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Abstract— A challenging task in the field of multimedia 
security involves concealing or eliminating the traces left by a 
chain of multiple manipulating operations, i.e., multiple-
operation anti-forensics in short. However, the existing anti-
forensic works concentrate on one specific manipulation, referred 
as single-operation anti-forensics. In this work, we propose using 
the improved Wasserstein generative adversarial networks with 
gradient penalty (WGAN-GP) to model image anti-forensics as an 
image-to-image translation problem and obtain the optimized 
anti-forensic models of multiple-operation. The experimental 
results demonstrate that our multiple-operation anti-forensic 
scheme successfully deceives the state-of-the-art forensic 
algorithms without significantly degrading the quality of the 
image, and even enhancing quality in most cases. To our best 
knowledge, this is the first attempt to explore the problem of 
multiple-operation anti-forensics.  

I. INTRODUCTION 

Image forensics and anti-forensics are techniques serving 
opposed purposes in the field of multimedia security. One 
major goal of image forensic algorithms is to reveal the traces 
left by manipulations such as resampling [1], JPEG 
compression [2], [3], median filtering [4], [5], contrast 
enhancement [6], [7], unsharp masking sharpening [8], etc. In 
response, various anti-forensic methods [9]–[16] have 
concentrated on hiding or removing these traces, with the aim 
of fooling the forensic algorithms and thus pushing them to 
become safer and more reliable. However, artifacts that are 
inevitably left by an anti-forensic algorithm while concealing 
the traces of manipulations are often found. Counter-anti-
forensic techniques [17]–[19] have also been explored to 
identify these artifacts left by anti-forensic algorithms. 

In reality, an attacker often makes use of a variety of 
operations such as gamma correction, median filtering, 
Gaussian blurring and JPEG compression, to cover up the 
visual traces left by image copy-move or splicing, e.g., 
inconsistencies in the background and artificiality of the 
boundaries. The existing anti-forensic researches focused on 
single-operation anti-forensics. Little work has been done on 
anti-forensics of multiple operations. How to hiding or erasing 
the traces left by multiple operations remains an open problem.  

Considering the gradient vanishing in traditional GAN [20]–
[23], we propose using WGAN-GP [24] to model image anti-
forensics as an image-to-image translation problem and obtain 
the optimized anti-forensic models, which can remove the 
traces left by multiple-manipulation chain. The experimental 
results show that our multiple-operation anti-forensic scheme 
successfully deceives state-of-the-art forensic algorithms 
without significantly degrading the image quality, and even 
enhancing the quality in most cases. 

II. NETWORK ARCHITECTURE AND LOSS FUNCTIONS 

The architecture of WGAN-GP framework involves a 
generator network (G) and a critic network (C) as illustrated in 
Fig. 1. 

A. Generator Network 

The generator network G, as shown in Fig. 1a, generates 
anti-forensically modified images. It takes a manipulated 
image, the pixel values of which are normalized to [−1, 1], as 
the input. The input image is first convolved with sixty four 
9×9 convolutional kernels, followed by a rectified linear unit 
(ReLU). Next, 16 identical residual blocks are used, each of 
which is composed of identical components, namely, two 
convolutional layers with 3×3 kernels and 64 feature maps, 
followed by a batch normalization (BN) layer and a ReLU as 
the activation function. We apply a skip connection to the 
output of each block, which is added to the output of the second 
BN layer of the next block. 

Following these residual blocks, there are three other 
convolutional layers with a stride of 1×1. The size of the feature 
maps remains consistent in every convolutional layer since we 
adopt “same” mode padding. After the last convolutional layer, 
we use a hyperbolic tangent (TanH) function for scaling the 
output pixel values within [−1, 1]. 

B. Critic Network 

The critic network C, as shown in Fig. 1b, is the opponent of 
G in GAN. It is trained to maximize the Wasserstein distance 
between the distributions of generated images and the original 
ones. 

C receives an input image, either a generated image or an 
original image, whose pixel values are within [−1, 1]. Then the 
high-frequency residual feature maps are extracted and 
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concatenated using five 5×5 high-pass filters, the same filters 
as that in [25]. Three convolutional layers with 64 filters of size 
7×7×6 and 2×2 stride, 32 filters of size 5×5×64 and 1×1 stride, 
and 32 filters of size 3×3×32 and 1×1 stride respectively are 
then deployed. Each of these convolutional layers is followed 
by a BN layer, a TanH or LeakyReLU as the activation function, 
and a 2×2 max-pooling layer with a stride of 2×2. Next, to 
achieve cross-channel information interaction and integration, 
we apply a convolutional layer with sixty four 1×1 kernels and 
a stride of 1×1. Finally, three fully connected (FC) layers are 
used, followed by the TanH activation function, to obtain a gap 
between the distributions of generated images and the original 
ones. 

C. The Loss Function of the Generator Network 

From the perspective of the generator, we want the generated 
images are similar with the original images, statistically and 
perceptually. Hence, the loss function for G are: ீܮ = ॱ࢞ᇲൣܮߙ௣ீ௜௫௘௟ + ௩ீ௚௚ܮߚ +  ௔ீௗ௩൧,                    (1)ܮߛ

where ܠ′	refers to the manipulated images; ܮ௣ீ௜௫௘௟ ௩ீ௚௚ܮ , , and ܮ௔ீௗ௩ denote the pixel-wise loss, the perceptual loss [28], and 
the adversarial loss, respectively; ߚ ,ߙ and ߛ represent the pre-
defined weights of each loss. The purpose of the training 
process for G is to seek optimal parameters for minimizing ீܮ. 

1) Pixel-Wise Loss 
Adopting the pixel-wise loss helps to obtain high PSNR in 

the training process. Given an original image ܠ  and its 
corresponding manipulated image ܠ′, both with the size of ܹ ௣ீ௜௫௘௟ܮ the pixel-wise loss ,ܪ×  is [27]: ܮ௣ீ௜௫௘௟ = ଵே ∑ ࢏ܠ| − ௜|ே௜ୀଵ(ᇱܠ)ܩ ,                          (2) 

where the subscript ݅ represents the pixel index of an image, 

ܰ = 	ܹ ×   .refers to a generated image (ᇱܠ)and G ,	ܪ
2) Perceptual Loss  
Perceptual loss represents the loss in image texture details, 

and it contributes to the generation of visually realistic images. 
It is defined as a ݈ଶ loss with respect to the differences in the 
CNN feature maps between the output generated image and its 
corresponding original image [28]: 

௩ீ௚௚ܮ  = ଵே∑ ቛ∅(ܠ)௜ − ∅൫ܩ(ܠᇱ)൯௜ቛଶଶே௜ୀଵ   ,               (3) 

where ∅(∙) indicates the feature map acquired from the output 
of the 12th convolutional layer  within the VGG-19 network, 
pre-trained on ImageNet [28]; ݅  and ܰ  represent the element 
index and the total number of elements in the feature maps, 
respectively.  

3) Adversarial Loss  
From the perspective of the generator, we want the images 

generated by G to narrow the gap in the distributions of the 
original images and the generated images. Thus, we can define 
the adversarial loss ܮ௔ீௗ௩ as ܮ௔ீௗ௩ =  ൯ ,                                   (4)(ᇱܠ)ܩ൫ܥ−

where ܥ(൉)	refers to the output of the critic network. 

D. The Loss Function of the Critic Network 

G and C are trained iteratively. G is fixed when C is trained, 
and vice versa. C is trained to maximize the gap between the 
distributions of original images and generated ones, i.e., the 
loss function of C: 				ܮ஼ = ॱ࢞ሾܥ(࢞)ሿ − ॱ࢞ᇲൣܥ൫ܩ(࢞ᇱ)൯൧ ଶ‖(ෝ࢞)ܥෝߘ࢞‖)ॱෝ࢞ሾߣ																		+ − 1)ଶሿ                               (5) 

 
 

(a) 

(b) 
Fig. 1   The architecture of the WGAN-GP framework for multiple-operation anti-forensics. (a) generator network. (b) critic network. The parameters K, 

n and s refer to the kernel size, the number of kernels and the stride of each convolutional layer respectively.  
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where ܠො = ܠ߳ + (1 −  means random samples which (ᇱܠ)ܩ(߳
is sampled uniformly from ܠ  and ܩ(ܠᇱ) ; ߳  ~ U [0, 1] is a 
uniform distributed random number; ‖∙‖ଶ means the ݈ଶ norm; ߣ is the gradient penalty coefficient constant and is set to 10 in 
this work.  

III. EXPERIMENTAL RESULTS 

We used public image dataset BossBase V1.01 (BossBase) 
to create twenty multiple-operation manipulated image 
datasets for training, and used public image dataset BOWS2-
Original (BOWS) to create twenty multiple-operation 
manipulated image datasets for testing. Each manipulated 
image has been subjected to a chain of two or three operations. 
Each manipulation is with random parameters which are listed 

in Table I. In Table I, SM operation is a popular contrast 
enhancement operation [7]; UMS operation [8] is a sharpening 
method in popular softwares such as Adobe Photoshop, and is 
implemented with the MATLAB command imsharpen(·) in this 
work, σ denotes  the standard deviation.  

For each multiple-operation chain, we applied the proposed 
chain anti-forensic scheme as follows: 

 (1) Train WGAN-GP networks using the training image 
pairs which includes an original image and a multiple-
operation manipulated one;  

(2) Generate 10000 anti-forensically modified images with 
the trained G in Step 1 using the test images; 

(3) Evaluate performance of the proposed anti-forensic 
scheme with state-of-the-art forensic methods, and compare the 
visual quality before and after anti-forensics. 

A. Training of WGAN-GP 

The proposed WGAN-GP framework was implemented in 
Tensorflow  and Tensorlayer and were trained on a workstation 
equipped with GPU of Nvidia GTX TITAN XP. For data 
augmentation, we cropped four non-overlapping middle parts 
with size of 128×128 from each image in BossBase and thus 
obtained 80,000 training image samples for each multi-
manipulation chains, half of which were original and half 
manipulated images. 

In the training, we first trained G with a batch size of 16 
manipulated images for two epochs. The learning rate is 5.0 ×10ିସ . The weight terms ߙ = ߚ ,1 = 0 and ߛ = 0. Then we 
trained the whole WGAN-GP networks for 60 epochs. In each 
epoch, C was trained for two iterations with a batch of 32 
images which contains 16 generated images and the original 
ones, while G was trained one iteration with the weight terms ߙ = 1.0, β = 1.0 × 10ି଺ and γ = 1.0 ×	10ିଶ. We employed 
Adam as an optimizer and ߚଵ = ଶߚ ,0 = 0.9 and ߝ = 10ି଼ for 
G and C. In the first 20 epochs, the learning rates of G and C 

TABLE I 
OPERATIONS, PARAMETERS AND DESCRIPTIONS USED TO BUILD OUR 20 

EXPERIMENTAL IMAGE DATASETS WITH RANDOM PARAMETERS WITHIN THE 

GIVEN RANGE 

Operation Parameters  and 
descriptions 

Additive White Gaussian Noise (AWGN) variance: 1.0, 1.44, ..,4.0 

Median Filtering (MF) window size: 3, 5, 7 

JPEG compression (JPG) QF: 55, 56, ... , 90 

Gamma Correction (GC) Gamma: 0.5, 0.6, ... ,2.0 

S Mapping (SM) [7] 

=(ݔ)݉ 255/ݔ2)݊݅ݏܿݎܽ)255)݀݊ݑ݋ݎ − 1) ߨ/ + 1/2)) 
 

Unsharp Masking Sharpening (UMS) with 
σ = 0.5, 0.6, ... , 1.5. [8] 

λ = 0.5, 0.6, ... , 1.5. [8] 

Gaussian Blurring (GB) with σ  = 0.5, 0.6, ... 
, 1, 1.2, 1.5, 1.8, 2.[8] window size: 3, 5, 7 

TABLE II 
 DETECTION ACCURACIES (%) OF FORENSIC DETECTORS AND AVERAGE PSNR (dB) AND SSIM VALUES FOR 12 KINDS OF TWO-OPERATION CHAINS AND OUR ANTI-

FORENSICS OF THESE CHAINS 

Manipulation 
Bayar 

[29] 

Chen 

[19] 
PSNR SSIM Manipulation

Bayar 

[29]

Chen 

[19]
PSNR SSIM 

UMS_JPG 99.72 99.99 31.334 0.910 JPG_UMS 99.93 99.99 30.703 0.893 

Anti_UMS_JPG 50.08 50.01 37.301 0.964 Anti_JPG_UMS 50.23 50.04 35.799 0.948 

SM_JPG 99.96 100.00 23.588 0.888 JPG_SM 99.80 99.99 23.657 0.895 

Anti_SM_JPG 50.37 50.00 36.108 0.944 Anti_JPG_SM 50.10 50.00 37.352 0.957 

GC_JPG 99.89 99.99 19.657 0.852 JPG_GC 99.95 99.99 19.644 0.853 

Anti_GC_JPG 50.00 49.99 19.924 0.865 Anti_JPG_GC 50.56 50.08 27.681 0.925 

MF_JPG 99.94 100.00 29.724 0.794 JPG_MF 99.92 99.96 29.867 0.798 

Anti_MF_JPG 49.98 50.01 29.425 0.821 Anti_JPG_MF 50.01 50.21 31.401 0.881 

AWGN_JPG 99.87 99.99 36.970 0.953 JPG_AWGN 99.93 99.97 36.515 0.945 

Anti_AWGN_JPG 50.03 50.00 36.833 0.952 Anti_JPG_AWGN 51.45 52.77 36.752 0.951 

GB_JPG 99.97 100.00 28.415 0.823 JPG_GB 99.95 99.99 28.727 0.837 

Anti_GB_JPG 50.01 50.00 31.948 0.882 Anti_JPG_GB 49.97 50.03 34.583 0.931 
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are set to 5.0 × 10ିସ  and 5.0 × 10ି଺  respectively, and was 
reduced to 1/10 times after each 20 epochs. 

The trained G is used to generate anti-forensic images. 

B. Multiple-Operation Anti-Forensics 

We used one of the most common operation, JPEG 
compression, as a post-processing or pre-processing operation 
to imitate the physical reality of the acquisition process of the 
camera, image storage, or digital transmission over the Internet. 
We generated multiple-operation anti-forensic images denoted 
by Anti_M_N or Anti_M_N_O with the trained G, each from 
10,000 manipulated BOWS images which has undergone a 
chain of two manipulations (denoted as M_N) or three 
manipulations from left to right (denoted as M_N_O), as can 
be seen in Table II and III, respectively. 

We used two state-of-art forensic detectors [19], [29] to 
detect whether an image is original or modified. Table II shows 
the detection accuracies for 12 kinds of two-manipulation 
chains and their anti-forensic. Average detection accuracies 
with the detector in [29] decrease from 99.90% for these 
manipulation chains to 50.23% for their anti-forensics, and 
average detection accuracies with the detector in [19] decrease 
from 99.90% for these manipulation chains to 50.26% for their 
anti-forensics, thus the anti-forensically modified images can 
successfully fool the forensic detectors.  

Table III shows the detection results for eight kinds of three-
manipulation chains. It can be observed that each anti-forensics 
of three-manipulation chain achieved nearly 50% detection 
accuracy, i.e., close to random guess, which also proves the 
effectiveness and generality of our scheme. 

C. Comparisons of Image Quality 

Fig. 2 shows an original image, the JPG_UMS manipulated 
image, and the generated anti-forensic image, i.e., 
Anti_JPG_UMS image. It is observed that the quality of the 
generated image and the manipulated image are very good. We 
also compared the image quality before and after anti-forensics 
in Table II and III in terms of the average PSNR and SSIM 
values with the original images as references. From Tables II 
and III, we can observe that the anti-forensic images have 
higher average PSNR and SSIM values in most cases than the 
images before anti-forensics, thus the proposed multiple-
operation anti-forensic method is effective against forensic 

detectors without significantly degrading the quality of an 
image, and even enhancing its quality in most cases.  

IV. CONCLUSIONS 

In this work, we propose using WGAN-GP framework to 
model image anti-forensics as an image-to-image translation 
problem and obtain the optimized anti-forensic models for 
multiple-operation. The experimental results demonstrate that 
our multiple-operation anti-forensic scheme successfully 
deceives the state-of-the-art forensic algorithms without 
significantly degrading the quality of the image, and even 
enhancing the quality in most cases.  
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