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Abstract—We focused on a study of comprehensive approaches
to an improved code-switching speech recognition, using data
augmentation and system combination methods. For data aug-
mentation, we not only use speech speed perturbation based
method, but we also attempt to add diversified room impulse
response based reverberate noise, as well as music, babble, and
white noise based additive noise. It is found we still can achieve
significant performance improvement with such noise-corrupted
data augmentation methods, though our SEAME code-switching
data belongs to a clean corpus. In addition to data augmentation
methods, we also adopt Minimum Bayesian risk-based lattice
combination method to further improve our recognition results.
We achieve significant word error rate (WER) reduction on lattice
combination with/without recurrent neural network language
model based lattice rescoring. Compared with our previous
efforts [6], we achieve up to 2.29% and 5.61% absolute WER
reduction on the two dev sets respectively, while 4.83% and 8.04 %
absolute WER reduction after system combination.

I. INTRODUCTION

Code-switching speech recognition [21] is gradually draw-
ing more and more attention in recent years as cross-lingual
contact between people from around the world increases. It
is also challenging because it contains cross-lingual transfer
within or between utterances. Consequently, it is hard to learn
a robust model due to data sparsity issue, compared with
monolingual speech recognition case.

To alleviate data sparsity issue, data augmentation [3], [16],
[8], [2], [24] is widely employed in diversified deep neural
network-based machine learning areas. By data augmentation,
we mean the original training data size is artificially expanded
by adding some modified data versions to the training data.
Taking speech recognition, for instance, one can be expanded
the training data size either by perturbing the original vocal
track length [7] or simply by perturbing the speed of the
original speech [11]. The latter makes the data three times
the original.it also shown consistent recognition performance
improvement is achieved. This is especially effective for a
small training data set.

In addition to data sparsity alleviation, one of another
function of data augmentation is to improve the robustness of
the training models. Aside from the approaches as mentioned,
one can also obtain robust speech recognition with data
augmentation by adding diversified noise to the original data.
One of the simpler kind of noise is additive noise, such as
music noise, babble noise, and white noise. Another kind of
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noise is reverberant noise, which is produced by convolving
the original data with the room impulse response (RIR) signal.

In this paper, we are meant to improve our code-switching
speech recognition performance with SEAME data [6], using
the data augmentation methods as above mentioned. Besides,
we also attempt to boost the results by lattice-based system
combination method [22]. We are motivated by the following
facts. 1) SEAME data is not a completely clean corpus. It has
background babble noise. Besides, it is recorded in diversified
meeting rooms. This suggests it should contain reverberant
noise to some degree. As a result, it is worthwhile a study to
see if the data augmentation utilizing adding noise corrupted
data helps.2) It has long proved one can obtain significantly
improved recognition results by combining diversified recog-
nition systems. We employ a lattice-based system combination
method hopefully to achieve further improvement.

This is natural since diversified data augmentation methods
yield diversified speech recognition systems.This paper is
organized as follows. In Section II,we introduce our method to
improve speech recognition performance. Section III describes
the technical details of our data augmentation methods, and in
Section IV we describe the data employed for the experiment.
In Section V, we report the experimental setup and results,
and finally, we conclude the work in Section VI.

II. PROPOSED APPROACHES TO AN IMPROVED SPEECH
RECOGNITION

Compared with our previous work [6] for code-switching
speech recognition on the SEAME corpus, we make several
improvements in terms of the pipeline as follows. First, we
are attempting to add both reverberant and white noise to the
training data, such that we evaluate the effectiveness of the
noise corrupted data augmentation method on the recognition
results. Secondly, we build acoustic models using state-of-the-
art work in [14]. Finally, we also perform comprehensive Min-
imum Bayes Risk-based lattice combination methods, which
yield significant performance improvement. For clarity, the
proposed methods are illustrated in Figure 1.

III. DATA AUGMENTATIONS
A. Noise data description

As mentioned earlier, we employ two kinds of noise
data sources. One is reverberant noise data source from
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Fig. 1: Tllustration of the proposed approaches to an
improved code-switching speech recognition

http://www.openslr.org/28. Tt is an entire bunch of Room Im-
pulse Response (RIR) data sets, that are to be convolved with
the training audio, generating reverberant noise effect. The
RIRs correspond to three categories, i.e., small-room, medium-
room, and large-room. Here, based on the actual SEAME
data recording environment consideration, we ignore the large-
room case for all the following experiments. Another noise
category is additive noise, that is obtained from MUSAN data
set [18], and is downloaded from http://www.opensir.org/17.
Some details of the noise data are reported in Table I.

Noise Type Description
) Sub-Type #Waves | length (hrs)
Samll room 20K
Reverberant | Medium room 20K -
Large room 20K
Music 645 ~41
Additive Babble 426 ~60
‘White 930 ~6

TABLE I: Noise data description

B. Data augmentation methods

As shown in Figure 1, we first perform noise corruption
based data augmentation and then the speech speed pertur-
bation based data augmentation [11]. For the latter, refer to
[12] for more details. We are here to detail how we conduct
noise corruption based data augmentation methods. Broadly
speaking, we conducted three kinds of methods adding noise.
They are outlined in Table II.

For easy notation, we denote reverberant noise as r, and
I, I'm, and I'mix represent small, medium, and mixing category
reverberant noise respectively. The ry,;x means we randomly

[ Method | Remark |
A Without original clean SEAME data included
Maximum data increase size is x4
B With original clean SEAME data included,
Maximum data increase size x5
With original clean SEAME data included,
C . . .
Maximum data increase size x2

TABLE II: Noise corruption based data augmentation
methods
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select small and medium room type during the process of
adding noise. Similarly, we denote music, babble, and white
noise respectively as m, b, and w. Tabel method A in Table
IT as example, A;n,w means we separately add reverberant
noise rg, music noise, and white noise to the training data,
such that the final data size is increased to three times of the
original data (i.e., x3). As a result, if the following speech
speed perturbation method that triple the data is considered,
we can produce up to 12 times of the original training data
after overall data augmentation operation, i.e., ~1200 hours
of training data in our case. Besides, there are many ways to
combine. In practice, we just conducted a small part of the
combination for method A. We do the method B in Table
Il similarly but merge the clean data before we do speed
perturbation. This means method B plus speed perturbation can
yield 15 times of the original training data. However, method
C is different though clean data is also considered. For method
C, whatever kind of noise data is obtained, we only randomly
extract part of the data that are close to the original SEAME
data in size. This is inspired by [19]. Consequently, it only
produces double of the original training data.

We use KALDI' script to add noise. For reverberant noise
data generation, we randomly extract the RIR files from a
given set to convolve with the data. For additive noise data
generation, we control the signal-to-noise ratio (SNR) range
5-15dB, 13-20dB, and 0-15dB for the music, babble, and white
noise respectively.

IV. DATA DESCRIPTION

All experiments are conducted on the SEAME data [6]. It
is an English-mandarin code-switching corpus, mostly uttered
by young college students in Malaysia and Singapore, with a
spontaneous close-talk attribute. During recording, all partic-
ipants are asked to have a free conversation with an anchor,
and only the speech of the participants are recorded?. All the
training and testing data used in this work are completely the
same with [6], where two dev sets, i.e., devy,, (about 7 hours)
and devg,. (about 4 hours), are separately defined. Both two
dev sets contain code-switching utterances which means there
are cross-lingual transfer in utterances, but the devsg. is biased
to English content, while the dev,,, is biased to Mandarin
content. Readers can refer to [6] for more details.

We note that all the above-mentioned data augmentation
methods are only conducted on the training data part, and
we fix the dev sets. As a result, most of our results can be
compared with those in [6].

V. EXPERIMENTAL SETUP AND RESULTS

All our experiments are conducted with KALDI. In this
section, we are detailing the experimental setups and the
corresponding results respectively.

Uhttps://github.com/kaldi-asr/kaldi
2However, we can still hear the anchor’s voice for some utterances in both
training and testing data sets.
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A. Experimental Setup

1) Acoustic modeling: The acoustic models are trained with
the lattice-free maximum mutual information criterion over the
factorized time-delay neural network (LF-MMI-TDNN-f) [15],
[14]. The front-end is the concatenation of 40-dimensional
MFCC features and 100-dimensional i-vectors[17], [9]. They
are transformed before fed into the convolutional neural net-
work (CNN). The neural networks are composed of two parts.
the bottom layers are for the 6-layer CNN [20], [13], [4],
which is targeted for better feature learning. Upon the CNN,
they are 9-layer for the factorized time-delay neural network
(TDNN-f), which shows consistently improved results and
faster decoding in [14]. For the TDNN-f configuration, the
TDNN layers have 1536 neurons, and the bottleneck layers
have 160 neurons.

2) Lexicon and language modeling: The lexicon is mixed
with ~33K English words and ~6K Mandarin characters. The
phone set has 252 phonemes, of which 213 phonemes are
Mandarin initials and finals, and the remaining 39 are English
phonemes. For a better recognition, we adopt data-driven
based lexicon learning to deal with the word pronunciation
probability modeling and the silence probability modeling
methods proposed in [1].

We use 3-gram language models boosted with maximum
entropy method [5], [10] to build the grammar G for the first-
pass decoding. We found it is yielding slightly better results
compared with the conventional Kneser-Ney method.

We also employ recurrent neural network language mod-
els (RNNLMs) to rescore lattice. The RNNLM has 800-
dimensional word embedding, upon which there are a TDNN
and an LSTM-p layer. Particularly, the LSTM-p layer is
composed of an LSTM layer with 200 cells and a projection
layer with 200 neurons.

B. Results

We present results of the data augmentation, recurrent neural
network language models (RNNLM) based lattice rescoring,
and system combination respectively.

1) Data augmentation by noise corruption: Table III re-
ports our baseline results. Compared with our previous results
in [6], we achieve tremendous performance improvement
thanks to the much more deeper and factorized neural network
employed [14]. We note that the speech speed perturbation
based data augmentation method [11] consistently achieves
improvements on the two dev sets. As a result, it is always
adopted in the following experiments, which means whatever
training data is used, the final training data size is a 3-time
duplication of the previous data size. Besides, we always use
the results in the last row in Table III as the “baseline” to
which the other data augmentation methods are compared.

Table IV reports word error rate results with noise cor-
ruption method A as indicated in Table II. From Table IV,
we attempt various kinds of noise corruption methods, how-
ever, most of systems yield degraded results. Though method
Armixbmw has obtained marginal 0.36% WER reduction on the
devgge set, it similarly gets a worse result on the devy,,. One
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[ System [ devsge (PWER) [ devman (%WER) |
TDNN-LF-MMI in [6] 32.42 22.57
factorized-TDNN-LF-MMI 26.55 19.62
+ speed perturbation 25.36 18.64

TABLE III: Baseline word error rate results

Method ?lz;rlj‘isgf deVege(%WER) | devman(%WER)
[ Baseline | x3 [ 25.36 [ 18.64 |

A 3 2672 10.92
A, 3 26.85 10.64
A 3 26.90 19.05
Ay 3 26.64 19.70
Art X6 2676 19.0
Amw X6 25774 1881
Ar b X0 2583 1911
b X0 25.67 18.08
Ay X0 2579 19.15
Ar bmw x12 25.00 18.72

TABLE IV: Word error rate results with overall noise
corrupted training data, i.e., method A in Table II.

of the disadvantages of method A is that it ignores the fact that
SEAME data is a clean data set. It uses noise-contaminated
training data to recognize the clean dev sets. In the following
recipes, we still employ noise-contaminated data as method A,
but they are merged with the original clean data to train the
speech recognition system. Due to the time limitation, we only
consider a small part of combinations in this work. Table V
shows the detail results. We can see from Table V that we have

Overall dat
Method dlvlgﬁ‘catigna deVsge(%WER) | deviman(%WER)
[ Baseline | x3 [ 25.36 [ 18.64 |
Br__ X6 2531 19.08
B, X6 25.65 18.98
Brmw X9 25.26 18.72
Conw X6 2541 1832
Croooub X6 2527 18.39

TABLE V: Word error rate results by merging the noise
corrupted and the clean training data.

obtained improved recognition results in method C;,, mwb, With
the clean data included to train the speech recognition system.
Though the improvement is marginal but consistent on the two
dev sets. This is crucial since adding diversified noise to the
clean data (x2) means the improvement of the robustness of
the system but still no performance degradation on the clean
test data.

2) RNNLM-based lattice rescoring: As mentioned earlier,
we also use the training transcripts to train recurrent neural
network language models to rescore the lattice output by the
different speech recognition systems. We present the RNNLM-
based lattice rescoring results in Table VI. It is seen from Table
VI we gain significant word error rate reductions in every
situation with the RNNLM-based lattice rescoring method.
Besides, we get better results where noise corruption based
data augmentation method is employed. We guess this might
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[ System [ devsge (PWER) [ devman (%WER) | [ System (Baseline+) [ devsge (%WER) [ devman (%WER) |
[6] 29.56 20.54 Single best
Our baseline+ rescoring 24.28 17.71 No system combination 23.85 17.25
Br, 23.9 17.71 Crppmwb 22.31 16.21
B, 24.27 17.83 Cr mwb+Bmw 21.80 15.89
A mwb 23.87 17.70 Crpp mwb+Bmw+Br 21.61 15.80
Bmw 23.96 17.53 Crpy mwbBmw+Br +Ar - mwb 21.52 15.69
Cmw 23.96 17.24 .
Crmwb 23.85 17.25 TABLE VIII: Word error rate results by system combination,

TABLE VI: Word error rate results from RNNLM-based
lattice rescoring.

be due to we have denser lattice for those ASR systems trained
with noise augmented data.

3) Lattice-based system combination: So far, we have ob-
tained diversified speech recognition systems due to different
data augmentation methods being employed. As a result, it
is interesting to examine how system combination with such
diversified systems performs. Table VII reports the system
combination results where no RNNLM-based lattice rescoring
is applied to the lattice before or after the system combination.
To show the effectiveness of the system combination method,
we also present the corresponding results from the single best
speech recognition system in Table VII. It can be seen the
improvement from the 5 system combination (last row in Table
VII) is remarkable.

[ System (Baseline+) [ devsge (%WER) [ devman (%WER) |

Single best
No system combination 25.2 18.39
Crpimwb 23.33 17.07
Crmixmwb+Bmw 22.95 16.85
Crppmwb+Bmw+Br 22.79 16.78
CrpiomwbtBmw+Br o AL mwb 22.27 16.41

TABLE VII: Word error rate results by system combination,
where no RNNLM-base lattice rescoring is applied on the
resulting lattice.

One of the advantages from KALDI is the resulting output
of the RNNLM-based lattice rescoring is not N-best utterances,
but it is a heavy pruning lattice [23]. This motivates us to
examine the effectiveness of the system combination method
on those output lattices by the RNN-based lattice rescoring
method. Table VIII shows the word error rate results by
system combinations over the lattices that are rescored with
the RNNLMs. Here, the best single system refers to the system
with RNNLM-based lattice rescoring operation in Table VIII.
Results in Table VIII clearly shows the effectiveness of the
system combination method over the lattice that is RNNLM
rescored.

VI. CONCLUSIONS

As a continuation of our previous work, in this paper,
we further made a series of efforts to achieve better code-
switching speech recognition results on the SEAME data,
ranged from the front-end data augmentation by adding re-
verberant and additive noise, to the lattice-based system com-
bination in post-processing. We found through the SEAME

with the lattice to which RNNLM-based lattice rescoring is
applied.

data is a clean data set, adding diversified noise still can make
improved speech recognition systems, not only yielding better
recognition results, but also improving the robustness and di-
versity. As a result,we find that whether rnnlm lattice rescoring
or not, the system combination method based on lattice after
using our data augmentation method has a significant reduction
in word error rate.This explains from the side that our data
augmentation method is a substantial help to improve single
speech recognition performance.
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