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Abstract—The traditional Cohen’s class time-frequency repre-
sentation is extended to the linear canonical domain by using
a well-established closed-form instantaneous cross-correlation
function (CICF) type of linear canonical transform (LCT) free
parameters embedded approach. The derived CICF type of
Cohen’s class (CICFCC) unifies some well-known Cohen’s classes
in linear canonical domains including the affine characteristic,
basis function, convolution expression and instantaneous cross-
correlation function types of Cohen’s classes, and can be consid-
ered as the Cohen’s class’s closed-form representation in linear
canonical domains. A fundamental theory about the CICFCC’s
essential properties, such as marginal distribution, energy conser-
vation, unique reconstruction, Moyal formula, complex conjugate
symmetry, time reversal symmetry, scaling property, time shift
property, frequency shift property, and LCT invariance, is then
established. Possible applications are also carried out to illustrate
that the CICFCC outperforms the traditional one in non-
stationary signal separation and detection.

I. INTRODUCTION

Linear canonical transform (LCT) [1], also known as ABCD
transform, general Fresnel transform, Collins formula, general
Huygens integral, and Moshinsky and Quesne integrals [2], has
three free parameters so that it offers more degrees of freedom
than its special cases including the Fourier transform (FT) [3]
and the fractional Fourier transform (FRFT) [4], [5]. From
the view of signal representation, the LCT provides a kind of
time-frequency domain, namely, the linear canonical domains
that are flexible enough to analyse non-stationary signals [6].

Cohen’s class time-frequency representation [7], a cel-
ebrated bilinear time-frequency distribution class, includes
particular cases some well-known quadratic time-frequency
distributions, such as Wigner distribution (WD) [8], Kirkwood-
Rihaczek distribution (KRD) [9], Born-Jordan distribution
(BJD) [10], Zhao-Atlas-Marks distribution (ZAMD) [11], and
Choi-Williams distribution (CWD) [12]. It turns out that these
time-frequency analysis tools are suitable for the process
of non-stationary single signals including linear frequency-
modulated (LFM) signals [13], quadratic frequency-modulated
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(QFM) signals [14], and sinusoidal frequency-modulated
(SFM) signals [15]. As for non-stationary deterministic signals
mixed lots of components or random signals corrupted heavily
with noises, however, it becomes lack of flexibility for them to
deal with. To meet the requirement of signal representation’s
flexibility for multi-component or strong noise interference
in non-stationary signal processing, an effective technology
method might be to introduce LCT free parameters into the
Cohen’s class.

There are many kinds of LCT free parameters embedded
approaches that are proposed to generalize the WD into
linear canonical domains from different perspectives, including
affine characteristic (AC) [16], [17], basis function (BF) [18]–
[20], convolution expression (CE) [21], instantaneous cross-
correlation function (ICF) [22] and closed-form instantaneous
cross-correlation function (CICF) [23], [24] types of methods.
It is shown that the CICF type of parameters embedded
approach unifies all of them, and can be regarded as a kind
of closed-form method [23], [24]. It is therefore the main
LCT free parameters embedded approach what we focus on
in this work. One of the main contributions of this paper
is thus to define the closed-form Cohen’s class in linear
canonical domains namely as the CICF type of Cohen’s class
(CICFCC) through the well-established CICF type of LCT free
parameters embedded approach. It then obtains many useful
and important properties of the CICFCC. It also studies the
CICFCC’s applications in non-stationary signal separation and
detection.

The rest of this paper is organized as follows. Section II
recalls some background and notation on the LCT briefly.
In Section III, the definition of CICFCC is proposed. Its
essential properties are also discussed in this section. Potential
applications are performed in Section IV. Finally, Section
V draws a conclusion, and collects some future research
direction.

II. LINEAR CANONICAL TRANSFORM

The LCT of a signal f(t) with the parameter matrix A =
(a, b; c, d) is defined as [25]–[39]

FA(u) =LA[f ](u)

=

{ ∫ +∞
−∞ f(t)KA(u, t)dt, b 6= 0√
dej cd2 u

2

f(du), b = 0
, (1)
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where the LCT basis takes

KA(u, t) =
1√
j2πb

ej( d2bu
2− 1

but+
a
2b t

2), (2)

and where LCT parameters a, b, c, d are real numbers satis-
fying ad − bc = 1. The LCT is invertible and its inversion
formula is given by

f(t) = LA−1

[FA](t), (3)

where A−1 = (d,−b;−c, a).
The variable u found in above formulae stands for the LCT

frequency that is simplified as the linear canonical frequency.
The LCT domain is thus simplified as the linear canonical
domain accordingly.

As it is seen, the LCTs of A = (cosα, sinα;− sinα, cosα)
and A = (0, 1;−1, 0) reduce to the FRFT and the FT, denoted
by Fα and F , respectively.

It is obvious that the LCT of b = 0 is essentially a scaling
and chirp multiplication operations. Without loss of generality,
we therefore focus merely on the LCT of b 6= 0. In that case,
the relation c = ad−1

b holds, implying that there exist only
three free parameters a, b, d.

III. CLOSED-FORM COHEN’S CLASS TIME-FREQUENCY
REPRESENTATION IN LINEAR CANONICAL DOMAINS

There are a large number of WDs in linear canonical
domains, for example, the AC type of WD (ACWD) [16], the
BF type of WD (BFWD) [18], the CE type of WD (CEWD)
[21], the ICF type of WD (ICFWD) [22], and the CICF type
of WD (CICFWD) [23], [24]. The relationship between these
general WDs was studied, and it is revealed that the CICFWD
unifies all of them, and can be considered as the WD’s closed-
form representation in linear canonical domains [23], [24].
The WD is a generating distribution of the Cohen’s class. It
is then natural that the CICFCC is the main research object
of the theory of Cohen’s class in linear canonical domains,
just because the CICFWD is the main research object of the
theory of WD in linear canonical domains.

In this section, the definition of CICFCC is derived from the
CICF type of LCT free parameters embedded approach that
has been used to yield the CICFWD. Some essential properties
of the CICFCC regarding those of the traditional Cohen’s class
are also deduced as a theoretical foundation for future practical
applications.

A. Definition

Let the superscript ∗ denote complex conjugate, FA1
and

FA2
denote LCTs of parameter matrices A1 = (a1, b1; c1, d1)

and A2 = (a2, b2; c2, d2) respectively, and KA denote LCT
basis of the parameter matrix A = (a, b; c, d). The CICF type
of LCT free parameters embedded approach originates from
the idea which is to replace the traditional time domain instan-
taneous autocorrelation function f

(
t+ τ

2

)
f∗
(
t− τ

2

)
with

the closed-form linear canonical domain instantaneous cross-
correlation function FA1

(
u+ τ

2

)
F ∗A2

(
u− τ

2

)
and substitute

the FT basis e−jωτ by the LCT one KA(u, τ). It follows that

the definition of CICFCC associated with a kernel φ(θ, τ) is
given by a treble parameter matrices class of bilinear integral
transformation∫∫∫ +∞

−∞
FA1

(
v +

τ

2

)
F ∗A2

(
v − τ

2

)
× φ(θ, τ)KA(t, θ)KA(u, τ)KA−1(θ, v)dvdτdθ, (4)

which is denoted by CCA1,A2,A
f (t, u).

The CICFCC of Ai = (cosαi, sinαi;− sinαi, cosαi)
(i = 1, 2) and A = (cosα, sinα;− sinα, cosα) reduces to
the closed-form Cohen’s class time-frequency representation
in fractional domains (i.e., a kind of time-frequency domain
provided by the FRFT)

CCα1,α2,α
f (t, u) =

∫∫∫ +∞

−∞
Fα1

(
v +

τ

2

)
F ∗α2

(
v − τ

2

)
× φ(θ, τ)Kα(t, θ)Kα(u, τ)K−α(θ, v)dvdτdθ, (5)

where Kα and K−α denote FRFT basis operators.
It is evident that the CICFCC of Ai = (1, 0; 0, 1) (i = 1, 2)

and A = (0, 1;−1, 0) reduces to the traditional one

CCf (t, ω) =
∫∫∫ +∞

−∞
f
(
v +

τ

2

)
f∗
(
v − τ

2

)
× φ(θ, τ)e−jtθe−jωτejθvdvdτdθ. (6)

Moreover, see Table I that the CICFCC unifies the AC
type of Cohen’s class (ACCC), the BF type of Cohen’s class
(BFCC), the CE type of Cohen’s class (CECC), and the ICF
type of Cohen’s class (ICFCC) for specific parameter matrix
combinations, and then it can be seen as the Cohen’s class’s
closed-form representation in linear canonical domains.

TABLE I
SOME WELL-KNOWN COHEN’S CLASSES IN LINEAR CANONICAL DOMAINS

[
a1 b1
c1 d1

] [
a2 b2
c2 d2

] [
a b
c d

]
CICFCC

[
a1 b1
c1 d1

] [
a1 b1
c1 d1

] [
0 1
−1 0

]
ACCC

[
1 0
0 1

] [
1 0
0 1

] [
a b
c d

]
BFCC

[
a1 b1
c1 d1

] [
−a1 b1
c1 −d1

] [
d1
4

−b1
−c1 4a1

]
CECC

[
a1 b1
c1 d1

] [
1 0
0 1

] [
a b
c d

]
ICFCC

B. Essential Properties

In this part, we extend some essential properties (e.g.,
marginal distribution, energy conservation, unique reconstruc-
tion, Moyal formula, complex conjugate symmetry, time rever-
sal symmetry, scaling property, time shift property, frequency
shift property) of the traditional Cohen’s class to those of
the CICFCC, and show that how those general properties get
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reflected as constraints on LCT parameters and the kernel.
We also propose a new CICFCC’s property named as LCT
invariance. Note that the proof of some of these properties
is straightforward, just by using the CICFCC’s definition and
LCT’s essential properties, and then it is omitted.

Marginal distribution.
The marginal distribution we discuss here is similar to the

classical one in probability theory and statistics. It gives a
distribution of various values of the linear canonical frequency
u (the time t) variable without reference to the values of
the time t (the linear canonical frequency u) variable. There
are four types of CICFCC’s marginal distributions including
time, frequency, time delay, and frequency shift marginal
distributions.

Time marginal distribution: The integration of CICFCC
with respect to the linear canonical frequency u has a form

1√
−j2πb

∫ +∞

−∞
CCA1,A2,A

f (t, u)e−j d2bu
2

du

=

∫ +∞

−∞
FA1

(v)F ∗A2
(v)ej d2b (t

2−v2)dv

× 1

2π|b|

∫ +∞

−∞
e−j 1b θ(t−v)φ(θ, 0)dθ. (7)

If the kernel satisfies

φ(θ, 0) = 1, (8)

it follows that the inner integral found in (7) can be calculated
as ∫ +∞

−∞
e−j 1b θ(t−v)φ(θ, 0)dθ = 2π|b|δ(t− v), (9)

where δ denotes Dirac delta operator, and then the formula (7)
becomes

1√
−j2πb

∫ +∞

−∞
CCA1,A2,A

f (t, u)e−j d2bu
2

du = FA1
(t)F ∗A2

(t),

(10)
giving rise to the time marginal distribution of CICFCC.

Frequency marginal distribution: The integration of CI-
CFCC with respect to the time t has a form

e−j d+4a
2b u2√
−j2πb

∫ +∞

−∞
CCA1,A2,A

f (t, u)e−j d2b t
2

dt

=
e−j 2ab u

2

2π|b|

∫∫ +∞

−∞
FA1

(
v +

τ

2

)
F ∗A2

(
v − τ

2

)
× φ(0, τ)ej a2b τ

2

e−j 1buτe−j d2b v
2

dvdτ. (11)

If the kernel satisfies

φ(0, τ) = e−j d+4a
8b τ2

, (12)

it follows from the change of variables x = v + τ
2 and y =

v − τ
2 that

e−j d+4a
2b u2√
−j2πb

∫ +∞

−∞
CCA1,A2,A

f (t, u)e−j d2b t
2

dt

=

∫ +∞

−∞
FA1(x)K(−d/2,b;c,−2a)(u, x)dx

×
[∫ +∞

−∞
FA2

(y)K(d/2,b;c,2a)(u, y)dy

]∗
. (13)

Using the additivity of LCT, the above formula turns into

e−j d+4a
2b u2√
−j2πb

∫ +∞

−∞
CCA1,A2,A

f (t, u)e−j d2b t
2

dt

=F(−d/2,b;c,−2a)A1
(u)F ∗(d/2,b;c,2a)A2

(u), (14)

which provides the frequency marginal distribution of CI-
CFCC.

Time delay marginal distribution: The CICFCC of t = 0
takes

CCA1,A2,A
f (0, u)

=

∫∫ +∞

−∞
FA1

(
v +

τ

2

)
F ∗A2

(
v − τ

2

)
e−j d2bv

2

KA(u, τ)dvdτ

× 1

2π|b|

∫ +∞

−∞
ej 1b θvφ(θ, τ)dθ. (15)

Frequency shift marginal distribution: The CICFCC of u =
0 takes

CCA1,A2,A
f (t, 0) =

1√
j2πb

∫∫ +∞

−∞
FA1

(
v +

τ

2

)
F ∗A2

(
v − τ

2

)
× ej d2b (t

2−v2)ej a2b τ
2

dvdτ

× 1

2π|b|

∫ +∞

−∞
e−j 1b θ(t−v)φ(θ, τ)dθ. (16)

Energy conservation. The energy conservation is closely
related to the marginal distribution. It demonstrates that a
sum of a signal’s CICFCC’s various values of the time t
and the linear canonical frequency u variables equals to the
signal’s energy. The CICFCC’s energy conservation has three
kinds of equivalent forms, those are, time, frequency, and time
delay or frequency shift marginal distributions based energy
conservation.

Time marginal distribution based energy conservation: In-
tegrating on both sides of (10) for the time t yields

1√
−j2πb

∫∫ +∞

−∞
CCA1,A1,A

f (t, u)e−j d2bu
2

dtdu

=

∫ +∞

−∞
|f(t)|2dt. (17)

Frequency marginal distribution based energy conservation:
Integrating on both sides of (14) for the linear canonical
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frequency u yields

e−j d+4a
2b u2√
−j2πb

∫∫ +∞

−∞
CCA1,A2,A

f (t, u)e−j d2b t
2

dtdu

=

∫ +∞

−∞
|f(t)|2dt, (18)

where (−d/2, b; c,−2a)A1 = (d/2, b; c, 2a)A2.
Time delay or frequency shift marginal distribution based

energy conservation: The CICFCC of t = u = 0 takes

CCA1,A2,A
f (0, 0) =

1√
j2πb

∫∫ +∞

−∞
FA1

(
v +

τ

2

)
F ∗A2

(
v − τ

2

)
× e−j d2b v

2

ej a2b τ
2

dvdτ

× 1

2π|b|

∫ +∞

−∞
ej 1b θvφ(θ, τ)dθ. (19)

If the kernel takes
φ(θ, τ) = 1 (20)

satisfying ∫ +∞

−∞
ej 1b θvφ(θ, τ)dθ = 2π|b|δ(v), (21)

the formula (19) becomes

CCA1,A2,A
f (0, 0) =

2√
j2πb

∫ +∞

−∞
FA1(τ)F

∗
A2
(−τ)ej 2ab τ

2

dτ.

(22)
Let A2 = −A1 and a = 0, it follows that

j
√

j2πb
2

CCA1,−A1,A
f (0, 0) =

∫ +∞

−∞
|f(t)|2dt. (23)

Unique reconstruction.
The unique reconstruction of a distribution reveals that a

signal can be recovered by the distribution of it. Specifically,
next we will show that there is a relationship between a signal
and its CICFCC.

Using the inversion formula (3), the relation∫ +∞

−∞
CCA1,A2,A

f (t, u)KA−1(τ, u)du

=

∫ +∞

−∞
FA1

(
v +

τ

2

)
F ∗A2

(
v − τ

2

)
ej d2b (t

2−v2)dv

× 1

2π|b|

∫ +∞

−∞
e−j 1b θ(t−v)φ(θ, τ)dθ (24)

holds. If the kernel is independent of the variable θ, i.e.,

φ(θ, τ) = ϕ(τ), (25)

it follows that the inner integral found in (24) can be calculated
as ∫ +∞

−∞
e−j 1b θ(t−v)φ(θ, τ)dθ = 2π|b|ϕ(τ)δ(t− v), (26)

and then the formula (24) turns into∫ +∞

−∞
CCA1,A2,A

f (t, u)KA−1(τ, u)du

=ϕ(τ)FA1

(
t+

τ

2

)
F ∗A2

(
t− τ

2

)
. (27)

Using again the inversion formula (3), there is a relation

f(η) =

∫∫ +∞

−∞

1

ϕ∗(−t)F ∗A1
(0)

[
CCA1,A2,A

f

(
t

2
, u

)]∗
×KA(u,−t)KA−1

2
(η, t)dudt (28)

for t = − τ2 or

f(η) =

∫∫ +∞

−∞

1

ϕ(t)F ∗A2
(0)

CCA1,A2,A
f

(
t

2
, u

)
×KA−1(t, u)KA−1

1
(η, t)dudt (29)

for t = τ
2 , implying that a signal can be reconstructed by its

CICFCC uniquely.
Moyal formula.
The Moyal formula, which calculates an integration of the

product of two signals’ CICFCCs for the time t and the
linear canonical frequency u, is a generalization of the energy
conservation. Then, there is a formula∫∫ +∞

−∞
CCA1,A2,A

f (t, u)
[
CCA1,A2,A

g (t, u)
]∗

dtdu

=

∫∫∫ +∞

−∞
FA1

(
v +

τ

2

)
F ∗A2

(
v − τ

2

)
×G∗A1

(
ε+

τ

2

)
GA2

(
ε− τ

2

)
ej d2b (ε

2−v2)dεdvdτ

× 1

2π|b|

∫ +∞

−∞
e−j 1b θ(ε−v) |φ(θ, τ)|2 dθ. (30)

If the kernel’s module is 1, that is,

|φ(θ, τ)| = 1 (31)

satisfying∫ +∞

−∞
e−j 1b θ(ε−v) |φ(θ, τ)|2 dθ = 2π|b|δ(ε− v), (32)

it follows from the change of variables x = v + τ
2 and y =

v − τ
2 that∫∫ +∞

−∞
CCA1,A2,A

f (t, u)
[
CCA1,A2,A

g (t, u)
]∗

dtdu

=

∣∣∣∣∫ +∞

−∞
f(t)g∗(t)dt

∣∣∣∣2 , (33)

which is the CICFCC’s Moyal formula.
Complex conjugate symmetry.
The complex conjugate symmetry gives a relationship be-

tween a signal’s CICFCC and the CICFCC of the complex
conjugate signal, i.e.,

CCA1,A2,A
f∗ (t, u)

=
[
CC(a1,−b1;−c1,d1),(a2,−b2;−c2,d2),(a,−b;−c,d)

f (t, u)
]∗

(34)
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for a real kernel φ∗(θ, τ) = φ(θ, τ) or

CCA1,A2,A
f∗ (t, u) = CC(a2,−b2;−c2,d2),(a1,−b1;−c1,d1),A

f (t,−u)
(35)

for the variable τ symmetric kernel φ(θ,−τ) = φ(θ, τ).
Time reversal symmetry.
The time reversal symmetry presents a relationship between

a signal’s CICFCC and the CICFCC of the time reversal signal,
i.e.,

CCA1,A2,A
f(−·) (t, u) =

[
CCA2,A1,(a,−b;−c,d)

f (−t, u)
]∗

(36)

for the variable θ conjugate symmetric kernel φ∗(−θ, τ) =
φ(θ, τ) or

CCA1,A2,A
f(−·) (t, u) = CCA1,A2,A

f (−t,−u). (37)

for the variables θ and τ symmetric kernel φ(−θ,−τ) =
φ(θ, τ).

Scaling property.
The scaling property establishes a relationship between a

signal’s CICFCC and the CICFCC of the scaled signal, i.e.,

CCA1,A2,A
f(σ·) (t, u)

=
1

|σ|
CC(a1/σ,b1σ;c1/σ,d1σ),(a2/σ,b2σ;c2/σ,d2σ),A

f (t, u). (38)

Time shift property.
The time shift property builds a relationship between a

signal’s CICFCC and the CICFCC of the time shift signal.
Then, there is a formula

CCA1,A2,A
f(·−t0) (t, u)

=

∫∫∫ +∞

−∞
ejc1[t0(v+ τ

2 )−
a1
2 t

2
0]FA1

(
v +

τ

2
− a1t0

)
× e−jc2[t0(v− τ2 )−

a2
2 t

2
0]F ∗A2

(
v − τ

2
− a2t0

)
× φ(θ, τ)KA(t, θ)KA(u, τ)KA−1(θ, v)dvdτdθ. (39)

Let a1 = a2, it follows from the the change of variables ε =
v − a1t0 and ξ = θ + [(c1 − c2)b− a1d]t0 that

CCA1,A2,A
f(·−t0) (t, u)

=e−j bd(c1+c2)2+4a1(c1−c2)
8 t20ej 2(c1−c2)t+d(c1+c2)u

2 t0

×
∫∫∫ +∞

−∞
FA1

(
ε+

τ

2

)
F ∗A2

(
ε− τ

2

)
× φ(ξ − [(c1 − c2)b− a1d]t0, τ)KA(t− a1t0, ξ)

×KA

(
u− b(c1 + c2)

2
t0, τ

)
KA−1(ξ, ε)dεdτdξ. (40)

(i) If the kernel is shift separable for the variable θ, that is,

φ(θ − η, τ) = φ(θ, τ)ψ(η), (41)

the formula (40) becomes

CCA1,A2,A
f(·−t0) (t, u)

=e−j bd(c1+c2)2+4a1(c1−c2)
8 t20ej 2(c1−c2)t+d(c1+c2)u

2 t0

× ψ([(c1 − c2)b− a1d]t0)

× CCA1,A2,A
f

(
t− a1t0, u−

b(c1 + c2)

2
t0

)
. (42)

(ii) If (c1 − c2)b = a1d, the formula (40) becomes

CCA1,A2,A
f(·−t0) (t, u)

=e−j bd(c1+c2)2+4a1(c1−c2)
8 t20ej 2(c1−c2)t+d(c1+c2)u

2 t0

× CCA1,A2,A
f

(
t− a1t0, u−

b(c1 + c2)

2
t0

)
. (43)

The above two formulae provide two types of time shift
properties of CICFCC.

Frequency shift property.
The frequency shift property demonstrates a relationship

between a signal’s CICFCC and the CICFCC of the frequency
shift signal. Similar to the time shift properties derived, it
is easy to obtain two kinds of frequency shift properties of
CICFCC, those are,

CCA1,A2,A
f(·)eju0·(t, u)

=e−j bd(d1+d2)2+4b1(d1−d2)
8 u2

0ej 2(d1−d2)t+d(d1+d2)u
2 u0

× ψ([(d1 − d2)b− b1d]u0)

× CCA1,A2,A
f

(
t− b1u0, u−

b(d1 + d2)

2
u0

)
, (44)

where b1 = b2 and the kernel satisfies (41), and

CCA1,A2,A
f(·)eju0·(t, u)

=e−j bd(d1+d2)2+4b1(d1−d2)
8 u2

0ej 2(d1−d2)t+d(d1+d2)u
2 u0

× CCA1,A2,A
f

(
t− b1u0, u−

b(d1 + d2)

2
u0

)
, (45)

where b1 = b2 and (d1 − d2)b = b1d.
LCT invariance.
Different from the above traditional properties, the LCT

invariance is a new property of the CICFCC. It reveals an
equivalent relationship between a signal’s CICFCC and the
CICFCC of the signal’s LCT, i.e.,

CCA1,A2,A
FA0

(t, u) = CCA1A0,A2A0,A
f (t, u). (46)

See Table II for a summary of the derived properties of
CICFCC. Note that there are constraints on LCT parameters
or the kernel for the CICFCC’s time marginal distribution,
frequency marginal distribution, energy conservation, unique
reconstruction, Moyal formula, complex conjugate symmetry,
time reversal symmetry, time shift property, and frequency
shift property. Moreover, LCT parameters c1, c2, and c can
be replaced by LCT free parameters as c1 = a1d1−1

b1
, c2 =

a2d2−1
b2

, and c = ad−1
b , respectively.
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TABLE II
ESSENTIAL PROPERTIES OF CICFCC

Property Mathematical formula

Time marginal distributiona 1√
−j2πb

∫+∞
−∞ CCA1,A2,A

f (t, u)e−j d
2b
u2

du = FA1
(t)F ∗A2

(t)

Frequency marginal distributionb
e−j d+4a

2b
u2

√
−j2πb

∫+∞
−∞ CCA1,A2,A

f (t, u)e−j d
2b
t2dt

= F(−d/2,b;c,−2a)A1
(u)F ∗

(d/2,b;c,2a)A2
(u)

Time delay marginal distribution CCA1,A2,A
f (0, u) =

∫∫+∞
−∞ FA1

(
v + τ

2

)
F ∗A2

(
v − τ

2

)
e−j d

2b
v2KA(u, τ)dvdτ

× 1
2π|b|

∫+∞
−∞ ej 1

b
θvφ(θ, τ)dθ

Frequency shift marginal distribution CCA1,A2,A
f (t, 0) = 1√

j2πb

∫∫+∞
−∞ FA1

(
v + τ

2

)
F ∗A2

(
v − τ

2

)
ej d

2b (t
2−v2)ej a

2b
τ2dvdτ

× 1
2π|b|

∫+∞
−∞ e−j 1

b
θ(t−v)φ(θ, τ)dθ

Time marginal distribution 1√
−j2πb

∫∫+∞
−∞ CCA1,A1,A

f (t, u)e−j d
2b
u2

dtdu =
∫+∞
−∞ |f(t)|

2dt
based energy conservationc

Frequency marginal distribution e−j d+4a
2b

u2

√
−j2πb

∫∫+∞
−∞ CCA1,A2,A

f (t, u)e−j d
2b
t2dtdu =

∫+∞
−∞ |f(t)|

2dtbased energy conservationd

Time delay or frequency shift j
√

j2πb
2

CCA1,−A1,A
f (0, 0) =

∫+∞
−∞ |f(t)|

2dtmarginal distribution based energy conservatione

Unique reconstructionf
f(η) =

∫∫+∞
−∞

1
ϕ∗(−t)F∗

A1
(0)

[
CCA1,A2,A

f

(
t
2
, u
)]∗

KA(u,−t)KA−1
2

(η, t)dudt,

f(η) =
∫∫+∞
−∞

1
ϕ(t)F∗

A2
(0)

CCA1,A2,A
f

(
t
2
, u
)
KA−1 (t, u)KA−1

1
(η, t)dudt

Moyal formulag
∫∫+∞
−∞ CCA1,A2,A

f (t, u)
[

CCA1,A2,A
g (t, u)

]∗
dtdu =

∣∣∣∫+∞
−∞ f(t)g∗(t)dt

∣∣∣2
Complex conjugate symmetryh

[
CC(a1,−b1;−c1,d1),(a2,−b2;−c2,d2),(a,−b;−c,d)

f (t, u)
]∗
,

(CICFCC of f∗(t)) CC(a2,−b2;−c2,d2),(a1,−b1;−c1,d1),A
f (t,−u)

Time reversal symmetryi [
CCA2,A1,(a,−b;−c,d)

f (−t, u)
]∗
,CCA1,A2,A

f (−t,−u)(CICFCC of f(−t))

Scaling property 1
|σ|CC(a1/σ,b1σ;c1/σ,d1σ),(a2/σ,b2σ;c2/σ,d2σ),A

f (t, u)(CICFCC of f(σt), σ 6= 0)

Time shift propertyj

e−j bd(c1+c2)2+4a1(c1−c2)
8

t20ej 2(c1−c2)t+d(c1+c2)u
2

t0

(CICFCC of f(t− t0))
×ψ([(c1 − c2)b− a1d]t0)CCA1,A2,A

f

(
t− a1t0, u− b(c1+c2)

2
t0
)
,

e−j bd(c1+c2)2+4a1(c1−c2)
8

t20ej 2(c1−c2)t+d(c1+c2)u
2

t0

×CCA1,A2,A
f

(
t− a1t0, u− b(c1+c2)

2
t0
)

Frequency shift propertyk

e−j bd(d1+d2)2+4b1(d1−d2)
8

u2
0ej 2(d1−d2)t+d(d1+d2)u

2
u0

(CICFCC of f(t)eju0t)

×ψ([(d1 − d2)b− b1d]u0)CCA1,A2,A
f

(
t− b1u0, u− b(d1+d2)

2
u0
)
,

e−j bd(d1+d2)2+4b1(d1−d2)
8

u2
0ej 2(d1−d2)t+d(d1+d2)u

2
u0

×CCA1,A2,A
f

(
t− b1u0, u− b(d1+d2)

2
u0
)

LCT invariance CCA1A0,A2A0,A
f (t, u)(CICFCC of FA0

)

a Constraints on the kernel: φ(θ, 0) = 1
b Constraints on the kernel: φ(0, τ) = e−j d+4a

8b
τ2

c Constraints on LCT parameters and the kernel: A2 = A1 and φ(θ, 0) = 1
d Constraints on LCT parameters and the kernel: (−d/2, b; c,−2a)A1 = (d/2, b; c, 2a)A2 and φ(0, τ) = e−j d+4a

8b
τ2

e Constraints on LCT parameters and the kernel: A2 = −A1, a = 0, and φ(θ, τ) = 1
f Constraints on the kernel: φ(θ, τ) = ϕ(τ)
g Constraints on the kernel: |φ(θ, τ)| = 1
h Constraints on the kernel: φ∗(θ, τ) = φ(θ, τ) or φ(θ,−τ) = φ(θ, τ)
i Constraints on the kernel: φ∗(−θ, τ) = φ(θ, τ) or φ(−θ,−τ) = φ(θ, τ)
j Constraints on LCT parameters or the kernel: a1 = a2 and φ(θ − η, τ) = φ(θ, τ)ψ(η) or (c1 − c2)b = a1d
k Constraints on LCT parameters or the kernel: b1 = b2 and φ(θ − η, τ) = φ(θ, τ)ψ(η) or (d1 − d2)b = b1d
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IV. POTENTIAL APPLICATIONS

The CICFCC, which combines the traditional Cohen’s class
with the LCT, is expected to be of efficient path for non-
stationary signal representation flexibility enhancement, pro-
viding a certain amount of freedom embedded signal represen-
tation tool based solution for non-stationary signal separation
and detection.

A. Non-Stationary Signal Separation

The CICF type of LCT free parameters embedded approach
could possibly meet the inherent requirement of signal repre-
sentation flexibility enhancement in non-stationary signal sep-
aration. In other word, LCT free parameters embedded in the
CICFCC is expected to enable it to have a decoupling property
in the separation of non-stationary signals, indicating that there
would be a causation between LCT free parameters and the
decoupling property. To model this causality mathematically, it
becomes therefore interesting to explore the principle of non-
stationary signal decoupling triggered by LCT free parameters.

It is well-known that there is an affine transformation
relation between the LCT and the traditional Cohen’s class,
giving rise to the LCT an affine nature in the time-frequency
plane. The affine equivalence relation obtained is thus the
mathematical theory foundation of the designing of filter in
linear canonical domains and the inherent requirement of non-
stationary signal decoupling. Therefore, a qualitative analysis
to affine equivalence relation between the LCT and the CI-
CFCC is efficient enough to yield the decoupling parameters
in linear canonical domains.

B. Non-Stationary Signal Detection

The CICF type of LCT free parameters embedded approach
could possibly meet the inherent requirement of signal rep-
resentation flexibility enhancement in non-stationary signal
detection. In other word, LCT free parameters embedded in
the CICFCC is expected to enable it to have an improved
performance in the detection of non-stationary signals, im-
plying that there would be a causation between LCT free
parameters and the detection performance. To establish this
causality a mathematical modeling, it is therefore meaningful
to disclose the intrinsic mechanism of non-stationary signal
detection performance improvement triggered by LCT free
parameters.

The theoretical basis of detection performance evaluation
is the output signal-to-noise ratio (SNR), the output SNR
inequality or the optimal LCT free parameters corresponding
to the maximum output SNR are thus the mathematical theory
foundation of the output SNR improvement and the inherent
requirement of non-stationary signal detection performance
improvement. Therefore, a qualitative analysis to output SNR
inequality between the CICFCC and the traditional one or
to the CICFCC’s output SNR optimization model is efficient
enough to yield the desirable LCT free parameters.

V. CONCLUSIONS

A kind of Cohen’s class time-frequency representation asso-
ciated with the LCT is proposed through the CICF type of LCT
free parameters embedded approach, and then is simplified
as the CICFCC. It turns out that the CICFCC is the main
research object of the theory of Cohen’s class in linear canon-
ical domains as it unifies some well-known linear canonical
domains Cohen’s classes including the ACCC, BFCC, CECC
and ICFCC, and can be regarded as the Cohen’s class’s closed-
form representation in linear canonical domains. Some impor-
tant and useful properties of the CICFCC are then obtained,
such as marginal distribution, energy conservation, unique
reconstruction, Moyal formula, complex conjugate symmetry,
time reversal symmetry, scaling property, time shift property,
frequency shift property, and LCT invariance. It is shown
that most of those properties (e.g., time marginal distribution,
frequency marginal distribution, energy conservation, unique
reconstruction, Moyal formula, complex conjugate symmetry,
time reversal symmetry, time shift property, and frequency
shift property) get reflected as constraints on LCT parameters
or the kernel. The CICFCC’s applications in non-stationary
signal separation and detection are also investigated, resulting
in some key details worthy of further elaborating, such as the
affine equivalence relation and the output SNR inequality or
optimization model.

The future work will be focused on both theory and appli-
cation aspects: (i) refine some related theories of the CICFCC
(discretization, convolution, sampling, uncertainty, etc.); (ii)
develop the CICFCC’s applications not only in non-stationary
signal separation and detection but also in non-stationary
signal classification, recognition, estimation, tracking, etc.
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