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Abstract— Road scene understanding is a critical component in 
an autonomous driving system. Although the deep learning-based 
road scene segmentation can achieve very high accuracy, its 
complexity is also very high for developing real-time applications. It 
is challenging to design a neural net with high accuracy and low 
computational complexity. To address this issue, we investigate the 
advantages and disadvantages of several popular CNN architectures 
in terms of speed, storage and segmentation accuracy. We start from 
the Fully Convolutional Network (FCN) with VGG, and then we 
study ResNet and DenseNet. Through detailed experiments, we pick 
up the favorable components from the existing architectures and at 
the end, we construct a light-weight network architecture based on 
the DenseNet. Our proposed network, called DSNet, demonstrates a 
real-time testing (inferencing) ability (on the popular GPU platform) 
and it maintains an accuracy comparable with most previous 
systems. We test our system on several datasets including the 
challenging Cityscapes dataset (resolution of 1024 ×512) with an 
mIoU of about 69.1 % and runtime of 0.0147 second per image on a 
single GTX 1080Ti. We also design a more accurate model but at the 
price of a slower speed, which has an mIoU of about 72.6 % on the 
CamVid dataset.   

 
I. INTRODUCTION 

With the fast development of automated driving systems, a 
stable and reliable surrounding scene analysis becomes 
essential for a safe driving environment. The deep-learning 
based image semantic segmentation is one of the best solutions 
because it is sufficiently robust in analyzing the complicated 
environments. It partitions a captured image into several 
regions and recognizes the class (object) of every pixel, so it 
can be viewed as pixel-level classification. Different from 
image classification, the image semantic segmentation 
identifies the object classes in images and also finds the 
locations of objects in images. In addition, it provides precise 
object boundary information. Nevertheless, the high accuracy 
of image semantic segmentation is often at the high complexity 
of a CNN model without consideration of inference time, 
resulting in a difficult implementation on several light devices. 
Therefore, a fast and efficient CNN model is very desirable and 
imperative for a practical semantic segmentation system.  

Recently, an encoder-decoder architecture is popular for 
semantic segmentation. The encoder is usually a classification 
network, such as VGG [4], ResNet [6], and DenseNet [8]. It 
employs a series of down-sampling layers to condense the 
information. However, the down-sampling operation 

drastically reduces the detailed spatial information which is quite 
important for the image semantic segmentation task. To address 
this issue, some decoders are designed to recover the spatial 
resolution by using the up-sampling process. Deconvolution is 
commonly used to produce a learnable up-sampling process in 
many popular networks, such as DeconvNet [10] and FCN [12]. 
Un-pooling used in SegNet [9] is another method to up-sample 
the feature maps by reusing the max-pooling indices produced by 
the encoder. On the other hand, some networks are constructed 
without a decoder network but retain the detailed spatial 
information from the encoder part, such as DeepLab v2 [15], 
DeepLab v3 [17], and PSPNet [19]. They remove some down-
sampling layers and apply the dilated convolution, which can 
maintain the spatial resolution without sacrificing the receptive 
field. Although this method can improve accuracy, the enlarged 
feature maps often significantly slow down the processing, 
especially for a deep architecture together with large feature maps. 
Also, DeepLab v3+ [21] includes a decoder network to combine 
the multi-scale information to obtain better results. These 
previous works give us clues in constructing a fast network that 
is able to capture multi-scale information without using dilated 
convolution. 

Recently, some efficient semantic segmentation networks have 
been proposed, such as ENet [11] and ERFNet [22]. ENet is 
constructed based on the concept of SegNet, but it is much slander 
than the latter and thus offers a light and fast architecture. 
Moreover, ENet uses dilated convolution and stacked residual 
layers to deepen the network so that the accuracy can be 
maintained. ERFNet is a wider version of ENet and uses 
deconvolutional layers for the up-sampling process. Also, they 
adopt the factorized filter structure [24] to separate a two-
dimensional filter into two one-dimensional filters in the 
convolutional layer and thus considerably reduce the number of 
parameters. Further, both of ENet and ERFNet use an early down-
sampling scheme and an extremely narrow architecture compared 
to the schemes with a heavy encoder such as VGG16 and 
ResNet101 (top-ranked on ILSVRC [25]). In this work, we adopt 
a similar idea in constructing a narrow architecture, but DenseNet 
is selected as the backbone instead of ResNet because it combines 
the multi-scale information more frequently, which may be more 
appropriate for semantic segmentation purpose. 

 

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China 

424978-988-14768-7-6©2019 APSIPA APSIPA ASC 2019



II. PROPOSED NETWORK 

In this paper, the target is to construct a fast network 
architecture without degrading its accuracy. Up to now, 
constructing a CNN is often empirical, and it is hard to predict 
in advance the results of a modified network. Our aim is to 
design a favorable architecture for real-time applications. We 
conducted a series of experiments as to be described in section 
3. Here, we first give an overview of the proposed network, 
Dense Segmentation Network, DSNet, in brief. The entire 
architecture is shown in Figure 1. Mainly, the network 
architecture includes two parts, the encoder and the decoder. 
The details are described as follows. 

A. Encoder 

The encoder part is constructed based on the concept of 
DenseNet because it achieves high performance with narrow 
layers, resulting less overall computational cost. The encoder 
consists of one initial block, 4 non-bottleneck units (without 
1×1 convolution), and 26 bottleneck units (with 1×1 
convolution). The early down-sampling operation (convolution 
with a stride of 2) is employed at the initial block to shrink the 
size of feature maps and to speed up the network. Meanwhile, 
the output channel of the initial block is set to 32, the growth 
rate is set to 32, which represents how many feature maps are 
generated in one dense unit, and the channels are compressed 
with a ratio of 0.5 in the transition layer before a pooling 
operation to reduce the complexity. The bottleneck units adopt 
a 1×1 convolution to reduce the number of channels. Because 
the number of channels is quite small in Block 1 and Block 2, 
it is not necessary to decease the channel numbers there. Thus, 
the non-bottleneck units are adopted in Block 1 and Block 2 
rather than the bottleneck units. 

B. Decoder 

In our experiments, we find that a decoder with heavy structure 
does not seem to provide much accuracy improvement. Hence, 
simplifying the decoder is a feasible way to speed up the network. 
So, we reduce the number of channels to 32 by employing four 
convolutional layers after the Block 2, Block 3, Block 4, and 
Block 5. Furthermore, all the feature maps are up-sampled to the 
resolution of Block 2 to concatenate them together. In the end, a 
deconvolutional layer with a 4 up-sampling rate is used to recover 
the spatial resolution for the final dense segmentation. By using 
this simple decoder, the computational complexity is 
considerably decreased and the accuracy can be maintained at the 
same time. 

C. Details of Encoder 

In this paper, we design two modifications on the original 
dense unit to make a trade-off between the accuracy and the 
speed. First, we modify the composition unit from BN-ReLU-
Conv [26] to Conv-BN-ReLU. Even though the full pre-activation 
unit (BN-ReLU-Conv) is claimed to improve the results, it is not 
possible to merge BN layers into Conv layers (as discussed in 
[27]) during the testing phase. So, for speed consideration, we 
redesign the DenseNet architecture by using the Conv-BN-ReLU 
units to replace the BN-ReLU-Conv units.  

Second, we slightly modify the dense unit by inserting another 
convolutional layer at the end of bottleneck and the non-
bottleneck architectures, as shown in Figure 2. By adopting this 
modification, the network can be deepened at a low 
computational cost because the preceding layer is sufficiently 
narrow. Also, the additional convolutional layer can enlarge the 
receptive field to capture large-scale objects and to produce a 

Fig. 1: The architecture of fast dense segmentation network (DSNet-fast). The encoder is constructed based on the deep dense unit described in Figure 2. The 
decoder is designed as light as possible. The accurate version (DSNet-accurate) removes the down-sampling operation in the initial block. Additionally, the 
convolutional layer connected to Block 2 is removed, performing 96 channels at the concatenation layer rather than 128 channels in DSNet-fast. 
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better result on the high resolution dataset, such as Cityscapes 
dataset. 

D. Accurate Version 

In our experiments, we find that the convolutional layers 
operated on the large feature maps is important for an accurate 
pixel-level classification, especially for processing a low 
resolution image. Thus, we propose another architecture to deal 
with the low resolution images. This architecture removes the 
early down-sampling operation in the initial block in Figure 1 
so that the larger feature maps are fed to the rest of the network. 

Meanwhile, in the decoder, one convolutional layer 
connected to Block 2 is removed and all the feature maps are 
up-sampled to the resolution of Block 3. So, the number of 
channels after the concatenated layer becomes 96 and the last 
deconvolutional layer up-samples the feature maps by a factor 
of 4. This architecture is called DSNet-accurate (accurate dense 
segmentation network). In summary, we proposed two 
architectures to deal with different input resolutions. We name 
the architecture with the early down-sampling layer as DSNet-
fast. And, the architecture without the early down-sampling 
operation is called as DSNet-accurate. 

III. EXPERIMENTS 

As mentioned earlier, a series of experiments are carried out 
to show the pros/cons of various structure components. The 
results give us the clues in designing DSNet. We now explain 
the experiments in details in this section. DSNet came from the 
architecture of FCN. FCN is an encoder-decoder network and 
its decoder combines the multi-scale information in order to 
produce an accurate prediction. Portions of our experiments are 
implemented on the modified FCN, which increases the 
number of channels in the decoder compared to the original 
FCN. The modified FCN is shown in Figure 3. Mainly, we 
divide the experiments into two parts, Encoder Experiments 
and Decoder Experiments. Before describing them, we first 
describe the dataset used to benchmark the performance and 
the parameter setting in training the networks. 

A. Dataset 

We use two popular road-scene datasets to evaluate all the 
networks in this paper. The first one is CamVid [28] consisting 
of 367 training images, 101 validation images and 233 testing 
images. The resolution of all images is 480×360 and there are 
in total 11 classes in the dataset. The CamVid dataset can show 
the importance of detailed information because of the low 
resolution images. 

The second dataset is Cityscapes [29], which is a larger 
dataset for semantic understanding of urban street scenes. All 
images are at 2048×1024 resolution and there are 19 classes for 
training. Two kinds of annotations are provided, fine-
annotation and coarse-annotation. In this paper, we only use the 
fine-annotated dataset to train and evaluate the networks. It is 
composed of 2950 training images, 500 validation images, and 
1525 test images. For speed consideration, the images are 
down-sampled by a factor of 2 (horizontally and vertically) in 
some experiments. The Cityscapes dataset can show the 

influence of receptive field on the networks when the input 
images are of high resolutions. 

B. Implementation Details 

All the experiments are conducted on the Pytorch framework 
[30] with a single Maxwell Titan X GPU. The optimizer is 
Stochastic Gradient Descend (SGD), with a weight decay of 
0.0005, a momentum of 0.9, a batch size of 4 and a base learning 
rate of 0.05. Inspired by [15, 19], the learning rate is adjusted after 
every iteration according to the following equation: ݈ݎ ൌ 	 ௦ݎ݈ ൈ ቀ1 െ ௧௧௧௧	௧௧௦ቁ௪  (1) 

with a power of 0.9. Also, a total of 13800 iterations (150 epochs) 
is set in the training on the CamVid dataset, and 74400 iterations 
(100 epochs) is set in the training on the Cityscapes dataset. In 
addition, we adopt a class balancing strategy to compensate 
small-size classes. Inspired by [11, 22], the class weightings are 
calculated by (2): ݓ ൌ ଵሺାሻ (2) 

Fig. 2: The modified deep dense units by inserting another convolutional 
layer (red dotted block). (a) Non-bottleneck architecture. (b) Bottleneck
architecture. 

Fig. 3: The modified FCN. C1, C2, and C3 denote the number of channels. 
The decoder reduces the channels to half and recover the original spatial 
resolution. 
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where k is a constant set to 1.1 and pc represents the 
probability of the presence of class c in pixel-level; then, these 
class weightings are divided by the maximum to normalize 
their values into [0, 1], so that the other hyper-parameters can 
be fixed without affecting the convergence in training. 

C. Encoder Experiments – Ablation Study 

In general, the encoder network for semantic segmentation 
is strongly related to the image classification network. 
Moreover, the residual unit has been proved that it can 
significantly improve the accuracy if the depth of the CNN is 
deeper. Hence, we modify the encoder of FCN by replacing 
VGG16 by ResNet50 to construct the FCN-ResNet50 network. 
However, according to Table 1, we find that the performance 
varies on different datasets. The performance of FCN-
ResNet50 is worse than that of FCN-VGG16 on the CamVid 
dataset, but the accuracy of FCN-ResNet50 is significantly 
improved on the Cityscapes dataset. We suppose that this is due 
to different input resolutions. Thus, we investigate the impact 
of the input resolution by using the following experiments. 

First, observing the segmentation maps in Figure 4, we find 
that the truck object estimated by FCN-VGG16 is fragmented 
and incomplete. In contrast, FCN-ResNet50 is able to capture 
the truck more accurately. One explanation is that the receptive 
field of ResNet50 is larger than that of VGG16; that is, the 
ResNet50 is able to recognize large size objects and thus results 
in a more accurate estimation on the high resolution images. 

Next, we study the performance on the low resolution 
images. We investigate the problem based on the structure of 
VGG16 and ResNet50. In the first few layers, the structure of 
ResNet50 has an early down-sampling layer, and then followed 
by a down-sampling layer (max-pooling layer). Heuristically, 
these consecutive down-sampling operations may reduce the 
feature maps to a too small size. Thus, it is difficult to retain 
the detailed spatial information and thus leads to a poor 
segmentation result. In order to verify this speculation, we 
replace the first four convolutional layers and two max-pooling 
layers of VGG16 by one early down-sampling layer followed 
by a down-sampling layer to construct FCN-VGG-ED. 

Because there is no pre-trained model for the modified 
network, FCN-VGG16 and FCN-VGG-ED (Early Down-
sampling) in Table 2 are trained with the random initialization 
(training from scratch). The results show that the FCN-VGG-
ED performance degrades considerably and we thus confirm 
that the early down-sampling layer is one of the reasons 
causing FCN-ResNet50 performance degradation on low 
resolution images. On the other hand, the number of parameters 
may be another reason causing the degradation in FCN-VGG-
ED. Further investigation is explained in section 4.1 using 
Table 5 and Table 6. In summary, we have the following 
observations based on the results of encoder experiments. 

• In order to retain the detailed spatial information, the 
convolution operation performed on the large feature maps 
is important for semantic segmentation. 

• In order to capture the long-range information and large-
scale objects, a deep architecture is needed for high 
resolution images. 

Table 1. Results of FCN-VGG16 and FCN-ResNet50 on CamVid test set 
(480×360) and on Cityscapes validation set (2048×1024) 

Method Dataset 
mIoU 
(%) 

Frame Rate 
(FPS) 

FCN- 
VGG16 

CamVid 67.5 39.8 

Cityscapes 65.2 4.1 

FCN- 
ResNet50 

CamVid 65.0 38.1 

Cityscapes 67.4 5.1 

Table 2. Results of FCN-VGG16 and FCN-VGG-ED on  
CamVid test set (training from scratch). 

Method 
mIoU 
(%) 

Frame Rate 
(FPS) 

Model Size 
(MB) 

FCN-VGG16 56.9 39.8 72.6 

FCN-VGG-ED 52.2 60.6 71.1 

• The early down-sampling layer speeds up the operation 
significantly but it damages the small-size image results.  

In brief, we need a deep architecture to process a high 
resolution image. Also, we hope the network is capable of adding 
extra convolutional layers for large-size feature maps but we also 
want to have a low computational cost. Thus, the trade-off 
between using the early down-sampling layer and the extra 
convolutional layers is a critical issue in designing a fast neural 
network. The above observations give us clues in designing the 
encoder part in Figure 1. Because of the low complexity in every 
dense unit, we can insert additional convolutional layer to process 
the large feature maps (for example, Block 1 in Figure 1) and thus 
more detailed spatial information can be retained. 

D. Decoder Experiments 

After designing the encoder network, in order to train an initial 
encoder model, we add one global average pooling layer and one 
fully connected layer to convert the encoder into a classification 
network. Then, the network is pre-trained on a large dataset, 

Fig. 4: An output sample that shows the importance of receptive field. (a)
Input image (b) Ground truth (c) FCN-VGG16 output (d) FCN-ResNet50
output. 
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ImageNet, to generate a good initial encoder model, which 
seems to be a good starting point for the complete system, 
encoder plus decoder although it is trained on the classification 
dataset (not segmentation dataset). Then, the following 
experiments on the decoder are conducted with the pre-trained 
encoder.  

We first discard the attached pooling layer and the fully 
connected layer of the encoder, and connect it to the FCN-
based decoder, fusing the feature maps by the summation 
operation. Further, inspired by DenseNet, we adopt the 
concatenation operation to fuse the feature maps in place of the 
summation operation in the decoder. However, concatenating 
the feature maps directly increases the number of channels 
(wide decoder) and results in a high computational cost in the 
following layers. Therefore, we reduce the output channels to 
half at every convolutional layer at the decoder to reduce the 
complexity (narrow decoder). According to the results in Table 
3, there is no obvious difference among the accuracy of these 
three architectures. But the model with narrow decoder speeds 
up the network using fewer parameters. Hence, simplifying the 
decoder seems to be a way to construct an efficient network. 

For the purpose of designing a light decoder, we conduct 
variations of the decoder, as Figure 5 shows. All of them have 
the identical encoder, which is similar to the front-end module 
in Dilation 8 [31]. The 14th convolutional layer is inserted to 
adjust the number of channels for the decoder. In total, four 
decoders are designed and tested. Model-1 adopts the SegNet-
like decoder but replaces the un-pooling layers by the bilinear 
interpolation layers. Model-2 discards the decoder network and 
up-samples the feature maps directly to the input resolution 
without additional convolutional layers. It can be viewed as an 
architecture without the decoder. Model-3 recovers the spatial 
resolution gradually but it removes the last two convolutional 
layers compared to Model-1. Model-4 up-samples the feature 
maps directly to the input resolution and uses two 
convolutional layers to recover the detailed information. 

Table 4 shows the results of four architectures in Figure 5 
when the CamVid dataset is tested. The results of these 4 
models are very close, which confirms that the decoder plays a 
lesser role in improving the overall performance. Thus, we can 
simplify the decoder to speed up the network. Additionally, the 
results show that a good decoder can slightly improve the 
accuracy, so we design the network with a moderate decoder 
for accuracy consideration. Moreover, among Model-1, 
Model-3, and Model-4, Model-4 is fast and using fewer 
parameters, and thus is preferred for constructing an efficient 
network. Thus, the decoder of Model-4 is a good choice for our 
decoder.  

In summary, the decoder experiments give us some 
observation as follows. 

• Using a narrow decoder is able to speed up the network and 
it provides similar accuracy results compared to a wide 
decoder. 

• Up-sampling the feature maps to a large size and/or using 
additional convolutional layers to recover the information 
can produce more accurate results. 

 

Table 3. Fusion methods in the decoder. Testing on the  
Cityscapes validation set at 1024×512 resolution. 

Decoder 
mIoU
(%) 

Frame Rate 
(FPS) 

Model Size
(MB) 

Summation 68.8 45.1 27.9 

Concat-wide 68.7 41,4 30.9 

Concat-narrow 68.7 50.6 18.0 

Table 4. Results of four decoders on CamVid test set. 

Method 
mIoU
(%) 

Frame Rate 
(FPS) 

Model Size
(MB) 

Model-1 64.1 24.3 70.6 

Model-2 63.0 34.5 59.1 

Model-3 63.9 27.0 70.2 

Model-4 64.2 30.3 60.3 

Therefore, we remove the decoder of FCN-DenseNet and use 
the narrow convolutional layers followed by the bilinear 
interpolation layers to produce the large-size feature maps. A 
concatenated layer is employed to combine the feature maps, and 
a deconvolutional layer is used to recover the detailed 
information, to fuse the feature maps and to determine the final 
estimation. This architecture is our proposed DSNet 

 

Fig. 5: Variations of Decoder. From top to bottom:  
(a) Model-1, (b) Model-2, (c) Model-3, (d) Model-4 
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IV. PERFORMANCE OF DSNET 

As mentioned above, two networks are proposed in this 
paper, DSNet-fast (Figure 1) and DSNet-accurate. These two 
architectures can be used to process different resolution 
images. In this section, we report the experimental results of 
the proposed network on CamVid and Cityscapes datasets. 
Also, we compare them with the other state-of-the-art networks 
to examine the effectiveness of the proposed method. 

A. Results on CamVid 

In this subsection, the CamVid dataset is used to evaluate the 
performance of DSNet. In addition to DSNet-fast, the DSNet-
accurate is employed to process the small resolution images. 
Here, both DSNet-fast and DSNet-accurate adopt the pre-
trained encoder on ImageNet. After pre-training, the data 
augmentation strategy (horizontal flip and pixel translation) is 
employed to produce the robust prediction. Also, we find that 
decaying the learning rate by equation (1) can slightly improve 
the accuracy. 
 The results are shown in Table 5. DSNet-accurate 
sacrifices the inference speed but its accuracy is higher than 
DSNet-fast for about 4 % mIoU. In addition, Table 6 shows 
that the number of parameters in DSNet-accurate is less than 
DSNet-fast due to the elimination of a convolution layer in the 
decoder. Here, we already know that the parameters used in the 
decoder provide less effective for accuracy improvement. Also, 
the number of the parameters used in first few layers is identical  

Table 5. Comparison of DSNet and other schemes on CamVid test set. 

Method 
mIoU  
(%) 

Global
Acc. (%) 

DeepLab-LFOV [15] 61.6 - 

Bayesian SegNet [32] 63.1 86.9 

Dilation8 [31] 65.3 79.0 

EDANet [20] 66.4 90.8 

FC-DenseNet103 [33] 66.9 91.5 

ICNet [23] 67.1 - 

G-FRNet [34] 68.0 - 

DCDN [35] 68.4 91.4 

SDN [36] 71.8 92.7 

DSNet-fast 68.6 91.7 
DSNet-accurate 72.6 92.7 

Table 6. The speed of DSNet running on 480×360 resolution  
with 11 categories (CamVid dataset). 

Method 
Frame Rate 

(FPS) 
Model Size

(MB) 

DSNet-fast 81.9 11.9 

DSNet-accurate 58.2 11.6 

 

Fig. 6: The results of DSNet on CamVid test set. From top to bottom: (a) Input image, (b) Ground truth, (c) DSNet-fast output, (d) DSNet-accurate output 
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in both DSNet-fast and DSNet-accurate, which indicates the 
size of feature maps is supposed to be more important than 
using extra parameters. Thus, the results in Table 5 and Table 
6 are consistent with our conjecture in section 3.3 that the 
feature map size has a significant influence on the accuracy in 
semantic segmentation. 

On the other hand, compared to the other state-of-the-art 
methods, DSNet-accurate shows an outstanding performance 
in processing the low resolution images (480×360). 
Furthermore, according to the experimental results in Figure 6, 
we find that DSNet-accurate is indeed capable of retaining 
more detailed information and capturing the small objects 
compared to DSNet-fast. Table 6 lists the frame rate of DSNet-
fast and DSNet-accurate. Both of them process a 480×360 
RGB image for more than 55 frames/sec, which demonstrates 
the real-time testing (inferencing) ability. Thus, if the 
computing device is sufficiently powerful or the input size is 
small, the DSNet-accurate is also an appropriate architecture to 
balance speed and accuracy for the real-time applications.  
B. Results on Cityscapes 

We also tested our systems on the Cityscapes dataset. For 
the speed consideration, only DSNet-fast is benchmarked on 
this high resolution dataset. At the training step, we resize the 
image and its ground truth (map) to 1024×512 in order to speed 
up the network training. During inference, the input image is at 
1024×512 resolution, but the output segmentation maps are up-
sampled to the full resolution (2048×1024) corresponding to 
their ground truths for evaluation. In addition to decaying the 
learning rate by (1), we find that adjusting the weight decay 
from 0.0005 to 0.0001 and adopting the dropout strategy [37]  

at the end of every dense unit with a drop rate of 0.1 can 
further improve the accuracy for DSNet-fast. Also, the pre-
trained encoder and the data augmentation strategy are used in 
training to strengthen the feature representation. The best 
model of DSNet-fast can achieve 71.5% mIoU on the 
validation set. Some output samples are displayed in Figure 7. 

Furthermore, we compare DSNet-fast with the other state-of-
the-art networks on the Cityscapes test set by submitting the test 
results to the online benchmark server. At the end, DSNet-fast 
achieves 69.1 % mIoU, as Table 7 shows. For the top-ranked 
methods, the architectures are more complex than DSNet-fast. 
Also, lots of data is included in their training procedure, resulting 
the better generalization and higher performance. Although the 
accuracy of DSNet is still lower than some high accuracy 
networks, DSNet is rather fast and accurate in competing with the 
efficient networks. It only takes 18.9 ms per image on a Titan X 
and 14.7 ms per image on a 1080Ti, for 1024×512 resolution 
inputs. The name of our method on the leaderboard is NCTU-
ITRI. 

V. CONCLUSIONS 

In general, a deep learning model usually has high performance 
(accuracy) but often has a low inference speed. This makes the 
deep learning based methods difficult to apply into a real-world 
application. To solve the problem, we modify the network 
architecture based on the Fully Convolutional Network (FCN).  

In order to find an efficient trade-off between accuracy and 
speed, we conduct a series of experiments. We explore a number 
of the encoder variations, examine the impact of input resolution, 
and the structure and the depth of a neural net. Next, we look into 
the fusion methods in the decoder, and ways to simplify the 
decoder. Finally, we propose an architecture that is able to process 
1024 × 512 resolution images at 68 frames per second on a single 
1080 Ti GPU card. In addition, our proposed architecture shows 
the good results on the two challenging road-scene datasets, 
CamVid and Cityscapes. This demonstrates that the proposed 
architecture is able to achieve a high speed and rather high 
accuracy processing. 

 
 

Fig. 7: Results of DSNet on Cityscapes validation set. From top to bottom: (a) Input image, (b) Ground truth, (c) DSNet-fast output 
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