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Abstract—Recently, model compression that aims to facilitate
the use of deep models in real-world applications has attracted
considerable attention. Several model compression techniques
have been proposed to reduce computational costs without signif-
icantly degrading the achievable performance. In this paper, we
propose a multimodal framework for speech enhancement (SE)
by utilizing a hierarchical extreme learning machine (HELM)
to enhance the performance of conventional HELM-based SE
frameworks that consider audio information only. Furthermore,
we investigate the performance of the HELM-based multimodal
SE framework trained using binary weights and quantized input
data to reduce the computational requirement. The experimental
results show that the proposed multimodal SE framework outper-
forms the conventional HELM-based SE framework in terms of
three standard objective evaluation metrics. The results also show
that the performance of the proposed multimodal SE framework
is only slightly degraded, when the model is compressed through
model binarization and quantized input data.

I. INTRODUCTION

In real-world conditions, background noise can severely de-
grade the quality and intelligibility of speech signals, thereby
limiting the development of speech related applications [1]–
[7]. Numerous signal processing-based speech enhancement
(SE) methods have been proposed in the past to alleviate
the background noise problem [8]–[11]. While these methods
have been applied to improve the intelligibility for both
human listening and machine recognition, the results have not
always been satisfactory especially in regards to real acoustic
conditions. Recently, approaches based on nonlinear spectral
mapping have been proposed and confirmed to be effective
in many SE tasks. The mapping function for these approaches
aims to transform noisy speech to clean speech and is generally
realized by a machine learning-based model. Several studies
have been conducted to investigate the potential of deep-
learning-based models with fine-tuned parameters for SE.

For these approaches, a set of noisy and clean utterances is
required to train the deep models. For example, the authors
of [12] [13] proposed frameworks based on deep neural
networks and deep denoising autoencoder (DDAE) to perform
SE in non-stationary noise conditions. In [14] and [15],
convolutional neural networks were used to transform noisy
logarithmic power spectra (LPS) features and complex spectral
features to their clean counterparts, respectively. Similarly, in
[6] and [16], SE systems based on long short-term memory
and recurrent neural networks were proposed to reduce the
noise effects effectively. Although these deep-learning-based
approaches have achieved state-of-the-art performance, they
have the following limitations: (a) mismatched training/test
conditions can severely deteriorate the system performance,
and (b) a large amount of training data is required to achieve
satisfactory generalization performance, which may limit the
applicability of these frameworks in real-world scenarios.

To overcome the limitations of both conventional signal
processing and deep-learning-based SE approaches, in our
previous work [17] [18], we have proposed an alternative SE
framework by adopting a hierarchical structure of the extreme
learning machine (ELM) model. The parameters of the feature
extraction layers of the hierarchical ELM (HELM) do not need
to be fine-tuned using back propagation algorithms, thereby
providing an extremely fast training phase with good general-
ization performance and general approximation capability.

Recent studies have shown that visual modalities, such as lip
motions and mouth articulations, carry important information
that can help distinguish similar speech sounds under noisy
conditions [19]–[21]. Several audio-visual methods have been
proposed recently to learn multimodal features for SE tasks us-
ing multimodal learning strategies. In [22], [23], feedforward
and convolutional neural network models were used to build
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an audio-visual SE system, which successfully improved the
noise reduction performance compared with that of audio-only
frameworks. In [24], a speech separation system was proposed,
which used a deep-learning-based model to combine audio-
visual information. Meanwhile, Li et al. proposed a cross-
modal student-teacher learning framework to fully utilize the
audio-visual information to attain improved speech recognition
performance under challenging conditions [25].

In this work, we extend our previously proposed HELM-
based SE framework [17], which adopts audio information
only (thus termed HELMa), by incorporating a visual modality
to further improve the SE performance. The proposed HELM-
based audio-visual SE framework, termed HELMav, first pro-
cesses the audio and visual modalities separately and then
learns multimodal features and an output weight matrix. In
addition to the state-of-the-art performance achieved by the
deep-learning-based techniques in different classification and
regression tasks, a considerable amount of research has been
done on quantization-based model compression strategies to
improve the computational capability of deep-learning-based
systems for efficient online learning without degrading much
of system’s overall performance [26]–[28]. Motivated by the
satisfactory performance achieved by the model compression
strategies for back-propagation-based methods, we employ bi-
narization and quantization schemes to train the feed-forward
only framework (HELMa and HELMav) for efficient learning
using binary weights and quantized data. The experimental
results demonstrate that the introduction of visual modality
can improve the performance compared with that of HELMa in
terms of three standardized objective measures: the perceptual
evaluation of speech quality (PESQ) [29], hearing aid speech
perception index (HASPI) [30], and segmental signal-to-noise
ratio improvement (SSNRI) [31]. The results also show that
by binarizing the weights (limiting the weights to +1 and -1)
and quantizing the input data (representing the mantissa bits in
a single floating-point number with fewer bits), the proposed
framework still operates well and the overall SE performance
of the system is only marginally affected.

The remainder of this paper is organized as follows:
Section 2 introduces the proposed HELMav SE system as
well as the model binarization and input data quantization
schemes. Section 3 presents the experiential setup and results.
Section 4 provides concluding remarks.

II. PROPOSED METHOD FOR SPEECH ENHANCEMENT

A. HELM-based Multimodal System for Speech Enhancement

To improve the learning capability of ELM further, Tang et
al. introduced HELM by maintaining the unique and effective
characteristics of the ELM [32]. The HELM has two stages: an
unsupervised stage and a supervised regression/classification
stage. In the unsupervised stage, a stack of ELM-based AEs
is used to extract sparse and informative representations from
the input data. The output of the unsupervised stage is subse-
quently processed by the supervised regression/classification
stage for making the ultimate decision.
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Fig. 1: The HELM-based multimodal SE framework.

In our previous HELM-based SE (HELMa) framework [17],
during the offline phase, the LPS features of the noisy and
clean speech spectra were initially estimated and subsequently
processed by HELM to learn the mapping function. In the
testing phase, the noisy LPS features were processed by the
HELM model to generate the enhanced LPS features. The
phase of the original noisy speech was used to obtain the
denoised speech waveform. Fig. 1 presents the architecture
of the proposed HELMav framework, where the outputs of
the two modalities from the two independent hierarchical
ELM-based AEs are subsequently combined and fed into
the supervised regression stage to learn the joint multimodal
representation and output weight matrix. For HELMa, the
relationship between the noisy and estimated speech signals
is written as

Y = H(X) Ba, (1)

where H(X) is the hidden layer output matrix for the input
noisy speech signal X, Y is the estimated speech signal, and
Ba is the output weight matrix for HELMa.

On the other hand, the estimated speech signal for the
HELMav framework can be computed by combining the audio
and visual information as

Y = [H(X) + H(V)] Bav, (2)

where H(X) and H(V) are the hidden layer output matrices of
the audio and visual modalities, respectively, Bav is the output
weight matrix for the integrated audio-visual information, and
Y is the estimated speech signal.
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B. Binarization and Quantization

Although HELM already provides an extremely fast training
phase with good generalization performance and a universal
approximation capability, we can apply model compression
strategies, namely binarization and quantization, to reduce
the computational requirement further. In this study, we train
our frameworks (HELMa and HELMav) by limiting the real-
valued weights to either binary values, i.e., -1 or +1 ({-1,
+1}) or ternary values, i.e., {-1, 0, +1}. To transform the real-
valued weights to binary or ternary weights, we use the criteria
suggested in [33] and [34] as follows

wb =

{
+1 if w ≥ 0

−1 otherwise,
(3)

where wb is the binary weight, and w is the real-valued weight.
In our implementation, we used the “hard sigmoid” activation
function rather than the “soft sigmoid” activation function:

σ(x) = clip(0.5 ∗ x+ 0.5, 0, 1). (4)

For ternary weight generation, we require a third quantized
value to represent the weight. Accordingly, we used a threshold
∆ to quantize the weight into {−1, 0,+1}:

wt =


+1 : if wt ≥ ∆

0 : if | wt | ≤ ∆

−1 : if wt < −∆,

(5)

where wt is the ternary weight. In our experiments, the
threshold ∆ was set to 0.5.

Subsequently, we quantize the input data with fewer
precision bits. The objective is to construct a computationally
efficient multimodal HELM framework with low-precision
input data in order to reduce the computational requirement
of HELM without affecting the performance. Typically, the
value of a parameter of the input data is represented in IEEE
754 [35] single-precision floating-point format. The IEEE
754 binary format consists of 32 bits: the most significant bit
or the sign bit (i.e., the bit at position 31) which represents
the sign (0 indicates positive and 1 indicates negative), 8
exponent bits (bit positions 30 to 23) which represent the
exponent part, and 23 fraction (or mantissa) bits (bit positions
22 to 0). More information about the quantization can be
found in the experimental evaluation section.

III. EXPERIMENTAL EVALUATIONS

A. Experimental Setup

The dataset used to evaluate the performance of the pro-
posed multimodal HELM framework is the same as that
prepared and used by Hou et al. [22], which contains the
video recordings of 320 Mandarin utterances spoken by a
native speaker. The recordings were based on the transcript
of the sentences from the Taiwan Mandarin hearing in noise
test (TMHINT) sentences [36]. The video was recorded at a
frame rate of 30 frames per second (fps) and at a resolution

of 1920 pixels × 1080 pixels whereas the audio was recorded
at a sampling rate of 48 kHz, which was subsequently down-
sampled to 16kHz for further processing. We selected 100 ut-
terances from the corpus as the training set, and 40 utterances
as the testing set. There was no overlap between the training
and testing utterances. The training and testing utterances were
subsequently contaminated with stationary and non-stationary
noise types at different signal-to-noise ratio (SNR) levels. To
verify the effectiveness of the proposed multimodal HELM
framework, we used three noise types, i.e., restaurant, babble,
and party crowd. The clean training utterances were artificially
contaminated with these three noise types at four different
SNR levels (SNR ∈ {-6, -3, 3, 6 dB}) to generate 100 ×
3 (noise types) × 4 (SNRs) = 1200 noisy utterances. Two
scenarios were considered to prepare the test set: matched
and mismatched conditions. In the matched condition scenario,
the aforementioned 40 testing utterances were contaminated
with two matched noise types, namely babble and party
crowd, at two matched SNRs, i.e., SNR ∈ {-6, 6 dB}, and
three mismatched SNRs, i.e., SNR ∈ {-2, 0, 2 dB}. In the
mismatched condition scenario, the clean testing utterances
were contaminated with three unseen non-stationary noises,
namely applause, baby cry, and grocery store, and one unseen
stationary Pink noise at two matched SNRs, i.e., SNR ∈ {-6, 6
dB}, and three mismatched SNRs, i.e., SNR ∈ {-2, 0, 2 dB}.

The performance of the proposed framework was evaluated
based on three objective evaluation metrics: PESQ, SSNRI,
and HASPI. Higher scores of these metrics indicate better
speech quality, speech SNR, and intelligibility, respectively.

B. Audio-visual Feature Extraction

Our preliminary results showed that considering ± 2 neigh-
boring speech vectors could achieve better performance, gen-
erating LPS features of dimensions 257 × (ws × 2 + 1), where
ws is the contextual window size: ws = 2 was used in our ex-
periments. The visual features were the same as those prepared
by [22], in which the visual information was processed in the
form of an image sequence at a frame rate of 50 fps to be
synchronized with the speech utterance frames. The images
were subsequently cropped into an area of 16 × 24 pixels
to extract mouth shape features by detecting the mouth part
using the Viola-Jones method [37]. The corresponding visual
information thus provided visual features with dimensions 16
× 24 × 3 × 5, where 3 represents its RGB channel and 5 is
the neighboring visual vectors.

1) HELMav vs HELMa Analysis: We first evaluate the per-
formance of the proposed HELMav framework against those
of the previous HELMa framework, existing conventional
SE methods such as log minimum mean square error (log-
MMSE) [9], subspace-based Karhunen Loeve transform (KLT)
[38], and robust principal component analysis (RPCA) [39].
HELMa only utilizes the audio to learn the spectral mapping
function. For a fair comparison, both HELMa and HELMav
frameworks use the same sigmoidal activation function and
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regularization parameters used in [17]. The numbers of hidden
neurons of HELMa were ([1000 1000 4000]). For HELMav,
we employed a late integration strategy where the audio and
visual modalities were handled separately in the unsupervised
stage to transform the low-level features to representative
features. The representations learned for both modalities were
subsequently combined in the supervised stage to learn the
multimodal transformation. The same HELM-based AE ar-
chitectures (two layers, each layer consisting of 1000 hidden
neurons) were used to process audio and visual data separately
in the unsupervised stage, and 4000 hidden neurons were
used in the integration module. Table I presents the average
PESQ scores attained using these methods under matched
and mismatched testing conditions. From the table, it can be
observed that both HELM frameworks outperformed the three
conventional SE methods with a reasonable margin. In the
meanwhile, HELMav achieved superior average PESQ scores
compared with HELMa. Moreover, although HELMa and
HELMav achieved significantly better speech quality demon-
strated by higher PESQ scores for almost all matched and
mismatched noise types, the three conventional SE frameworks
performed relatively well for the mismatched stationary Pink
noise, especially logMMSE. The results in Table I demonstrate
that HELMav yielded superior performance in terms of the
PESQ score among all the frameworks, thereby confirming
the effectiveness of the multimodal structure under matched
and mismatched testing conditions.

Subsequently, we compare the intelligibility and SNR im-
provements of the different SE frameworks. Fig. 2 shows the
performance comparison of the different frameworks using
HASPI and SSNRI evaluation metrics for different noise types.
It can be observed that HELMa and HELMav achieved better
generalization performance as demonstrated by higher average
scores of HASPI and SSNRI for different noise types except
for mismatched Grocery store and Pink noise, where HELMa
performed slightly worse than logMMSE, KLT, and RPCA.
Among all the frameworks, HELMav performed the best with
providing better speech intelligibility and higher SNRs (i.e.,
higher HASPI and SSNRI scores).

2) HELM with Binary and Ternary Weights: Subsequently,
we analyze the performance of the two HELM frameworks
by adjusting the real-valued weights to either binary or
ternary weights. The frameworks were trained by limiting

TABLE I: AVERAGE PESQ SCORES OF KLT, LOGMMSE,
RPCA, HELMA , AND HELMAV PROCESSED SPEECH SIG-
NALS UNDER MATCHED AND MISMATCHED NOISE CONDI-
TIONS.

Framework Noise Type
Avg.Babble Crowd party Applause Baby cry Grocery store Pink noise

KLT 1.8939 1.8521 1.7567 1.7666 1.8041 2.3862 1.9099
logMMSE 2.2138 2.1473 1.8963 1.9725 2.0986 2.5774 2.1510

RPCA 2.2588 2.2363 1.9979 2.0285 2.1831 2.4053 2.1850
HELMa 2.2644 2.2850 2.2979 2.4413 2.2602 2.3572 2.3137
HELMav 2.3269 2.3116 2.4302 2.5923 2.3995 2.4265 2.4145
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Fig. 2: Performance comparison of different frameworks using
HASPI and SSNRI evaluation metrics for six noise types
averaged across different SNRs.

the weights to either binary values ({+1, -1}) or ternary
values ({-1, 0, +1}). In this study, we only exploit the
deterministic binarization with hard sigmoid activation to
compute the output weight of the supervised layer of the two
frameworks. Table II lists the average PESQ scores of the
two frameworks trained using binary and ternary weights.
It can be observed that both HELMa and HELMav trained
using binary and ternary weights achieved a slightly lower
performance compared with the frameworks trained using
real-valued weights (average PESQ scores for HELMa =
2.3137 and for HELMav = 2.4145, as shown in Table I).
When using binary weights, the average PESQ scores for
HELMa = 2.1852 and for HELMav = 2.3646; when using
ternary weights, the average PESQ scores for HELMa =
2.1839 and for HELMav = 2.3691, as shown in Table II. It
is also noted that the single-modality framework HELMa
performed worse than the multimodal framework HELMav
when binarizing or ternarizing the model parameters, which
indirectly confirms the effectiveness of incorporation the
visual information. Moreover, there is no significant difference
in the performances of both frameworks trained using binary
and ternary weights. Therefore, we only use binary weights
in the following experiments.

TABLE II: AVERAGE PESQ SCORES OF HELMA AND
HELMAV WITH BINARY AND TERNARY WEIGHTS UNDER
MATCHED AND MISMATCHED NOISE CONDITIONS.

Weights Framework Noise Type Avg.Babble Crowd party Applause Baby cry Grocery store Pink noise

Binary HELMa 2.1201 2.1208 2.1737 2.3930 2.1430 2.1603 2.1852
HELMav 2.2790 2.2895 2.3941 2.5284 2.3468 2.3499 2.3646

Ternary HELMa 2.1157 2.1220 2.1761 2.3901 2.1447 2.1550 2.1839
HELMav 2.2850 2.2972 2.3991 2.5276 2.3520 2.3539 2.3691
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3) Quantized Input Data and HELM with Binary Weights:
In this section, we further investigate the effectiveness of the
compressed HELM frameworks using quantized input data.
Here, we only quantized the mantissa (i.e., precision) bits.
More specifically, we converted the input data into the IEEE
754 binary format and quantize the mantissa bits of the input
data with fewer bits. There are 23 mantissa bits in the IEEE
754 single-precision format. In the experiments, we quantized
the b least significant bits of the mantissa part such that 23
- b bits remained in the mantissa part. The last b bits of
the mantissa part were removed, and the remaining bits were
subsequently combined with the exponent bits and the sign bit
to convert back to the floating point.

Table III shows the performance of the two HELM frame-
works trained using 16-bit quantized input data with real-
valued weights and binary weights under matched and mis-
matched noise conditions. It can be observed that the proposed
HELMav framework with either real-valued or binary weights
maintained a satisfactory performance as demonstrated by a
marginal reduction in the average PESQ score. However, the
performance of HELMa degraded notably when using 16-bit
quantized input data. HELMav trained using quantized input
data and binary weights attained a slightly lower average
PESQ score (2.3088, as shown in Table III) compared with
HELMav trained using original data with binary weights (av-
erage PESQ = 2.3646, as shown in Table II). There was only
a small relative reduction of 2.37% in the average PESQ score
when the precision of the data was reduced to 50% (from 32
bits to 16 bits). However, the audio-only framework (HELMa)
was unable to maintain a stable performance. When HELMa
was trained using binary weights, its average PESQ score was
reduced from 2.1852 (using 32-bit data, as shown in Table II)
to 2.0422 (using 16-bit quantized data, as shown in Table III).
The relative PESQ reduction is approximately 6.54%, which is
higher than that of HELMav (2.37%) (from 2.3646 to 2.3088).

Fig. 3 presents the average HASPI and SSNRI scores
of the different HELM frameworks across six noise types
at different SNR levels. We compared the performances of
the different HELM frameworks: HELMa trained using real-
valued weights (termed HELMa(R)), HELMav trained using
real-valued weights (termed HELMav(R)), HELMa trained
using binary weights (termed HELMa(B)), HELMav trained
using binary weights (termed HELMav(B)), HELMa trained
using quantized input data with binary weights (termed

TABLE III: AVERAGE PESQ SCORES OF HELMA AND
HELMAV USING 16-BIT QUANTIZED INPUT WITH REAL-
VALUED AND BINARY WEIGHTS UNDER MATCHED AND MIS-
MATCHED NOISE CONDITIONS.

Weights Framework Noise Type Avg.Babble Crowd party Applause Baby cry Grocery store Pink noise

Real-valued HELMa 2.1260 2.0947 2.1589 2.2662 2.0680 2.1397 2.1422
HELMav 2.2918 2.2354 2.3792 2.6043 2.3205 2.3158 2.3578

Binary HELMa 1.9898 1.9592 2.0859 2.3555 1.9280 1.9349 2.0422
HELMav 2.2341 2.2089 2.3425 2.5733 2.2559 2.2383 2.3088
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Fig. 3: Performance comparison of HELMa and HELMav using
HASPI and SSNRI evaluation metrics for different SNRs
averaged across six noise types.

HELMa(Q+B)), and HELMav trained using quantized input
data with binary weights (termed HELMav(Q+B)). Notably,
multimodal HELM frameworks with real-valued weights, bi-
nary weights, and even quantized input data with binary
weights maintained stable HASPI and SSNRI scores even at
low SNR levels. The results again confirm that the visual
modality used in the HELMav frameworks plays a crucial role
in reconstructing a signal even when using quantized input
data and binary weights at low SNR levels. The proposed
framework maintained a stable performance with reduction in
the computational requirement of HELM, enabling its use in
the hardware implementation for multimodal environments to
obtain an efficient regression ability.

IV. CONCLUSION

In this paper, we proposed a novel HELMav framework
for SE to improve the performance of our previous HELMa
framework. The main contribution of this study is threefold.
First, we confirm that incorporating visual information with
audio can enhance the SE performance under various noise
conditions across different SNR levels when limited training
data are available. Second, a compressed framework was
employed for HELM to replace the real-valued weights
with binary or ternary weights to reduce the model size.
Third, the input data quantization was adopted to reduce
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the computational requirement. Our experimental results
demonstrate that visual information helps the framework
retain most of the information lost owing to the model
binarization and input data quantization. The proposed
multimodal framework with the binarization and quantization
processes can be very useful in real-time situations, where
the data arrive in a sequential stream and under dynamically
changing and non-stationary environments.
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