978-988-14768-7-6©2019 APSIPA

Proceedings of APSIPA Annual Summit and Conference 2019

18-21 November 2019, Lanzhou, China

Reversible Data Hiding in PDF Document
Exploiting Prefix Zeros in Glyph Coordinates

Neelesh Nursiah, KokSheik Wong
School of Information Technology
Monash University Malaysia, Malaysia.
{nnur15@student., wong.koksheik @ }monash.edu

Abstract—In the contemporary world of information tech-
nology, PDF (Portable Document Format) has become the de
facto document standard which allows users to exchange and
view electronic documents across various platforms. PDF is the
most widely exchanged document format since Internet gained
popularity. Although PDF has a good authenticity system by
making use of digital signatures, the file format is still susceptible
to copyright infringement as there are many libraries available on
the Internet to bypass the digital signature of a PDF. Therefore,
claiming ownership for PDF has become a paramount issue
that needs to be addressed. This paper proposes the idea of
hiding data in the glyph positioning coordinate value. To suppress
bit stream size increment, the reverse zero-run length coding
technique is adopted. Experiments are conducted to verify the
basic performance of the proposed data hiding method. In the
best case scenario, 0.62 bits of data can be embedded into each
Byte of the PDF file. The injected leading zeros can be removed
to restore the original PDF file.

Index Terms—PDF, copyright infringement, glyph positioning
coordinate value, data hiding, reverse zero-run length

I. INTRODUCTION

Due to massive growth of Internet, Portable Document For-
mat, commonly referred to as PDF [1], has become the staple
for worldwide electronic document exchange. This electronic
file format is preferred over other formats because it has many
fitting functionalities, hence allowing better page navigation,
interactive viewing, and so on. It also provides propitious se-
curity to maintain the authenticity, accessibility, confidentiality
and integrity of a document. Many organizations are realizing
the importance of this file format and are gradually replacing
paper-based information circulation by PDF.

Data hiding is a technique which injects payload (data to be
hidden) into a container such as video, audio, PDF and so on.
Among numerous methods in data hiding, the mostly investi-
gated ones are steganography and watermarking. The former
is derived from two Greek words, i.e., steganos which means
concealed and graphos which means writing. The concealment
of the secret communication by means of container is the main
purpose of the steganography, while the watermark is used to
protect the container by inserting information for the purpose
of copyright protection and fingerprinting. In steganography,
only the sender and the intended recipient are aware of the
fact that data has been concealed into the container [2].

This work was partly supported by E-Science grant (01-02-10-SF0327) by
MOSTL

1298

Minoru Kuribayashi
Graduate School of Natural Science and Technology
Okayama University, Okayama, Japan
kminoru@okayama-u.ac.jp

It is commonly recognized that the trade-off among payload,
transparency, and robustness should be considered for a good
data hiding method. In addition, the secrecy of the existence
of the hidden message should be managed against malicious
party. In case of PDF, the expansion of the file size should be
suppressed so as not to be noticed. In conventional works [3]-
[8], the spaces between words and characters are slightly
modified to insert message. Bitar et al. [6] used the STDM
(spread transform dither modution) [9] to maintain the secrecy
of message, although the payload is small. Kuribashi et al. [7],
[8] utilized an ordinary DM (dither modulation) [9] combined
with a random permutation prior to frequency transformation
to enhance the secrecy. It can control the transparency and
robustness by flexibly changing the payload. However, even
if the distortions caused by the modification is imperceptible,
transparency is sacrificed in these methods.

In this paper, we propose a novel technique to hide data into
PDF file without causing any visual distortion. The data is hid-
den by manipulating the glyph positioning coordinate values.
To suppress bit stream size increment, the reverse zero-run
length coding technique [10] is adopted. Compared to other
state of the art data hiding techniques based on space length
manipulation, the proposed method causes zero distortion to
the visual appearance while the conventional methods leads to
some changes in spacing. Thanks to the functionalities in PDF
format, the permissions to be viewing/editing can be managed
by giving a password. Hence, it enables us to give a privilege to
a user who has the password can receive the hidden message,
and other users may not notice the existence of the message.
In this case, a stagananalyzer must check the irregularity of
PDF file without the password. As the visual appearance is
not changed, he/she must analyze the document of the file.
Due to the permission setting of the file, such an analysis is
difficult. As the experimental result shows that the expansion
of the file size is small, the hidden message can be kept secret
in the proposed method.

II. PRELIMINARIES

The structure of a PDF container is as shown in Fig. 1.
It consists of 4 parts namely, Header, Body, Cross-reference
table and Trailer. Specifically, the header contains information
about the file so that a PDF parser/reader can detect whether
the file is a PDF or not, and it also indicate the version of the

APSIPA ASC 2019

Proceedings of APSIPA Annual Summit and Conference 2019

Stream

Header BT
/F1 48 Tf

Body 100110150 Tm
(AWAY)T]

100110100 Tm
[(A) 120 (W) 120 (A) 95 (Y)] TJ

Cross-refernce table

Trailer

ET

(a) Layout of PDF
File

End-stream

(b) Syntax of PDF stream
Fig. 1. Layout of PDF file and syntax of PDF stream

PDF. The body consists of the actual document itself, which
is made up of nine types of objects. These objects are the
basic building blocks of the PDF, including null, Boolean,
integer, real, name, string, array, dictionary and stream. Each
object has either a direct- or indirect reference marker and a
generation number (i.e., binary offset). On the other hand, the
cross-reference table allows quick reference to every indirect
object that the PDF processor requires at any particular time.
Finally, the trailer is a dictionary with key-value pairs that
provides information (e.g., size and root) that is needed in
order to parse / process the PDF file.

In the body of the PDF, the syntax for rendering text, images
and figures is enclosed in the stream object, i.e., between
stream and end-stream. Within this stream object, we are
interested in the TJ operator enclosed between BT and ET,
which stands for Begin Text and End Text, respectively. The
TJ operator takes an array as an input, where the array consist
of one or more strings with numbers. The number is referred
to as the glyph positioning value expressed in thousandth of a
unit. The number appears between strings, for the purpose of
adjusting the position of the characters / words. An example
of the TJ operator and its input array is

[(A) 120 (W) 120 (A) 95 (V)] TJ (1)

which is shown in Fig. 1(b).

The operator and input array are utilized to display the word
AWAY, and the glyph positioning values adjust the placement
of alphabets in a more appealing manner.

III. PROPOSED DATA HIDING METHOD

In PDF, a number (viz., float or integer) can have a leading
zero, which does not change the value of that number. For
instance the number 12.3 can be written as 012.3. The look-
and-feel of the document rendered from a modified PDF
file appears to be exactly the same as that of its original
unprocessed counterpart. This has been verified by visual

18-21 November 2019, Lanzhou, China

Original:
[(D)12 (a) 13 (t) 14 (a) 15 (H) 16 (i) 17 (d) 18 (i) 19 (n) 20 (g)]

After hiding:
[(D)12 (a) 13 (t) 014 (a) 15 (H) 16 (i) 17 (d) 018 (i) 19 (n) 020 (g)]

Fig. 2. Changes observed in an input array due to data hiding.

inspection'. By exploiting the redundant (leading) zero, data
can be inserted. Specifically, the presence of a leading zero in
a glyph positioning value will signify the bit ‘1’ (e.g., 012.3).
On the other hand, the absence of leading zero signifies the
bit ‘0’ (e.g., 12.3), where the value remains unchanged. The
following steps are performed to hide data into a PDF:

1) Let u be the data (represented in binary format) to be
hidden.

2) A PDF file is decompressed using the Qpdf library []
since the stream objects are usually packed in some
compressed form.

3) Locations of the TJ operator are identified.

4) For each identified TJ operator, its input array is parsed
to manipulate the glyph positioning coordinate values.
Here, a leading zero is injected if ‘1’ is to be em-
bedded. Otherwise, the original representation remains
unchanged to signify ‘0’.

5) Step 4 is repeated until all data segments u; to be
embedded are processed, or when all TJ operators or
glyph positioning values are exhausted.

6) A new PDF file is constructed by replicating the un-
modified parts of the PDF bit stream, which includes
basically all elements, except the potentially modified
glyph position values along with the TJ operators.

7) The PDF file is compressed by using the Qpdf library.

8) The PDF file is then repaired using the PDFtk tool [11].

For instance to hide 001000101, the input array for a TJ

operator will undergo some changes as illustrated in Fig. 2,
where a leading zero is injected at the 3rd, 7th, and 9th
numbers. On the other hand, for data extraction, the following
steps are carried out using an empty queue Q:

1) The PDF is decompressed using the Qpdf library.

2) The locations of the TJ operators are located.

3) For each TJ operator, its input array is parsed to locate
the glyph position coordinate values. For each located
glyph position coordinate value, if a leading zero is
encountered, ‘1’ is added to the queue . Otherwise,
‘0’ is added to Q.

4) Step 3 is repeated until all glyph position coordinate
values are considered.

5) The queue @ then becomes the extracted data p'.

It is noteworthy that the zeros added during the data hiding
phase can be removed to reconstruct the original PDF file,
hence achieving reversibility.

The original and processed PDFs are rendered and exported as images.
The pixel-to-pixel difference between two images is considered and found to
be zero

1299

Proceedings of APSIPA Annual Summit and Conference 2019

IV. SUPPRESSION OF FILE SIZE INCREMENT

Recall that a leading (redundant) zero is introduced to a
glyph positioning coordinate value when ‘1’ is to be inserted.
Since the data to be hidden is usually random in nature (e.g.,
encrypted), to hide the data p, a zero is injected 50% of the
time. This may leads to significant file size increment, which
is undesirable.

To suppress file size increment, reverse zero-run length
(RZL) encoding technique is deployed [10]. Specifically, the
data p is pre-processed so that the resulting data v is hidden
instead of the original pu. First, p divided into segments of
k-bit for £ > 1, and each segment is processed one at a
time. Next, the segment p’ is converted into the decimal value
(denoted by 1t) and v; is the concatenation of ¢, number of
zeros, followed by unity. For example, p; = 110 implies that
v; = 0000001 (i.e., 6 zeros followed by ‘1’) and p; = 000
implies that v; = 1 (i.e., no zeros followed by ‘1’) for k = 3.
The process is repeated until all segments p; is processed.
Finally, v is defined as

vi= v, ve,). 2

The same process detailed in Section III is invoked to embed v,
instead of u. Similarly, at the receiver’s end, v is first obtained
then it is parsed to reconstruct u. Specifically, each segment
of v; is delimited by the value ‘1’. For example, the array

v = 00001 01 001 1 3)

implies that there are 4 segments (since there are 4 occurrences
of ‘1’). The number of zeros before a ‘1’ is then computed
and converted to its binary-equivalent value, with extra zeros
padded on the left to make up the length of % bits. For the
example given above, 4 data segments are retrieved, namely,
v1 = 00001, 5 = 01, v3 = 001 and v4 = 1, which translate to
w1 = 110, pe = 001, ps = 010, and pg = 000, respectively.
Note that the value k¥ = 3 in the illustrated example needs to
be communicated to the receiver to decode the data.

V. EXPERIMENTS

The proposed data hiding method is proposed using
Python (version 3.5.2). Qpdf [11] (version 8.0.2) and pdfTK
toolkit [12] (version 2.02) are deployed. For 10 random PDFs
are considered to verify the basic performance of the proposed
data hiding method. It is verified that the original and pro-
cessed PDF appear to be exactly the same. As a representative
example, Fig. 3 shows the original and processed PDF files.
In addition, the hidden data can be extracted, and the original
PDF can be restored from the processed PDF by removing the
injected zeros.

Table I records the file size of each PDF before and after
hiding data using different value of k£ for RZL. Here, the com-
pressed file size is reported, where the results for the processed
PDF (i.e., with data hidden) is obtained by decompressing
the original PDF, inserting data into the decompressed PDF,
repairing the PDF with hidden data, and then re-compressing
the resulting PDF. Note that when k = 1, the procedure

18-21 November 2019, Lanzhou, China

What others in the trenches say about
The Pragmatic Programmer. . .

“The cool thing about this book is that it’s great for keeping the
programming process fresh. [The book] helps you to continue to grow
and clearly comes from people who have been there.”

» Kent Beck, author of Extreme Programming Explained:
Embrace Change

“I found this book to be a great mix of solid advice and wonderful
analogies!”

» Martin Fowler, author of Refactoring and UML Distilled

“I would buy a copy, read it twice, then tell all my colleagues to run
out and grab a copy. This is a book I would never loan because I would
worry about it being lost.”

» Kevin Ruland, Management Science, MSG-Logistics

“The wisdom and practical experience of the authors is obvious. The
topics presented are relevant and useful. .. . By far its greatest
strength for me has been the outstanding analogies—tracer bullets,

(a) Original PDF

What others in the trenches say about
The Pragmatic Programmer. . .

“The cool thing about this book is that it’s great for keeping the
programming process fresh. [The book] helps you to continue to grow
and clearly comes from people who have been there.”

» Kent Beck, author of Extreme Programming Explained:
Embrace Change

“I found this book to be a great mix of solid advice and wonderful
analogies!”

» Martin Fowler, author of Refactoring and UML Distilled

“I would buy a copy, read it twice, then tell all my colleagues to run
out and grab a copy. This is a book I would never loan because I would
worry about it being lost.”

» Kevin Ruland, Management Science, MSG-Logistics

“The wisdom and practical experience of the authors is obvious. The
topics presented are relevant and useful. .. . By far its greatest

strength for me has been the outstanding analogies—tracer bullets,

(b) Processed PDF

Fig. 3. Original PDF and processed PDF with 74, 460 bits embedded. PDF1
is shown here as the representative example.

detailed in III is invoked to hide data, i.e., not using RZL.
In general, the file size increases when data is hidden into the
PDF file, irregardless of the value of k. This is an expected
outcome because zeros are injected into the PDF file to
encode additional data. In terms of percentage of variation, the
range is [—18%, 18%)]. When k increases, the increase in file
size also decreases accordingly. Nonetheless, there are some
interesting cases where the PDF containing additional data

1300

Proceedings of APSIPA Annual Summit and Conference 2019

18-21 November 2019, Lanzhou, China

TABLE I
FILE SIZE [BYTES] BEFORE AND AFTER HIDING DATA INTO 10 DIFFERENT PDF FILES IN THE COMPRESSED FORM.
k | PDF1I | PDF2 | PDF3 | PDF4 | PDF5 | PDF6 | PDF7 | PDF8 | PDF9 | PDFI0
Original | 1,676,158 | 2,044,845 | 5,469,503 | 12,927,921 | 15,297,492 | 15,571,908 | 5,661,249 | 38,988,175 | 10,811,677 | 25,578,325
1 1,695,668 | 2,045,629 | 5,478,348 | 12,332,031 | 12,497,098 | 18,404,930 | 5,831,093 | 38,631,381 | 10,837,040 | 26,324,804
2 1,689,598 | 2,043,453 | 5,413,863 | 12,141,251 | 12,599,464 | 18,317,220 | 5,821,221 | 38,626,287 | 10,834,802 | 26,324,591
3 1,678,993 | 2,039,435 | 5,394,782 | 12,113,121 | 12,500,380 | 18,188,208 | 5,800,813 | 38,615,684 | 10,830,632 | 26,324,391
4 1,668,221 | 2,034,604 | 5,383,104 | 12,113,121 | 12,552,757 | 18,185,956 | 5,777,584 | 38,603,869 | 10,826,097 | 26,324,035
5 1,656,056 | 2,029,194 | 5,378,966 | 12,113,121 | 12,460,907 | 18,185,956 | 5,752,000 | 38,590,910 | 10,820,992 | 26,323,798
TABLE I
FILE SIZE [BYTES] BEFORE AND AFTER HIDING DATA INTO 10 DIFFERENT PDF FILES IN THE DE-COMPRESSED FORM.
k | PDFI | PDF2 | PDF3 | PDF4 | PDF5 | PDF6 | PDF7 | PDF8 | PDF9 | PDFI0
Original | 3,693,447 | 4,719,512 | 34,403,226 | 111,770,098 | 24,331,971 | 64,550,934 | 24,245,138 | 189,917,042 | 119,079,831 | 184,071,792
1 3,767,846 | 4,752,838 | 36,198,831 | 112,039,658 | 33,890,051 | 64,750,799 | 25,822,818 | 194,171,244 | 119,270,038 | 184,352,205
2 3,747,690 | 4,743,819 | 35,845,196 | 111,796,703 | 24,466,625 | 64,646,114 | 25,781,129 | 194,145,495 | 119,262,110 | 184,351,959
3 3,729,074 | 4,735,492 | 35,799,556 | 111,770,098 | 39,683,372 | 64,552,357 | 25,742,622 | 194,121,713 | 119,254,785 | 184,351,731
4 3,715,598 | 4,729,459 | 36,001,807 | 111,770,098 | 24,399,218 | 64,550,934 | 25,714,747 | 194,104,494 | 119,249,479 | 184,351,565
5 3,704,530 | 4,724,506 | 36,545,191 | 111,770,098 | 24,337,597 | 64,550,934 | 25,691,852 | 194,090,357 | 119,245,125 | 184,351,432
TABLE III
HIDING CAPACITY FOR THE PROPOSED METHOD WHEN USING DIFFERENT k FOR RZL (BITS).
k| PDFl | PDF2 | PDF3 | PDF4 | PDF5 | PDF6 | PDF7 | PDF8 | PDF9 | PDFI0
1 | 74460 | 33,326 | 1,795,605 | 269,560 | 9,558,080 199,865 | 1,577,680 | 4,254,202 | 190,207 | 280,413
2 | 54,304 | 24,307 | 1,441,970 26,605 134,654 95,180 1,535,991 | 4,228,453 | 182,279 | 280,167
3 | 35,688 | 15,980 | 1,396,330 0 15,351,401 1,423 1,497,484 | 4,204,671 | 174,954 | 279,939
4 | 22,212 9,947 1,598,581 0 67,247 0 1,469,609 | 4,187,452 | 169,648 | 279,773
5| 11,144 | 4994 | 2,141,965 0 5,626 0 1,446,714 | 4,173,315 | 165,294 | 279,640

actually assumes a smaller file size than that of its original
counter part (e.g., see PDF1 for k > 5, or PDF5 for k = 1). A
potential reason to this phenomenon is that the hidden data, by
chance, causes the original bit stream to assume some specific
bit patterns, which can be efficiently coded by using shorter
codewords. This phenomenon will be further investigated as
one of our future work. It is interesting to note that, for most
cases, the following relation holds true:

FS(P) + |u| = FS(P), 4)
where P and P’ refers to the original and processed PDFs,
respectively. F'S(P) refers to the file size of P, and |u| refers
to the size of the payload w in the unit of bytes. Nonetheless,
there are some cases where the Eq. 4 does not hold true, and
they are indicated with boldface type setting in Table I.

For comparison purpose, the original and processed file
sizes, in their decompressed form, are reported in Table II.
It is noteworthy that the results show more consistent trend
where the file size increases when data is hidden into a PDF
file (compare 2nd row to 3rd row). In addition, file size also
decreases, in general, when k increases, which is expected
although some PDFs show abnormal trend (e.g., PDF3 and
PDF5).

In terms of payload, each PDF can hide certain amount of
data (see resulst for k£ = 1). Intuitively, PDF of larger file size
(see Table I) will have higher hiding capacity, and vice versa.
Nonetheless, the proposed method offers, on average, approx-
imately 0.14 bits per Byte. The detailed results are recorded

in Table III. As expected, the hiding capacity decreases as
k increases, since up to 2* positions (i.e., glyph coordinates)
can potentially be utilized to hide an original k-bit segment.
Although some PDFs (e.g., PDF6) do not offer any hiding
capacity when £ > 5, a smaller k¥ parameter value can be
considered. Therefore, there is a trade off between file size
and hiding capacity.

The advantage of the proposed method is in terms of
transparency because no visual distortion is introduced due
to data hiding. If a malicious party observes the body of PDF
file directly, the existence of hidden message can be easily
recognized. Such a direct observation can be restricted by
setting different access permission to the PDF file. As one of
the practical scenario, without a password, nobody can check
the document of PDF file. As the expansion of file size is
kept small in the proposed method, it is difficult to guess the
existence of hidden message only from a given PDF file.

VI. CONCLUSIONS

In this paper, a technique is put forward to insert data
into a PDF file. Specifically, it is observed that attaching a
leading zero to the glyph coordinate value will not crash the
decoder and the exact same value is interpreted. A simple
technique is put forward to hide data into PDF by exploiting
this observation. To suppress bit stream size increment, the
data is pre-processed using reverse zero run-length coding.
It is verified that the original and processed PDF appear to
be identical when they are rendered. It is confirmed that
the original PDF file can be restored from its processed

1301

Proceedings of APSIPA Annual Summit and Conference 2019

counterpart. In the best case scenario, 0.62 bits can be hidden
per Byte of the PDF file.

As future work, we shall explore the utilization of leading
zeros to hide more data. In addition, the possibility in combin-
ing the proposed method and conventional methods will also
be investigated.

[1]
[2]
[3]

[4]

REFERENCES

Adobe Systems Incorporated, ‘“Document management — portable
document format — part 1: PDF 1.7, ISO 32000-1:2008, July 2008.
L. Y. Por and B. Delina, “Information hiding: a new approach in text
steganography,” in Proc. ACACOS’08, 2008, pp. 689-695.

S. Zhong, X. Cheng, and T. Chen, “Data hiding in a kind of PDF texts
for secret communication,” Int. J. Network Security, vol. 4, pp. 17-26,
2007.

I. S. Lee and W. H. Tsai, “A new approach to covert communication
via PDF files,” Signal Processing, vol. 90, no. 2, pp. 557-565, 2010.
H.-F. Lin, L.-W. Lu, C.-Y. Gun, and C.-Y. Chen, “A copyright protection
scheme based on PDF,” Int. J. Innovative Computing, Information and
Control, vol. 9, no. 1, pp. 1-6, 2013.

[6]

[7]

[8]

[9]

(10]

(11]
[12]

1302

18-21 November 2019, Lanzhou, China

A. W. Bitar, R. Darazi, J.-F. Couchot, and R. Couturier, “Blind
digital watermarking in PDF documents using spread transform dither
modulation,” Multimedia Tools and Applications, vol. 76, no. 1, pp.
143-161, 2017.

M. Kuribayashi, T. Fukushima, and N. Funabiki, “Data hiding for text
document in PDF file,” in Proc. IHMSP’17, 2017, pp. 390-398.

M. Kuribayashi, T. Fukushima, and N. Funabiki, “Robust and secure
data hiding for pdf text document,” [EICE Trans. Information and
Systems, vol. E102-D, no. 1, pp. 41-47, 2019.

B. Chen and G. Q. Wornell, “Quantization index modulation: a class
of provably good methods for digital watermarking and information
embedding,” [EEE Trans. Inform. Theory, vol. 47, no. 4, pp. 1423—
1443, 2001.

K. Wong, K. Tanaka, K. Takagi, and Y. Nakajima, “Complete video
quality-preserving data hiding,” [EEE Transactions on Circuits and
Systems for Video Technology, vol. 19, no. 10, pp. 1499-1512, Oct 2009.
Jay Berkenbilt, “Qpdf manual,” https://www.cs.rit.edu/doc/qpdf/
gpdf-manual.html, accessed July 6, 2019.

Steward and Lee, “Pdftk,” https://www.pdflabs.com/tools/pdftk-server,
accessed July 6, 2019.

