
DSNet: An Efficient CNN for Road Scene
Segmentation

Ping-Rong Chen* Hsueh-Ming Hang* Sheng-Wei Chan† Jing-Jhih Lin†
*National Chiao Tung University, Hsinchu, Taiwan

E-mail: {james50120.ee05g, hmhang}@nctu.edu.tw Tel: +886-35731861
†Industrial Technology Research Institute, Hsinchu, Taiwan

E-mail: {ShengWeiChan, jeromelin}@itri.org.tw

Abstract— Road scene understanding is a critical component in
an autonomous driving system. Although the deep learning-based
road scene segmentation can achieve very high accuracy, its
complexity is also very high for developing real-time applications. It
is challenging to design a neural net with high accuracy and low
computational complexity. To address this issue, we investigate the
advantages and disadvantages of several popular CNN architectures
in terms of speed, storage and segmentation accuracy. We start from
the Fully Convolutional Network (FCN) with VGG, and then we
study ResNet and DenseNet. Through detailed experiments, we pick
up the favorable components from the existing architectures and at
the end, we construct a light-weight network architecture based on
the DenseNet. Our proposed network, called DSNet, demonstrates a
real-time testing (inferencing) ability (on the popular GPU platform)
and it maintains an accuracy comparable with most previous
systems. We test our system on several datasets including the
challenging Cityscapes dataset (resolution of 1024 ×512) with an
mIoU of about 69.1 % and runtime of 0.0147 second per image on a
single GTX 1080Ti. We also design a more accurate model but at the
price of a slower speed, which has an mIoU of about 72.6 % on the
CamVid dataset.

I. INTRODUCTION

With the fast development of automated driving systems, a
stable and reliable surrounding scene analysis becomes
essential for a safe driving environment. The deep-learning
based image semantic segmentation is one of the best solutions
because it is sufficiently robust in analyzing the complicated
environments. It partitions a captured image into several
regions and recognizes the class (object) of every pixel, so it
can be viewed as pixel-level classification. Different from
image classification, the image semantic segmentation
identifies the object classes in images and also finds the
locations of objects in images. In addition, it provides precise
object boundary information. Nevertheless, the high accuracy
of image semantic segmentation is often at the high complexity
of a CNN model without consideration of inference time,
resulting in a difficult implementation on several light devices.
Therefore, a fast and efficient CNN model is very desirable and
imperative for a practical semantic segmentation system.

Recently, an encoder-decoder architecture is popular for
semantic segmentation. The encoder is usually a classification
network, such as VGG [4], ResNet [6], and DenseNet [8]. It
employs a series of down-sampling layers to condense the
information. However, the down-sampling operation

drastically reduces the detailed spatial information which is quite
important for the image semantic segmentation task. To address
this issue, some decoders are designed to recover the spatial
resolution by using the up-sampling process. Deconvolution is
commonly used to produce a learnable up-sampling process in
many popular networks, such as DeconvNet [10] and FCN [12].
Un-pooling used in SegNet [9] is another method to up-sample
the feature maps by reusing the max-pooling indices produced by
the encoder. On the other hand, some networks are constructed
without a decoder network but retain the detailed spatial
information from the encoder part, such as DeepLab v2 [15],
DeepLab v3 [17], and PSPNet [19]. They remove some down-
sampling layers and apply the dilated convolution, which can
maintain the spatial resolution without sacrificing the receptive
field. Although this method can improve accuracy, the enlarged
feature maps often significantly slow down the processing,
especially for a deep architecture together with large feature maps.
Also, DeepLab v3+ [21] includes a decoder network to combine
the multi-scale information to obtain better results. These
previous works give us clues in constructing a fast network that
is able to capture multi-scale information without using dilated
convolution.

Recently, some efficient semantic segmentation networks have
been proposed, such as ENet [11] and ERFNet [22]. ENet is
constructed based on the concept of SegNet, but it is much slander
than the latter and thus offers a light and fast architecture.
Moreover, ENet uses dilated convolution and stacked residual
layers to deepen the network so that the accuracy can be
maintained. ERFNet is a wider version of ENet and uses
deconvolutional layers for the up-sampling process. Also, they
adopt the factorized filter structure [24] to separate a two-
dimensional filter into two one-dimensional filters in the
convolutional layer and thus considerably reduce the number of
parameters. Further, both of ENet and ERFNet use an early down-
sampling scheme and an extremely narrow architecture compared
to the schemes with a heavy encoder such as VGG16 and
ResNet101 (top-ranked on ILSVRC [25]). In this work, we adopt
a similar idea in constructing a narrow architecture, but DenseNet
is selected as the backbone instead of ResNet because it combines
the multi-scale information more frequently, which may be more
appropriate for semantic segmentation purpose.

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China

424978-988-14768-7-6©2019 APSIPA APSIPA ASC 2019

II. PROPOSED NETWORK

In this paper, the target is to construct a fast network
architecture without degrading its accuracy. Up to now,
constructing a CNN is often empirical, and it is hard to predict
in advance the results of a modified network. Our aim is to
design a favorable architecture for real-time applications. We
conducted a series of experiments as to be described in section
3. Here, we first give an overview of the proposed network,
Dense Segmentation Network, DSNet, in brief. The entire
architecture is shown in Figure 1. Mainly, the network
architecture includes two parts, the encoder and the decoder.
The details are described as follows.

A. Encoder

The encoder part is constructed based on the concept of
DenseNet because it achieves high performance with narrow
layers, resulting less overall computational cost. The encoder
consists of one initial block, 4 non-bottleneck units (without
1×1 convolution), and 26 bottleneck units (with 1×1
convolution). The early down-sampling operation (convolution
with a stride of 2) is employed at the initial block to shrink the
size of feature maps and to speed up the network. Meanwhile,
the output channel of the initial block is set to 32, the growth
rate is set to 32, which represents how many feature maps are
generated in one dense unit, and the channels are compressed
with a ratio of 0.5 in the transition layer before a pooling
operation to reduce the complexity. The bottleneck units adopt
a 1×1 convolution to reduce the number of channels. Because
the number of channels is quite small in Block 1 and Block 2,
it is not necessary to decease the channel numbers there. Thus,
the non-bottleneck units are adopted in Block 1 and Block 2
rather than the bottleneck units.

B. Decoder

In our experiments, we find that a decoder with heavy structure
does not seem to provide much accuracy improvement. Hence,
simplifying the decoder is a feasible way to speed up the network.
So, we reduce the number of channels to 32 by employing four
convolutional layers after the Block 2, Block 3, Block 4, and
Block 5. Furthermore, all the feature maps are up-sampled to the
resolution of Block 2 to concatenate them together. In the end, a
deconvolutional layer with a 4 up-sampling rate is used to recover
the spatial resolution for the final dense segmentation. By using
this simple decoder, the computational complexity is
considerably decreased and the accuracy can be maintained at the
same time.

C. Details of Encoder

In this paper, we design two modifications on the original
dense unit to make a trade-off between the accuracy and the
speed. First, we modify the composition unit from BN-ReLU-
Conv [26] to Conv-BN-ReLU. Even though the full pre-activation
unit (BN-ReLU-Conv) is claimed to improve the results, it is not
possible to merge BN layers into Conv layers (as discussed in
[27]) during the testing phase. So, for speed consideration, we
redesign the DenseNet architecture by using the Conv-BN-ReLU
units to replace the BN-ReLU-Conv units.

Second, we slightly modify the dense unit by inserting another
convolutional layer at the end of bottleneck and the non-
bottleneck architectures, as shown in Figure 2. By adopting this
modification, the network can be deepened at a low
computational cost because the preceding layer is sufficiently
narrow. Also, the additional convolutional layer can enlarge the
receptive field to capture large-scale objects and to produce a

Fig. 1: The architecture of fast dense segmentation network (DSNet-fast). The encoder is constructed based on the deep dense unit described in Figure 2. The
decoder is designed as light as possible. The accurate version (DSNet-accurate) removes the down-sampling operation in the initial block. Additionally, the
convolutional layer connected to Block 2 is removed, performing 96 channels at the concatenation layer rather than 128 channels in DSNet-fast.

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China

425

better result on the high resolution dataset, such as Cityscapes
dataset.

D. Accurate Version

In our experiments, we find that the convolutional layers
operated on the large feature maps is important for an accurate
pixel-level classification, especially for processing a low
resolution image. Thus, we propose another architecture to deal
with the low resolution images. This architecture removes the
early down-sampling operation in the initial block in Figure 1
so that the larger feature maps are fed to the rest of the network.

Meanwhile, in the decoder, one convolutional layer
connected to Block 2 is removed and all the feature maps are
up-sampled to the resolution of Block 3. So, the number of
channels after the concatenated layer becomes 96 and the last
deconvolutional layer up-samples the feature maps by a factor
of 4. This architecture is called DSNet-accurate (accurate dense
segmentation network). In summary, we proposed two
architectures to deal with different input resolutions. We name
the architecture with the early down-sampling layer as DSNet-
fast. And, the architecture without the early down-sampling
operation is called as DSNet-accurate.

III. EXPERIMENTS

As mentioned earlier, a series of experiments are carried out
to show the pros/cons of various structure components. The
results give us the clues in designing DSNet. We now explain
the experiments in details in this section. DSNet came from the
architecture of FCN. FCN is an encoder-decoder network and
its decoder combines the multi-scale information in order to
produce an accurate prediction. Portions of our experiments are
implemented on the modified FCN, which increases the
number of channels in the decoder compared to the original
FCN. The modified FCN is shown in Figure 3. Mainly, we
divide the experiments into two parts, Encoder Experiments
and Decoder Experiments. Before describing them, we first
describe the dataset used to benchmark the performance and
the parameter setting in training the networks.

A. Dataset

We use two popular road-scene datasets to evaluate all the
networks in this paper. The first one is CamVid [28] consisting
of 367 training images, 101 validation images and 233 testing
images. The resolution of all images is 480×360 and there are
in total 11 classes in the dataset. The CamVid dataset can show
the importance of detailed information because of the low
resolution images.

The second dataset is Cityscapes [29], which is a larger
dataset for semantic understanding of urban street scenes. All
images are at 2048×1024 resolution and there are 19 classes for
training. Two kinds of annotations are provided, fine-
annotation and coarse-annotation. In this paper, we only use the
fine-annotated dataset to train and evaluate the networks. It is
composed of 2950 training images, 500 validation images, and
1525 test images. For speed consideration, the images are
down-sampled by a factor of 2 (horizontally and vertically) in
some experiments. The Cityscapes dataset can show the

influence of receptive field on the networks when the input
images are of high resolutions.

B. Implementation Details

All the experiments are conducted on the Pytorch framework
[30] with a single Maxwell Titan X GPU. The optimizer is
Stochastic Gradient Descend (SGD), with a weight decay of
0.0005, a momentum of 0.9, a batch size of 4 and a base learning
rate of 0.05. Inspired by [15, 19], the learning rate is adjusted after
every iteration according to the following equation: ݈ݎ ൌ 	 ௦ݎ݈ ൈ ቀ1 െ ௧௧௧௧	௧௧௦ቁ௪ (1)

with a power of 0.9. Also, a total of 13800 iterations (150 epochs)
is set in the training on the CamVid dataset, and 74400 iterations
(100 epochs) is set in the training on the Cityscapes dataset. In
addition, we adopt a class balancing strategy to compensate
small-size classes. Inspired by [11, 22], the class weightings are
calculated by (2): ݓ ൌ ଵሺାሻ (2)

Fig. 2: The modified deep dense units by inserting another convolutional
layer (red dotted block). (a) Non-bottleneck architecture. (b) Bottleneck
architecture.

Fig. 3: The modified FCN. C1, C2, and C3 denote the number of channels.
The decoder reduces the channels to half and recover the original spatial
resolution.

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China

426

where k is a constant set to 1.1 and pc represents the
probability of the presence of class c in pixel-level; then, these
class weightings are divided by the maximum to normalize
their values into [0, 1], so that the other hyper-parameters can
be fixed without affecting the convergence in training.

C. Encoder Experiments – Ablation Study

In general, the encoder network for semantic segmentation
is strongly related to the image classification network.
Moreover, the residual unit has been proved that it can
significantly improve the accuracy if the depth of the CNN is
deeper. Hence, we modify the encoder of FCN by replacing
VGG16 by ResNet50 to construct the FCN-ResNet50 network.
However, according to Table 1, we find that the performance
varies on different datasets. The performance of FCN-
ResNet50 is worse than that of FCN-VGG16 on the CamVid
dataset, but the accuracy of FCN-ResNet50 is significantly
improved on the Cityscapes dataset. We suppose that this is due
to different input resolutions. Thus, we investigate the impact
of the input resolution by using the following experiments.

First, observing the segmentation maps in Figure 4, we find
that the truck object estimated by FCN-VGG16 is fragmented
and incomplete. In contrast, FCN-ResNet50 is able to capture
the truck more accurately. One explanation is that the receptive
field of ResNet50 is larger than that of VGG16; that is, the
ResNet50 is able to recognize large size objects and thus results
in a more accurate estimation on the high resolution images.

Next, we study the performance on the low resolution
images. We investigate the problem based on the structure of
VGG16 and ResNet50. In the first few layers, the structure of
ResNet50 has an early down-sampling layer, and then followed
by a down-sampling layer (max-pooling layer). Heuristically,
these consecutive down-sampling operations may reduce the
feature maps to a too small size. Thus, it is difficult to retain
the detailed spatial information and thus leads to a poor
segmentation result. In order to verify this speculation, we
replace the first four convolutional layers and two max-pooling
layers of VGG16 by one early down-sampling layer followed
by a down-sampling layer to construct FCN-VGG-ED.

Because there is no pre-trained model for the modified
network, FCN-VGG16 and FCN-VGG-ED (Early Down-
sampling) in Table 2 are trained with the random initialization
(training from scratch). The results show that the FCN-VGG-
ED performance degrades considerably and we thus confirm
that the early down-sampling layer is one of the reasons
causing FCN-ResNet50 performance degradation on low
resolution images. On the other hand, the number of parameters
may be another reason causing the degradation in FCN-VGG-
ED. Further investigation is explained in section 4.1 using
Table 5 and Table 6. In summary, we have the following
observations based on the results of encoder experiments.

• In order to retain the detailed spatial information, the
convolution operation performed on the large feature maps
is important for semantic segmentation.

• In order to capture the long-range information and large-
scale objects, a deep architecture is needed for high
resolution images.

Table 1. Results of FCN-VGG16 and FCN-ResNet50 on CamVid test set
(480×360) and on Cityscapes validation set (2048×1024)

Method Dataset
mIoU
(%)

Frame Rate
(FPS)

FCN-
VGG16

CamVid 67.5 39.8

Cityscapes 65.2 4.1

FCN-
ResNet50

CamVid 65.0 38.1

Cityscapes 67.4 5.1

Table 2. Results of FCN-VGG16 and FCN-VGG-ED on
CamVid test set (training from scratch).

Method
mIoU
(%)

Frame Rate
(FPS)

Model Size
(MB)

FCN-VGG16 56.9 39.8 72.6

FCN-VGG-ED 52.2 60.6 71.1

• The early down-sampling layer speeds up the operation
significantly but it damages the small-size image results.

In brief, we need a deep architecture to process a high
resolution image. Also, we hope the network is capable of adding
extra convolutional layers for large-size feature maps but we also
want to have a low computational cost. Thus, the trade-off
between using the early down-sampling layer and the extra
convolutional layers is a critical issue in designing a fast neural
network. The above observations give us clues in designing the
encoder part in Figure 1. Because of the low complexity in every
dense unit, we can insert additional convolutional layer to process
the large feature maps (for example, Block 1 in Figure 1) and thus
more detailed spatial information can be retained.

D. Decoder Experiments

After designing the encoder network, in order to train an initial
encoder model, we add one global average pooling layer and one
fully connected layer to convert the encoder into a classification
network. Then, the network is pre-trained on a large dataset,

Fig. 4: An output sample that shows the importance of receptive field. (a)
Input image (b) Ground truth (c) FCN-VGG16 output (d) FCN-ResNet50
output.

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China

427

ImageNet, to generate a good initial encoder model, which
seems to be a good starting point for the complete system,
encoder plus decoder although it is trained on the classification
dataset (not segmentation dataset). Then, the following
experiments on the decoder are conducted with the pre-trained
encoder.

We first discard the attached pooling layer and the fully
connected layer of the encoder, and connect it to the FCN-
based decoder, fusing the feature maps by the summation
operation. Further, inspired by DenseNet, we adopt the
concatenation operation to fuse the feature maps in place of the
summation operation in the decoder. However, concatenating
the feature maps directly increases the number of channels
(wide decoder) and results in a high computational cost in the
following layers. Therefore, we reduce the output channels to
half at every convolutional layer at the decoder to reduce the
complexity (narrow decoder). According to the results in Table
3, there is no obvious difference among the accuracy of these
three architectures. But the model with narrow decoder speeds
up the network using fewer parameters. Hence, simplifying the
decoder seems to be a way to construct an efficient network.

For the purpose of designing a light decoder, we conduct
variations of the decoder, as Figure 5 shows. All of them have
the identical encoder, which is similar to the front-end module
in Dilation 8 [31]. The 14th convolutional layer is inserted to
adjust the number of channels for the decoder. In total, four
decoders are designed and tested. Model-1 adopts the SegNet-
like decoder but replaces the un-pooling layers by the bilinear
interpolation layers. Model-2 discards the decoder network and
up-samples the feature maps directly to the input resolution
without additional convolutional layers. It can be viewed as an
architecture without the decoder. Model-3 recovers the spatial
resolution gradually but it removes the last two convolutional
layers compared to Model-1. Model-4 up-samples the feature
maps directly to the input resolution and uses two
convolutional layers to recover the detailed information.

Table 4 shows the results of four architectures in Figure 5
when the CamVid dataset is tested. The results of these 4
models are very close, which confirms that the decoder plays a
lesser role in improving the overall performance. Thus, we can
simplify the decoder to speed up the network. Additionally, the
results show that a good decoder can slightly improve the
accuracy, so we design the network with a moderate decoder
for accuracy consideration. Moreover, among Model-1,
Model-3, and Model-4, Model-4 is fast and using fewer
parameters, and thus is preferred for constructing an efficient
network. Thus, the decoder of Model-4 is a good choice for our
decoder.

In summary, the decoder experiments give us some
observation as follows.

• Using a narrow decoder is able to speed up the network and
it provides similar accuracy results compared to a wide
decoder.

• Up-sampling the feature maps to a large size and/or using
additional convolutional layers to recover the information
can produce more accurate results.

Table 3. Fusion methods in the decoder. Testing on the
Cityscapes validation set at 1024×512 resolution.

Decoder
mIoU
(%)

Frame Rate
(FPS)

Model Size
(MB)

Summation 68.8 45.1 27.9

Concat-wide 68.7 41,4 30.9

Concat-narrow 68.7 50.6 18.0

Table 4. Results of four decoders on CamVid test set.

Method
mIoU
(%)

Frame Rate
(FPS)

Model Size
(MB)

Model-1 64.1 24.3 70.6

Model-2 63.0 34.5 59.1

Model-3 63.9 27.0 70.2

Model-4 64.2 30.3 60.3

Therefore, we remove the decoder of FCN-DenseNet and use
the narrow convolutional layers followed by the bilinear
interpolation layers to produce the large-size feature maps. A
concatenated layer is employed to combine the feature maps, and
a deconvolutional layer is used to recover the detailed
information, to fuse the feature maps and to determine the final
estimation. This architecture is our proposed DSNet

Fig. 5: Variations of Decoder. From top to bottom:
(a) Model-1, (b) Model-2, (c) Model-3, (d) Model-4

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China

428

IV. PERFORMANCE OF DSNET

As mentioned above, two networks are proposed in this
paper, DSNet-fast (Figure 1) and DSNet-accurate. These two
architectures can be used to process different resolution
images. In this section, we report the experimental results of
the proposed network on CamVid and Cityscapes datasets.
Also, we compare them with the other state-of-the-art networks
to examine the effectiveness of the proposed method.

A. Results on CamVid

In this subsection, the CamVid dataset is used to evaluate the
performance of DSNet. In addition to DSNet-fast, the DSNet-
accurate is employed to process the small resolution images.
Here, both DSNet-fast and DSNet-accurate adopt the pre-
trained encoder on ImageNet. After pre-training, the data
augmentation strategy (horizontal flip and pixel translation) is
employed to produce the robust prediction. Also, we find that
decaying the learning rate by equation (1) can slightly improve
the accuracy.
 The results are shown in Table 5. DSNet-accurate
sacrifices the inference speed but its accuracy is higher than
DSNet-fast for about 4 % mIoU. In addition, Table 6 shows
that the number of parameters in DSNet-accurate is less than
DSNet-fast due to the elimination of a convolution layer in the
decoder. Here, we already know that the parameters used in the
decoder provide less effective for accuracy improvement. Also,
the number of the parameters used in first few layers is identical

Table 5. Comparison of DSNet and other schemes on CamVid test set.

Method
mIoU
(%)

Global
Acc. (%)

DeepLab-LFOV [15] 61.6 -

Bayesian SegNet [32] 63.1 86.9

Dilation8 [31] 65.3 79.0

EDANet [20] 66.4 90.8

FC-DenseNet103 [33] 66.9 91.5

ICNet [23] 67.1 -

G-FRNet [34] 68.0 -

DCDN [35] 68.4 91.4

SDN [36] 71.8 92.7

DSNet-fast 68.6 91.7
DSNet-accurate 72.6 92.7

Table 6. The speed of DSNet running on 480×360 resolution
with 11 categories (CamVid dataset).

Method
Frame Rate

(FPS)
Model Size

(MB)

DSNet-fast 81.9 11.9

DSNet-accurate 58.2 11.6

Fig. 6: The results of DSNet on CamVid test set. From top to bottom: (a) Input image, (b) Ground truth, (c) DSNet-fast output, (d) DSNet-accurate output

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China

429

in both DSNet-fast and DSNet-accurate, which indicates the
size of feature maps is supposed to be more important than
using extra parameters. Thus, the results in Table 5 and Table
6 are consistent with our conjecture in section 3.3 that the
feature map size has a significant influence on the accuracy in
semantic segmentation.

On the other hand, compared to the other state-of-the-art
methods, DSNet-accurate shows an outstanding performance
in processing the low resolution images (480×360).
Furthermore, according to the experimental results in Figure 6,
we find that DSNet-accurate is indeed capable of retaining
more detailed information and capturing the small objects
compared to DSNet-fast. Table 6 lists the frame rate of DSNet-
fast and DSNet-accurate. Both of them process a 480×360
RGB image for more than 55 frames/sec, which demonstrates
the real-time testing (inferencing) ability. Thus, if the
computing device is sufficiently powerful or the input size is
small, the DSNet-accurate is also an appropriate architecture to
balance speed and accuracy for the real-time applications.
B. Results on Cityscapes

We also tested our systems on the Cityscapes dataset. For
the speed consideration, only DSNet-fast is benchmarked on
this high resolution dataset. At the training step, we resize the
image and its ground truth (map) to 1024×512 in order to speed
up the network training. During inference, the input image is at
1024×512 resolution, but the output segmentation maps are up-
sampled to the full resolution (2048×1024) corresponding to
their ground truths for evaluation. In addition to decaying the
learning rate by (1), we find that adjusting the weight decay
from 0.0005 to 0.0001 and adopting the dropout strategy [37]

at the end of every dense unit with a drop rate of 0.1 can
further improve the accuracy for DSNet-fast. Also, the pre-
trained encoder and the data augmentation strategy are used in
training to strengthen the feature representation. The best
model of DSNet-fast can achieve 71.5% mIoU on the
validation set. Some output samples are displayed in Figure 7.

Furthermore, we compare DSNet-fast with the other state-of-
the-art networks on the Cityscapes test set by submitting the test
results to the online benchmark server. At the end, DSNet-fast
achieves 69.1 % mIoU, as Table 7 shows. For the top-ranked
methods, the architectures are more complex than DSNet-fast.
Also, lots of data is included in their training procedure, resulting
the better generalization and higher performance. Although the
accuracy of DSNet is still lower than some high accuracy
networks, DSNet is rather fast and accurate in competing with the
efficient networks. It only takes 18.9 ms per image on a Titan X
and 14.7 ms per image on a 1080Ti, for 1024×512 resolution
inputs. The name of our method on the leaderboard is NCTU-
ITRI.

V. CONCLUSIONS

In general, a deep learning model usually has high performance
(accuracy) but often has a low inference speed. This makes the
deep learning based methods difficult to apply into a real-world
application. To solve the problem, we modify the network
architecture based on the Fully Convolutional Network (FCN).

In order to find an efficient trade-off between accuracy and
speed, we conduct a series of experiments. We explore a number
of the encoder variations, examine the impact of input resolution,
and the structure and the depth of a neural net. Next, we look into
the fusion methods in the decoder, and ways to simplify the
decoder. Finally, we propose an architecture that is able to process
1024 × 512 resolution images at 68 frames per second on a single
1080 Ti GPU card. In addition, our proposed architecture shows
the good results on the two challenging road-scene datasets,
CamVid and Cityscapes. This demonstrates that the proposed
architecture is able to achieve a high speed and rather high
accuracy processing.

Fig. 7: Results of DSNet on Cityscapes validation set. From top to bottom: (a) Input image, (b) Ground truth, (c) DSNet-fast output

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China

430

ACKNOWLEDGMENT

This work was supported in part by the Mechanical and
Mechatronics Systems Research Lab., ITRI, Taiwan under
Grant 3000547822. We would like to thank Shao-Yuan Lo for
his helpful discussions during the course of this project.

REFERENCES

[1] Y. Zhuang et al., "Dense Relation Network: Learning
Consistent and Context-Aware Representation for Semantic
Image Segmentation," in ICIP, 2018, pp. 3698-3702: IEEE.

[2] L.-C. Chen et al., "Searching for efficient multi-scale
architectures for dense image prediction," in NIPS, 2018, pp.
8713-8724.

[3] T.-Y. Lin et al., "Microsoft coco: Common objects in
context," in ECCV, 2014, pp. 740-755: Springer.

[4] K. Simonyan and A. Zisserman, "Very deep convolutional
networks for large-scale image recognition," arXiv preprint
arXiv:1409.1556, 2014.

[5] Y. Zhuang et al., "RelationNet: Learning deep-aligned
representation for semantic image segmentation," in ICPR,
2018, pp. 1506-1511: IEEE.

[6] K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning
for image recognition," in CVPR, 2016, pp. 770-778.

[7] A. Valada, R. Mohan, and W. Burgard, "Self-Supervised
Model Adaptation for Multimodal Semantic Segmentation,"
arXiv preprint arXiv:1808.03833, 2018.

[8] G. Huang, Z. Liu, K. Q. Weinberger, and L. van der Maaten,
"Densely connected convolutional networks," in CVPR, 2017,
vol. 1, no. 2, p. 3.

[9] V. Badrinarayanan, A. Kendall, and R. Cipolla, "Segnet: A
deep convolutional encoder-decoder architecture for image
segmentation," IEEE transactions on pattern analysis and
machine intelligence, vol. 39, no. 12, pp. 2481-2495, 2017.

[10] H. Noh, S. Hong, and B. Han, "Learning deconvolution
network for semantic segmentation," in ICCV, 2015, pp. 1520-
1528.

[11] A. Paszke, A. Chaurasia, S. Kim, and E. Culurciello, "Enet: A
deep neural network architecture for real-time semantic
segmentation," arXiv preprint arXiv:1606.02147, 2016.

[12] J. Long, E. Shelhamer, and T. Darrell, "Fully convolutional
networks for semantic segmentation," in CVPR, 2015, pp.
3431-3440.

[13] M. Treml et al., "Speeding up semantic segmentation for
autonomous driving," in NIPS Workshop, 2016.

[14] S. Mehta, M. Rastegari, A. Caspi, L. Shapiro, and H. Hajishirzi,
"ESPNet: Efficient Spatial Pyramid of Dilated Convolutions
for Semantic Segmentation," arXiv preprint arXiv:1803.06815,
2018.

High Accuracy Network

Method Cityscapes data Additional data mIoU (%) Runtime (s)

DRN_CRL_Coarse [1] Fine, Coarse ImagNet 82.8 -

DPC [2] Fine, Coarse ImageNet, COCO [3] 82.7 -

RelationNet_Coarse [5] Fine, Coarse ImageNet 82.4 -

SSMA [7] Fine, Coarse, Stereo ImageNet 82.3 -

High Speed Network

Method Cityscapes data Additional data mIoU (%)
Runtime (s)

Titan X 1080 Ti

SegNet [9] Fine ImageNet 56.1 0.0600 -

ENet [11] Fine - 58.3 0.0130 -

SQ [13] Fine ImageNet 59.8 0.0600 -

ESPNet [14] Fine - 60.3 0.0089 -

ESPNetv2 [16] Fine ImageNet 62.1 0.0120 -

ContextNet [18] Fine - 66.1 0.0238 -

EDANet [20] Fine - 66.3 0.0123 0.0092

EDANet [20] Fine, Validation - 67.3 0.0123 0.0092

ERFNet [22] Fine - 68.0 0.0240

ICNet [23] Fine, Validation ImageNet 69.5 0.0330 -

ERFNet [22] Fine ImageNet 69.7 0.0240 -

DSNet-fast Fine ImageNet 69.1 0.0189 0.0147

Table 7. The results of DSNet-fast and other methods on Cityscapes test set. The results of other methods are listed
according to the online leaderboard and their reference papers (Cityscape webpage).

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China

431

[15] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A.
L. Yuille, "Deeplab: Semantic image segmentation with
deep convolutional nets, atrous convolution, and fully
connected crfs," arXiv preprint arXiv:1606.00915, 2016.

[16] S. Mehta, M. Rastegari, L. Shapiro, and H. Hajishirzi,
"ESPNetv2: A Light-weight, Power Efficient, and General
Purpose Convolutional Neural Network," arXiv preprint
arXiv:1811.11431, 2018.

[17] L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam,
"Rethinking atrous convolution for semantic image
segmentation," arXiv preprint arXiv:1706.05587, 2017.

[18] R. P. Poudel, U. Bonde, S. Liwicki, and C. Zach,
"Contextnet: Exploring context and detail for semantic
segmentation in real-time," arXiv preprint
arXiv:1805.04554, 2018.

[19] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, "Pyramid scene
parsing network," in CVPR, 2017, pp. 2881-2890.

[20] S.-Y. Lo, H.-M. Hang, S.-W. Chan, and J.-J. Lin, "Efficient
dense modules of asymmetric convolution for real-time
semantic segmentation," arXiv preprint arXiv:1809.06323,
2018.

[21] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H.
Adam, "Encoder-decoder with atrous separable convolution
for semantic image segmentation," arXiv preprint
arXiv:1802.02611, 2018.

[22] E. Romera, J. M. Alvarez, L. M. Bergasa, and R. Arroyo,
"Erfnet: Efficient residual factorized convnet for real-time
semantic segmentation," IEEE Transactions on Intelligent
Transportation Systems, vol. 19, no. 1, pp. 263-272, 2018.

[23] H. Zhao, X. Qi, X. Shen, J. Shi, and J. Jia, "Icnet for real-
time semantic segmentation on high-resolution images," in
ECCV, 2018, pp. 405-420.

[24] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna,
"Rethinking the inception architecture for computer vision,"
in CVPR, 2016, pp. 2818-2826.

[25] O. Russakovsky et al., "Imagenet large scale visual
recognition challenge," International Journal of Computer
Vision, vol. 115, no. 3, pp. 211-252, 2015.

[26] K. He, X. Zhang, S. Ren, and J. Sun, "Identity mappings in
deep residual networks," in ECCV, 2016, pp. 630-645:
Springer.

[27] S. Ioffe and C. Szegedy, "Batch normalization: Accelerating
deep network training by reducing internal covariate shift,"
arXiv preprint arXiv:1502.03167, 2015.

[28] G. J. Brostow, J. Fauqueur, and R. Cipolla, "Semantic object
classes in video: A high-definition ground truth database,"
Pattern Recognition Letters, vol. 30, no. 2, pp. 88-97, 2009.

[29] M. Cordts et al., "The cityscapes dataset for semantic urban
scene understanding," in CVPR, 2016, pp. 3213-3223.

[30] A. Paszke et al., "Automatic differentiation in PyTorch,"
2017.

[31] F. Yu and V. Koltun, "Multi-scale context aggregation by
dilated convolutions," arXiv preprint arXiv:1511.07122,
2015.

[32] A. Kendall, V. Badrinarayanan, and R. Cipolla, "Bayesian
segnet: Model uncertainty in deep convolutional encoder-
decoder architectures for scene understanding," arXiv
preprint arXiv:1511.02680, 2015.

[33] S. Jégou, M. Drozdzal, D. Vazquez, A. Romero, and Y.
Bengio, "The one hundred layers tiramisu: Fully
convolutional densenets for semantic segmentation," in
CVPR Workshop, 2017, pp. 1175-1183: IEEE.

[34] M. A. Islam, M. Rochan, N. D. Bruce, and Y. Wang, "Gated
feedback refinement network for dense image labeling," in
CVPR, 2017, pp. 4877-4885: IEEE.

[35] J. Fu, J. Liu, Y. Wang, and H. Lu, "Densely connected
deconvolutional network for semantic segmentation," in ICIP,
2017, pp. 3085-3089: IEEE.

[36] J. Fu, J. Liu, Y. Wang, and H. Lu, "Stacked deconvolutional
network for semantic segmentation," arXiv preprint
arXiv:1708.04943, 2017.

[37] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R.
Salakhutdinov, "Dropout: A simple way to prevent neural
networks from overfitting," The Journal of Machine Learning
Research, vol. 15, no. 1, pp. 1929-1958, 2014.

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China

432

