detection and Classification of Acoustic Scenes

and Events (DCASE) Challenge is organized by Queen Mary

University in 2013, creating an opening into the sphere

of public evaluations for everyday sounds. DCASE 2017

Challenge consists of four tasks and our research is relevant

to task 2 — detection of rare sound events [1].

Typical neural networks used in SED task include Convolu-

tional Neural Network (CNN) and Recurrent Neural Network

(RNN). CNNs are able to extract higher level features. RNNs

have shown strong performance in learning the longer term

temporal context. A method combining CNN with RNN called

Convolutional Recurrent Neural Network (CRNN) has been

proposed and shown further improvements [2], [3], [4]. In the

task 2 of DCASE 2017 Challenge, Lim et al. [2] and Cakir

et al. [3] utilized CRNN and they won the top two. There

are also some variants and developments of CRNN in this

task. For instance, Kao et al. [5] proposed a regional-based
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CRNN architecture and Shen et al. [6] proposed a CRNN

with temporal-frequential attention mechanism. RNN plays an

essential part in all of the above work.

However, in RNN, the next output depends on the previous

hidden state which does not allow parallelization. Training or

inference of RNN model will cost a lot of time. Our research

is SED based on CNN which can be more efficient since they

allow parallelization over sequential tokens.

In deep learning, the choice of loss function is also im-

portant. Phan et al. proposed weighted and multi-task loss

[7] for SED. In [8], the authors proposed a focal loss in

object detection, and it has shown great power to reduce data

imbalance in object detection. The dataset in SED is also

highly unbalanced. Inspired by [8], we propose a new loss

function to solve this problem.

Besides, we find that the most common error in SED is

not deletion error but insertion error, which means system

classifies the background sound as target sound event. So a

discriminative penalty term is devised to avoid such errors.

Our key contributions in this paper are as follows:

1) We replace currently popular CRNN with Dilated-Gated

Convolutional Neural Network (DGCNN) to enhance

the ability to capture context. Meanwhile, DGCNN is

based on convolutional neural network, leading to faster

computation at both training and test time. So proposed

method can achieve more efficient performance without

accuracy degrading.

2) We propose a new loss function for SED to reduce

insertion errors. Our elaborate loss function can

significantly improve the performance of SED.

II. METHODS

A. System Overview

The overview of SED system is illustrated in Figure 1. The

input of our system is log filter bank (fbank) feature. We

utilize deep learning model based on DGCNN as classifier.

The neural network will output a set of scores, denoting

the presence probabilities of sound event in each frame.

After post-processing including threshold method and median

filtering, scores will be converted into the start time and end
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Fig. 1. Overall architecture of proposed system.
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Fig. 2. Illustration of 3×3 convolution kernels with different dilation rates as
1, 2 and 4.

time of the target events. During training, a new loss function

is applied to enhance the classification capability of our model.

B. Dilated-gated Convolutional Neural Network

In this subsection, we will introduce dilated convolution,

gated convolution and their combination.

Dilated convolution is devised to exponentially expand the

receptive field with linearly increasing number of parameters.

It has been demonstrated in context aggregation with signif-

icant improvement of accuracy [9]. The specific formula of

dilated convolution is:

y (m,n) =

M∑

i=1

N∑

j=1

x (m+ r ∗ i, n+ r ∗ j)w (i, j) (1)

where x(m,n) is a 2-D signal, y(m,n) is the output of dilated

convolution with the dilation rate r and a filter w(i, j). Dilated

convolution is equivalent to a normal convolution when r = 1.

Dilated convolution works by introducing “holes” [10] in

the kernels. It is equivalent to a convolution with a larger

filter derived from the original filter by dilating it with

zeros. Compared with normal convolution, dilated convolution

is powerful in learning longer term temporal context. For

example, three stacked normal convolution layers with 3 × 3
kernel size only have 7 × 7 receptive fields. However, as

shown in Figure 2, three stacked dilated convolution layers

with dilation rate 1, 2 and 4 have 15×15 receptive fields. The

larger receptive fields, the stronger ability to learn longer term

temporal context.

Gated Convolutional Neural Network (GCNN) is proposed

by Dauphin in [11] to train language model. It utilizes gated

I
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O
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Fig. 3. Illustration of Dilated-Gated convolutional block.

units which are similar to RNN to control information flow to

the next layer. But compared with RNN, it greatly improves

the computational efficiency of networks. In GCNN, the output

of the convolutional layer is divided into A and B. A is

modulated with gated weights σ(B), where σ(·) is sigmoid

activation.

We apply the dilated convolution to gated unit in GCNN. We

called this new network DGCNN, which supports exponential

expansion of the receptive field without loss of resolution or

coverage.

The structure of dilated-gated convolutional block is illus-

trated in Figure 3. The input of this structure I will pass

2 architectures of 3 dilated convolution layers, turning to

two tensors A and B. The dilation rate of the three layers

are 1, 2, 4 respectively. Then B passes through sigmoid

activation function and multiplies with A by element-wise.

Meanwhile, in order to enable stronger performance, we add

residual connections from the input I to the output of DGCNN.

Residual network is introduced to avoid vanishing gradient

problem [12].
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The specific formula of DGCNN is:

A = I ∗W1 + b1 (2)

B = I ∗W2 + b2 (3)

O = I +A⊗ σ(B) (4)

where W1,W2 represent convolutional kernel values, and

b1, b2 represent biases. ⊗ represents element-wise production.

σ(·) is a sigmoid function.

C. A New Loss Function

In SED task, our system will output a set of scores.

After post-processing, scores will be converted into the start

time and end time. We use the threshold method to get

the prediction of each frame. Then the median filtering on

predictions is applied to reduce interference from background

noise. The longest continuous positive sequence is considered

as the target event.

If false alarm occurs in a single frame, this mistake can be

avoided with a filter. But if false alarms occur in a continuous

sequence, it may be difficult to avoid with a filter. Sometimes

the system may detect a long sequence of false alarms as sound

event. So we think that a single-frame false alarm should be

treated differently with a continuous long sequence of false

alarms.

To tackle this problem, we devise a discriminative penalty

term to avoid continuous misclassifications. In our architec-

ture, each frame will output a vector through convolutional

layers. This vector can be considered as the feature vector

of this frame. We set a parameter n, to count the Jaccard

similarity coefficient [13] of false alarm frame with adjacent n
frames as our penalty term. In an ideal case, there are only two

impulses in the outputs of our system: the beginning and the

end of target events. So we should try to smooth the outputs of

our system. The specific formula of the discriminative penalty

term is as follows:

C = σ

⎛

⎝
N∑

i=0

x+n∑

j=x−n

J (Ox, Oj)
(
1− y(i)

)
ŷ(i)

⎞

⎠ (5)

J (O1, O2) =

∑
i min (O1i, O2i)∑
i max (O1i, O2i)

(6)

where Ox represents the output of DGCNN, O1i and O2i are

the i-th element of O1 and O2. Jaccard similarity coefficient

J ∈ [0, 1]. The larger the jaccard coefficient value, the higher

the sample similarity. y(i) represents label, and ŷ(i) represents

prediction value. In experiments, the value of n is 10. Adding

C to loss function can avoid most continuous false alarms.

Futhermore, SED is a task with unbalanced dataset. To

mitigate data imbalance, the common method is to set dif-

ferent weight coefficients to different classes. While weight

coefficients balance the importance of positive and negative

samples, it does not differentiate between easy and hard

samples. Due to data imbalance, negative samples contribute

a lot to the loss function. But most of those negative samples

are easily classified and cannot provide enough information

for classification. So we should focus more on the negative

samples that can not give a correct prediction easily (hard

sample). We utilize a power function yγ as weight coefficient

to mitigate data imbalance. This loss function is similar to

focal loss [8]. The specific formula of loss function is as

follows:

L = − 1

N

N∑

i=1

[wpy
(i) log(ŷ(i))+

(1− y(i))(ŷ(i))2 log(1− ŷ(i))]

(7)

where y(i) represents label, and ŷ(i) represents prediction

value. wp is the weight for positive samples. The value of

wp is 5. (ŷ(i))2 means greatly reducing the loss from easy

negative samples.

In SED task, the positive samples are usually labeled 1

and negative samples are labeled 0. However, this method of

notation cannot reflect the weight of each positive samples

accurately. Because the samples close to target event center

and those far from target event center are treated equally. But

in fact, sound events almost appear with blurred boundaries,

and it is hard to distinguish them from the background clutters.

This issue is more pronounced for short sound event. So we

should focus more on the center of target events and pay less

attention to the margin. In order to implement this idea, we

give larger weights to those frames around the event center in

the loss function. The improved loss function is:

L = − 1

N

N∑

i=1

[wpy
(i) log(ŷ(i))+

(1− y(i))(ŷ(i))2 log(1− ŷ(i))] ∗ λca

(8)

λca (I) =
k√
2πσ

exp

(
− (I − μc)

2

2σ2

)
(9)

where y(i) represents label, and ŷ(i) represents prediction

value. I is the index of current frame, μc represents the index

of central frame of events. We set σ to 10. λca makes network

focus more on the center of target events.

III. EXPERIMENTS

A. Dataset

We demonstrate our proposed system on the dataset [14]

provided by DCASE 2017 Challenge task 2. The dataset is

divided into development dataset and evaluation dataset. We

use a subset of the development dataset to train and another

subset to optimize our model. Finally we evaluate our system

on the evaluation dataset. Dataset consists of isolated sound

events for each target class and recordings of everyday acoustic

scenes to serve as background. Target sound events include
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Fig. 4. Illustration of how our methods work. (a) The output of GCNN. (b) The output of DGCNN. (c) The output of DGCNN with new loss function. False
alarm errors occur in the dotted box, and the discriminative penalty term is high in this area.

baby crying, glass break and gunshot. The background audio

material consists of recordings from 15 different audio scenes.

The synthesizer is provided by DCASE challenge, and

we use it to generate the training set. The mixing event-

to-background ratios (EBR) are -6, 0 and 6 dB. The event

occurrence probability is set to 0.9. The generated training

set has 3000 monaural mixed audios with 44,100 Hz and 24

bits for each target class, and each mixture contains one target

event or no events.

B. Experiment Setup

We use fbank as the acoustic feature. It has been widely used

in SED with deep neural networks and has good performance

[15], [4]. Each audio sample is divided into 40 ms frames

with 50% overlap and 128 log mel-band energy features are

extracted from the magnitude spectrum of each frame. Finally,

each feature is normalized to zero mean and unit standard

deviation.

TABLE I
MODEL STRUCTURE AND PARAMETERS OF PROPOSED NETWORK.

Input 128×1500×1 Output size

Conv (kernel: [5, 5, 32]) 128,1500,32

BN-ReLU-Dropout(0.2)-Maxpooling(4×1) 32,1500,32

Conv (kernel: [3, 3, 64]) 32,1500,64

BN-ReLU-Dropout(0.2)-Maxpooling(4×1) 8,1500,64

Dilated-Gated Conv (kernel: [3, 3, 64]) 8,1500,64

BN-ReLU-Dropout(0.2)-Maxpooling(4×1) 2,1500,64

Gated Conv (kernel: [3, 20, 64]) 2,1500,64

BN-ReLU-Dropout(0.2)-Maxpooling(2×1) 1,1500,64

Fully-connected(unit num: 64) -ReLU-Dropout(0.2) 1500,64

Fully-connected(unit num: 1) 1500,1

The proposed network consists of two main parts: convolu-

tional layers and fully-connected layers. Convolutional layers

consist of two normal CNNs, a dilated-gated convolutional

block and a gated convolutional layer. The output of each

convolutional layer is followed by batch normalization [16],

a ReLU activation unit [17] and a dropout layer [18]. Then a

max-pooling layer is applied to keep some important features.

Then two fully-connected layers are used to combine extracted

features and output a set of scores. The structure of proposed

network is shown in Table 1 along with parameters.

TABLE II
PERFORMANCE ON DEVELOPMENT DATASET, IN TERMS OF DELETION

ERRORS AND INSERTION ERRORS. (1) DGCNN: DILATED-GATED

CONVOLUTIONAL NEURAL NETWORK. (2) PROPOSED: DGCNN WITH

NEW LOSS FUNCTION.

babycry glassbreak gunshot

Del. Ins. ER Del. Ins. ER Del. Ins. ER

DGCNN 0.08 0.09 0.16 0.02 0.03 0.05 0.12 0.12 0.23

Proposed 0.07 0.06 0.13 0.02 0.02 0.04 0.11 0.09 0.20

TABLE III
PERFORMANCE ON DEVELOPMENT DATASET, IN TERMS OF ER AND F1.
(1) GCNN: GATED CONVOLUTIONAL NEURAL NETWORK. (2) DGCNN:
DILATED-GATED CONVOLUTIONAL NEURAL NETWORK. (3) PROPOSED:

DGCNN WITH NEW LOSS FUNCTION.

babycry glassbreak gunshot average

ER F1 ER F1 ER F1 ER F1

GCNN a 0.19 90.4 0.06 97.0 0.27 86.1 0.17 91.2

DGCNN 0.16 91.8 0.05 97.4 0.23 87.3 0.15 92.2

Proposed 0.13 93.3 0.04 97.7 0.20 89.2 0.12 93.4

a In GCNN, we replace dilated-gated convolutional layer in DGCNN

with a gated convolutional layer.

Adam [19] is adopted for gradient based optimization. The

initial learning rate is 0.001 and the batch size is 64. We train

the classifiers for 100 epochs.

C. Evaluation Metrics

The evaluation metrics for the task are event-based error rate

(ER) and F1-score calculated using onset-only condition with

a collar of 500 ms. ER is the sum of deletion and insertion

error. F1-score is the harmonic average of precision and recall.

Sed eval toolbox is provided by the challenge to evaluate our

system. More details of the evaluation metrics can be found

in [20].

D. Experimental Results

We compare our proposed system with DGCNN on develop-

ment dataset, in terms of deletion errors and insertion errors

in Table 2. Compared with DGCNN, the insertion errors of

proposed system decrease greatly.

The results of our methods and other methods, in terms of

ER and F1-score, are given in Table 3 and Table 4. Our best

system outperforms most systems except the method ranked

1st in the challenge. We think the reasons leading to this results
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TABLE IV
PERFORMANCE ON EVALUATION DATASET, IN TERMS OF ER AND F1. (1)
BASELINE: OFFICIAL BASELINE PROVIDED BY DCASE COMMITTEE. (2)

1D-CRNN: DCASE 1ST PLACE MODEL. (3) CRNN: DCASE 2ND PLACE

MODEL. (4) AED-NET: DCASE 3RD PLACE MODEL.

babycry glassbreak gunshot average

ER F1 ER F1 ER F1 ER F1

GCNN 0.27 86.0 0.10 94.9 0.31 81.6 0.23 87.5

DGCNN 0.22 88.7 0.08 95.9 0.27 85.5 0.19 90.0

Proposed 0.17 90.3 0.08 95.9 0.24 87.6 0.16 91.3
Baseline 0.80 66.8 0.38 79.1 0.73 46.5 0.64 64.1

1d-CRNN [2] 0.15 92.2 0.05 97.6 0.19 89.6 0.13 93.1

CRNN [3] 0.18 90.8 0.10 94.7 0.23 87.4 0.17 91.0

AED-Net [7] 0.23 88.4 0.11 94.3 0.32 82.1 0.22 88.2

TABLE V
RUNTIME COMPARISON BETWEEN DGCNN AND CRNN.

DGCNN CRNN

train time 0.56 hours 5.22 hours

train speedup 9.3× 1×
test time per 30s audio 0.004 seconds 0.5 seconds

test speedup 125× 1×

are that our method is completely based on convolutional

neural network. Admittedly, RNN has stronger capability of

processing sequential data in spite of its slow computation. We

can achieve comparable performance with RNN only using the

combination of DGCNN and a new loss function. The runtime

comparison between DGCNN and CRNN model based on

Tesla P100 is shown in Table 5. We use the CRNN model

in [2], which consists of one convolution layers and two

LSTM layers. The efficiency of our system is much better

than CRNN.

Figure 4 is illustration of how our methods work. In Figure

4 (a), the blue curve denotes the outputs of GCNN. There is

a long continuous sequence of false alarm frames from 15 s

to 16 s, which may probably lead to insertion error. In Figure

4 (b), there is still a serious misjudgment from 15 s to 16 s,

but improvement has been made compared with GCNN. In

addition, there are some fluctuations on the boundary of target

event. This is possibly the result of the blurred boundaries of

target events. The yellow curve represents weight of λca. It

indicates that our system focuses more on the occurrence of

target events. The red curve is discriminative penalty term for

insertion error. Bigger penalty coefficients are given where

continuous false alarms occur, which can reduce insertion

error. Shown in Figure 4 (c) is the result of DGCNN with new

loss function. And the output curve of this system matches

well with ground-truth labels.

IV. CONCLUSION

In this paper, we propose a dilated-gated convolutional

neural network and a new loss function for sound event

detection. We demonstrate our model on task 2 of the DCASE

2017 Challenge, and achieve competitive performance. Com-

pared with CRNN, the speed of our model has been greatly

improved. Furthermore, our new loss function can effectively

reduce insertion errors. Experiments on task 2 of the DCASE

2017 Challenge demonstrate the effectiveness and efficiency

of the proposed methods.
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