
Optimising Search Operations with Swarm
Intelligence

Ng Chung Hou​*​, Lim Wern Han​* ​and Lim Mei Kuan​*

*​Monash University Malaysia, Selangor, Malaysia.
E-mail: skyler.nch@gmail.com, lim.wern.han@monash.edu, lim.meikuan@monash.edu

Abstract ​— The challenge in search and rescue is to identify

the optimal paths when searching the entire location. This is
further complicated by the unknown and yet complex
environmental terrain; whilst being under the pressure of time.
Many of the existing search algorithms such as Depth First
Search (DFS) are focused on having only a single agent to sweep
through the location. Drawing inspiration from the
self-organisation mechanism and the emergence of global
behaviour through local interactions between agents in swarm
intelligence; this study utilises the information exchange between
agents in the swarm to navigate a search area effectively. We
demonstrate the proposed swarm-based search method and
compare its performance against the existing path finding
algorithm Breadth First Search (BFS) on terrains with different
complexity. We conducted simulations of search and rescue
operations; with findings that the proposed Swarm Intelligence
Based Search Strategy (SIS) is able to reach upwards of 95% the
effectiveness of BFS with approximately one-fifth the cost of
BFS. In addition, a thorough analysis and experimental results
to show the optimal number of agents is shown. Our results also
demonstrate that having more agents do not necessarily lead to
better traversal.

I. INTRODUCTION

This paper aims to identify the optimal number of agents that
should be used in a virtual graph or physical terrain search
operation. It will be a benchmark study between the proposed
search algorithm with the well-known DFS and BFS
algorithms. Conceptually, the DFS algorithm deploys a
singular agent travelling one node at a time through the path
until it reaches its destination. Therefore, DFS may get
trapped in parts of the graph that have no goal state and never
return. Meanwhile, the BFS algorithm “floods” the graph with
agents on all possible paths until it reaches its goal state.
When applied to infinite graphs, BFS will eventually find the
goal state. Intuitively, having higher number of agents would
result in a faster traversal. However, in real scenarios,
knowing or deploying the maximum number of agents
required for a particular search is not practical. Furthermore,
we often have cost (e.g. time & space) associated with search
action[1][2].

Intuitively, having higher number of agents would result in a
faster traversal. However, in real scenarios, we often have
cost associated with search action. Thus, an optimal number
of agents and an optimised path traversal mechanism that is

cost effective is crucial. In addition, this paper proves that
having more agents employed do not necessarily lead to better
traversal.

This proposed search strategy draws inspiration from the
concept of swarm-based search and traversal methodologies
such as particle swarm optimisation[3][4]. Swarm Intelligence
is a concept where multiple agents work and communicate
with each other to complete certain tasks. The concept is
mostly inspired by natural behaviours of animals that works
in a swarm like bees or ants, where each of the ant or bee
respectively would collectively collaborate to work towards a
goal[5]. One particular use for Swarm Intelligence, is search
and rescue operations[16][17]. A search problem, both for
virtual graphs or physical terrain, would clearly benefit from
utilising Swarm Intelligence as a method from traversal and it
offers distinctive benefits than when using traditional
traversal methods such as DFS or BFS[18].

Search operations can utilise the concept of Swarm
Intelligence by introducing multiple agents to the graph, and
allowing each agent to collectively communicate information
with one another in order to reach the destination in a much
shorter time. While at the same time it using an optimal
amount of agents to balance the cost of the search traversal, as
in using the right amount of agents in traversing the
environment instead of assuming that there are an infinite
amount of agents[6]. The problem also does not just end with
the agents reaching and figuring out the location of its
objective, it can be further worked upon to utilise swarm
intelligence techniques to optimise the results given[7].

In the field of Multi-Agent Pathfinding (MAPF), there is a
sequential variant and the parallel variant. The sequential
variants works to minimize the number of steps agents would
take to reach the destination, and the parallel variant where it
works on reducing the frequency in which agents would move
in groups[8]. Generally, there are two main approaches for
MAPF. The centralised approach which assumes that all
agents in the area are combined into one composite system
where the paths would be optimally determined as all
knowledge is shared between all agents[9]. The distributed
approach which would have each individual agent to

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China

1993978-988-14768-7-6©2019 APSIPA APSIPA ASC 2019

determine its own path and resolve any possible conflicts that
may arise[10][19].

The contribution of this paper is two-fold. First, a Swarm
Intelligence Based Search Strategy (SIS) is proposed to find
the optimal path more effectively. SIS utilises the information
exchange between agents in the swarm to navigate a search
space effectively. Secondly, we demonstrate that the increase
in the number of agents deployed for traversal do not
necessarily lead to better performance.

II. PROPOSED SEARCH STRATEGY

The process flow of the proposed Swarm Intelligence Based
Search Strategy (SIS) is as shown in Figure 1. First is an
algorithm to generate random graph, with the ability to set the
number of vertex as well as the maximum degree of the
vertex. This study will use the modified random walk model
to generate randomised graphs. This model of generating
random graph is used originally for generating spanning
trees[11], however for the purpose of this test, the algorithm
has been modified to be able to set the maximum number of
edges per vertex. So instead of having one agent “walking” to
another vertex to connect both nodes, we have that agent
“walk” to multiple vertices. We are using this model to
generate the graph because of the simplicity of the algorithm
that allowed us to tweak the graphs to accommodate for our
configurations for the testing phase, as well as its relatively
quick run-time[12].

Second is the algorithm used to traverse the generated terrain.
This algorithm is based on the concept of parallel DFS, where
the DFS algorithm runs in parallel with each other,
cooperating with each other to search the graph with
increased efficiency[13][14]. The proposed SIS is able to
search the generated graph, where no information of the graph
is fed to the algorithm besides the destination node, with a
dynamic number of agents that determines how many
“instances” of DFS runs simultaneously. This algorithm
would have each agent share and exchange information of the
paths they have explored so to not have any agents run into a
visited vertex, as well as sharing any unexplored area the
agents encountered. The pseudocode for the algorithm is as
illustrated in Figure 2. The SIS search adopts a top-down
approach of traversing the graph, where the number of agents
would keep evenly splitting itself into separate groups every
time the current vertex it is in has more than one possible
route.

An autotester module is developed to automate the simulation
for testing. The autotester requests three parameters from the
user: the number of nodes for the graph, the maximum degree
of each node, and the number of tests each instance has to
run.

Fig. 1 Flowchart of the experiment

While destination is not reached by any agents:
 For each group of agents:
 For each neighbour in the current location:
 Set current location as visited
 If group is in dead end:
 Have group travel to next unvisited node
 Else:
 If only 1 unvisited path:
 Move group to the next location
 Else If more unvisited paths than agents in group:
 Split all agents to all unvisited paths
 Remaining paths will remain unvisited
 Else more agents in group than unvisited paths:
 Evenly distribute agents to groups
 Place new groups into the paths

Fig. 2 Pseudocode of the proposed SIS search strategy

With this autotest, each graph generated would be tested by
an increasing number of agents traversing it, determined by
the max flow of the graph from source to destination. This is
because theoretically the maxflow of the graph from source to
sink would be the maximum number of agents needed to
traverse the graph[15]. Any additional agents added would

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China

1994

not have any further contribution as the graph does not have
enough paths for the number of agents traversing, and the
surplus agents would be redundant.

The autotest would also reiterate the test for generating the
graph from setting the maximum degree of the graph from 4,
to the parameter inputted by the user. For each of the
iteration, there would be a set number of tests where each test
is a different generated graph with the same properties of the
current iteration. With this in place it is possible to also test if
the maximum degree of the graph would influence the
effectiveness of a multi agent graph traversal.

III. EXPERIMENT AND RESULT

In the experiment, a total of 69,000 graphs are generated,
each with different settings; from 100, 200, and 300 vertices.
We iterate the test with a varying maximum degree per vertex
from 4 to 26. Each iteration is run over 1000 rounds. In
summary, the experiments run over approximately 7,291,000
times (69,000*average max flow). For this paper we will
present only the configuration that sets the maximum degree
of the graph at 4, 16, and 26.

We compare the performance of the proposed Swarm

Intelligence Based Search Strategy with the Breadth First
Search algorithm. The BFS is used for benchmarking as the
search strategy will always reach completion; or find the goal
state. For this study we would consider the sub-optimal
solution to be 95%-100% of the shortest path. For example, if
the shortest path of the graph takes 100 steps, and the
algorithm found a path that takes 105 steps, then the
algorithm found a path that is approximately 95.3% (100/105)
as efficient compared to Breadth First Search.

Fig. 3 Size 200 with vertices with maximum degree three,
each line within the figure represents one run iteration on the

autotest with the mentioned configuration

We discuss our findings in three aspects as follows:

A. Performance of algorithm plateau at approximately 16%
of the max flow of the given graph

All of the results returned from the tests, regardless of the
configurations, would yield the same pattern as seen in Fig. 2,
which is a noticeable performance plateau early on. When we
take the suboptimal solution for all iterations with the same
configurations and took the average agents it takes to reach
our sub-optimal solution, 16% of the maxflow of the graph is
the number of agents required for the suboptimal solution. In
Fig. 3 we show an example of one of the results with a set
configuration, and in Fig. 4 we show the mean of Fig. 3.

Fig. 4 The mean of all 1000 iterations with the same

configuration as Fig. 3

Looking at Table 1 below, we can observe that the number of
steps taken decreases as the number of agents involved
increases, however the rate of change is not linear as the
increase from one to two agents is much more than the
increase from ten to forty agents, for all cases.

The performance plateau can be explained by the decreasing
likelihood of finding a shorter path than the previous
iterations, once a short path is found. Using the well-known
DFS algorithm as an example, with the premise that the DFS
algorithm will always take a different path than before, to
reach the destination. Let’s say the first run on the DFS
algorithm has returned a path that is 200 steps long, and the
shortest available path utilising BFS is 100 steps long. If the
next subsequent run, the DFS algorithm returned a shorter
path of length 150, then the probability of the next subsequent
path to be shorter would be lower. This is because for each
possible path there is a standard distribution for the
probability that the path would be shorter or longer than the
overall average length of all possible paths. So returning to
the SIS algorithm, where conceptually it is like running a
parallel DFS algorithms, if in the first iteration it returns a
path center of the standard distribution, then in the second

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China

1995

iteration will yield an equal probability of returning a shorter
or longer path. If it returns a shorter path, then the probability
of the subsequent run returning a shorter path would be
lowered. Since the proposed SIS algorithm terminates the
moment the destination is found, a longer path in subsequent
runs will not be returned as the increase in agent count would
still yield the same result as the previous iteration, but with
the addition of a single agent that might find a shorter path.

Table 1 The average number of steps taken for each agent
that is traversing the graph

Size of
Graph

Max
degree

Number of Agents
1
(DFS)

2 5 10 20 40

100 4 41 22 12 9 8 8
100 16 9 6 4 3 3 3
100 26 6 4 3 3 3 3
200 4 84 45 21 13 10 9
200 16 17 10 6 4 3 3
200 26 12 8 5 4 3 3
300 4 130 64 29 18 13 11
300 16 28 15 7 5 4 3
300 26 16 9 5 4 3 3

*It should be noted that in this experiment if only 1 agent is
traversing the path, it is equivalent to a depth first search
operation. The same logic is applied to Breadth First search as
well, if m agents are traversing the path, where m is the
maxflow of the graph, then it is equivalent to a BFS operation

Table 2. The efficiency of using agents with 95%-100%
effectiveness for graphs of different sizes

Graphs with all
vertices with maximum
degree n, with different
graph sizes

Size
of
Graph

n=4 n=16 n=26

Average max flow of
1000 graphs generated
with vertices with
maximum degree n

100 24.6 72.8 76.1

200 47.6 115 163

300 71.1 155 228

Average number of
agents required to find
a path within 5%
difference of the actual
shortest path (BFS
performance)

100 9 13 11

200 11 19 17

300 13 20 21

Percentage of maxflow
as number of agents
needed to achieve
>95% efficiency

100 35% 17% 13%
200 23% 15% 10%
300 18% 12% 9%

B. The increase in the maximum degree of the graph would
improve the results

Building on the previous argument where more agents
increases the probability of finding a shorter paths during its
run, increasing the maximum degree of the graph would also
increase the probability of getting the shortest path, as each
vertex would on average contain more possible paths to
traverse, allowing for agents to search for more alternative
paths in the meantime instead of having agents simply
following a group to the next vertex until an alternative path
shows up.

C. In the context of the efficacy of the algorithm, the size of
the graph does not proportionally scale to its max flow

A larger size of the graph does on average increase the
amount of steps taken to reach the destination, however the
increase is not proportional to the max flow of the graph. As
illustrated in Table 2, the percentage of max flow needed to
reach above 95% effectiveness would decrease as the size of
the graph increases. This is because as discussed in the first
observation, the probability increases and decreases on the
iterations, and does not rely on the maxflow of the graph.
Therefore, the average number of agents required to achieve
above 95% efficiency increases as the size of the graph
increases.

IV. CONCLUSIONS

The proposed Swarm Intelligence Based Search Strategy is
able to search through the graph efficiently at a highly
reduced cost when compared to Breadth First Search
algorithm. The statistical results from our experiments show
that the SIS search strategy is able to achieve 95% to 100% of
the performance of BFS, while requiring only on average
16% of the cost or number of agents required by BFS. Our
results also demonstrate that an increase in the number of
agents, do not necessarily lead to better performance in
swarm-based strategies. We demonstrate that the increase in
the number of agents for traversal would reach a plateau.
Interestingly, the different terrains do not have significant
influence on the optimal number of agents required for search
too. This alludes to the information exchange mechanism in
swarm intelligence that leads to convergence or emergence
behaviour, which is the optimal path in the context of this
study.

There are a number of possible directions where this study
could explore further. Firstly, is to attempt at a mathematical
proof of the probability of achieving 95 - 100% effectiveness
with only 16% of the cost. We would also like to investigate
if including swarm intelligence methods including Ant
Colony Optimisation and Slime Mold Optimisation can be
adapted for optimal path finding.

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China

1996

REFERENCES

[1] Everitt, T., & Hutter, M. (2015, November). Analytical results
on the BFS vs. DFS algorithm selection problem. Part I: tree
search. In Australasian Joint Conference on Artificial
Intelligence (pp. 157-165). Springer, Cham.

[2] Cheung, T. Y. (1983). Graph traversal techniques and the
maximum flow problem in distributed computation. IEEE
Transactions on Software Engineering, (4), 504-512.

[3] Kennedy, J., & Eberhart, R. (1995, November). Particle swarm
optimization (PSO). In Proc. IEEE International Conference on
Neural Networks, Perth, Australia (pp. 1942-1948).

[4] Pugh, J., & Martinoli, A. (2007, April). Inspiring and modeling
multi-robot search with particle swarm optimization. In 2007
IEEE Swarm Intelligence Symposium (pp. 332-339). IEEE.

[5] Kennedy, J. (2006). Swarm intelligence. In Handbook of
nature-inspired and innovative computing (pp. 187-219).
Springer, Boston, MA.

[6] Bakhshipour, M., Ghadi, M. J., & Namdari, F. (2017). Swarm
robotics search & rescue: A novel artificial intelligence-inspired
optimization approach. Applied Soft Computing, 57, 708-726.

[7] Blum, C., & Li, X. (2008). Swarm intelligence in optimization.
In Swarm intelligence (pp. 43-85). Springer, Berlin, Heidelberg.

[8] Röger, G., & Helmert, M. (2012, July). Non-optimal
multi-agent pathfinding is solved (since 1984). In Workshops at
the Twenty-Sixth AAAI Conference on Artificial Intelligence.

[9] Sharon, G., Stern, R., Felner, A., & Sturtevant, N. R. (2015).
Conflict-based search for optimal multi-agent pathfinding.
Artificial Intelligence, 219, 40-66.

[10] Bennewitz, Maren, Wolfram Burgard, and Sebastian Thrun.
"Finding and optimizing solvable priority schemes for
decoupled path planning techniques for teams of mobile
robots." Robotics and autonomous systems 41.2-3 (2002):
89-99.

[11] Lovász, L. (1993). Random walks on graphs: A survey.
Combinatorics, Paul erdos is eighty, 2(1), 1-46.

[12] Wilson, D. B. (1996, May). Generating random spanning trees
more quickly than the cover time. In STOC (Vol. 96, pp.
296-303).

[13] Rao, V. N., & Kumar, V. (1987). Parallel depth first search. Part
I. implementation. International Journal of Parallel
Programming, 16(6), 479-499.

[14] Kumar, V., & Rao, V. N. (1987). Parallel depth first search. Part
II. analysis. International Journal of Parallel Programming,
16(6), 501-519.

[15] Goldberg, A. V., Hed, S., Kaplan, H., Tarjan, R. E., & Werneck,
R. F. (2011, September). Maximum flows by incremental
breadth-first search. In European Symposium on Algorithms
(pp. 457-468). Springer, Berlin, Heidelberg.

[16] Couceiro, M. S. (2017). An overview of swarm robotics for
search and rescue applications. In Artificial Intelligence:
Concepts, Methodologies, Tools, and Applications (pp.
1522-1561). IGI Global.

[17] Arnold, R. D., Yamaguchi, H., & Tanaka, T. (2018). Search and
rescue with autonomous flying robots through behavior-based
cooperative intelligence. Journal of International Humanitarian
Action, 3(1), 18.

[18] Khaldi, B., & Cherif, F. (2015). An overview of swarm
robotics: Swarm intelligence applied to multi-robotics.
International Journal of Computer Applications, 126(2).

[19] Stern, R., Sturtevant, N., Felner, A., Koenig, S., Ma, H.,
Walker, T., ... & Boyarski, E. (2019). Multi-Agent Pathfinding:

Definitions, Variants, and Benchmarks. arXiv preprint
arXiv:1906.08291.

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China

1997

