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Abstract ​— The challenge in search and rescue is to identify           

the optimal paths when searching the entire location. This is          
further complicated by the unknown and yet complex        
environmental terrain; whilst being under the pressure of time.         
Many of the existing search algorithms such as Depth First          
Search (DFS) are focused on having only a single agent to sweep            
through the location. Drawing inspiration from the       
self-organisation mechanism and the emergence of global       
behaviour through local interactions between agents in swarm        
intelligence; this study utilises the information exchange between        
agents in the swarm to navigate a search area effectively. We           
demonstrate the proposed swarm-based search method and       
compare its performance against the existing path finding        
algorithm Breadth First Search (BFS) on terrains with different         
complexity. We conducted simulations of search and rescue        
operations; with findings that the proposed Swarm Intelligence        
Based Search Strategy (SIS) is able to reach upwards of 95% the            
effectiveness of BFS with approximately one-fifth the cost of         
BFS. In addition, a thorough analysis and experimental results         
to show the optimal number of agents is shown. Our results also            
demonstrate that having more agents do not necessarily lead to          
better traversal. 

I. INTRODUCTION 

This paper aims to identify the optimal number of agents that           
should be used in a virtual graph or physical terrain search           
operation. It will be a benchmark study between the proposed          
search algorithm with the well-known DFS and BFS        
algorithms. Conceptually, the DFS algorithm deploys a       
singular agent travelling one node at a time through the path           
until it reaches its destination. Therefore, DFS may get         
trapped in parts of the graph that have no goal state and never             
return. Meanwhile, the BFS algorithm “floods” the graph with         
agents on all possible paths until it reaches its goal state.           
When applied to infinite graphs, BFS will eventually find the          
goal state. Intuitively, having higher number of agents would         
result in a faster traversal. However, in real scenarios,         
knowing or deploying the maximum number of agents        
required for a particular search is not practical. Furthermore,         
we often have cost (e.g. time & space) associated with search           
action[1][2].  
 
Intuitively, having higher number of agents would result in a          
faster traversal. However, in real scenarios, we often have         
cost associated with search action. Thus, an optimal number         
of agents and an optimised path traversal mechanism that is          

cost effective is crucial. In addition, this paper proves that          
having more agents employed do not necessarily lead to better          
traversal. 
 
This proposed search strategy draws inspiration from the        
concept of swarm-based search and traversal methodologies       
such as particle swarm optimisation[3][4]. Swarm Intelligence       
is a concept where multiple agents work and communicate         
with each other to complete certain tasks. The concept is          
mostly inspired by natural behaviours of animals that works         
in a swarm like bees or ants, where each of the ant or bee              
respectively would collectively collaborate to work towards a        
goal[5]. One particular use for Swarm Intelligence, is search         
and rescue operations[16][17]. A search problem, both for        
virtual graphs or physical terrain, would clearly benefit from         
utilising Swarm Intelligence as a method from traversal and it          
offers distinctive benefits than when using traditional       
traversal methods such as DFS or BFS[18].  
 
Search operations can utilise the concept of Swarm        
Intelligence by introducing multiple agents to the graph, and         
allowing each agent to collectively communicate information       
with one another in order to reach the destination in a much            
shorter time. While at the same time it using an optimal           
amount of agents to balance the cost of the search traversal, as            
in using the right amount of agents in traversing the          
environment instead of assuming that there are an infinite         
amount of agents[6]. The problem also does not just end with           
the agents reaching and figuring out the location of its          
objective, it can be further worked upon to utilise swarm          
intelligence techniques to optimise the results given[7].  
 
In the field of Multi-Agent Pathfinding (MAPF), there is a          
sequential variant and the parallel variant. The sequential        
variants works to minimize the number of steps agents would          
take to reach the destination, and the parallel variant where it           
works on reducing the frequency in which agents would move          
in groups[8]. Generally, there are two main approaches for         
MAPF. The centralised approach which assumes that all        
agents in the area are combined into one composite system          
where the paths would be optimally determined as all         
knowledge is shared between all agents[9]. The distributed        
approach which would have each individual agent to        
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determine its own path and resolve any possible conflicts that          
may arise[10][19].  
 
The contribution of this paper is two-fold. First, a Swarm          
Intelligence Based Search Strategy (SIS) is proposed to find         
the optimal path more effectively. SIS utilises the information         
exchange between agents in the swarm to navigate a search          
space effectively. Secondly, we demonstrate that the increase        
in the number of agents deployed for traversal do not          
necessarily lead to better performance.  
 

II. PROPOSED SEARCH STRATEGY 

The process flow of the proposed Swarm Intelligence Based         
Search Strategy (SIS) is as shown in Figure 1. First is an            
algorithm to generate random graph, with the ability to set the           
number of vertex as well as the maximum degree of the           
vertex. This study will use the modified random walk model          
to generate randomised graphs. This model of generating        
random graph is used originally for generating spanning        
trees[11], however for the purpose of this test, the algorithm          
has been modified to be able to set the maximum number of            
edges per vertex. So instead of having one agent “walking” to           
another vertex to connect both nodes, we have that agent          
“walk” to multiple vertices. We are using this model to          
generate the graph because of the simplicity of the algorithm          
that allowed us to tweak the graphs to accommodate for our           
configurations for the testing phase, as well as its relatively          
quick run-time[12]. 

Second is the algorithm used to traverse the generated terrain.          
This algorithm is based on the concept of parallel DFS, where           
the DFS algorithm runs in parallel with each other,         
cooperating with each other to search the graph with         
increased efficiency[13][14]. The proposed SIS is able to        
search the generated graph, where no information of the graph          
is fed to the algorithm besides the destination node, with a           
dynamic number of agents that determines how many        
“instances” of DFS runs simultaneously. This algorithm       
would have each agent share and exchange information of the          
paths they have explored so to not have any agents run into a             
visited vertex, as well as sharing any unexplored area the          
agents encountered. The pseudocode for the algorithm is as         
illustrated in Figure 2. The SIS search adopts a top-down          
approach of traversing the graph, where the number of agents          
would keep evenly splitting itself into separate groups every         
time the current vertex it is in has more than one possible            
route.  

An autotester module is developed to automate the simulation         
for testing. The autotester requests three parameters from the         
user: the number of nodes for the graph, the maximum degree           
of each node, and the number of tests each instance has to            
run. 

 
Fig. 1 Flowchart of the experiment  

 
While destination is not reached by any agents: 
    For each group of agents: 
        For each neighbour in the current location: 
            Set current location as visited 
            If group is in dead end: 
                Have group travel to next unvisited node 
            Else: 
                If only 1 unvisited path: 
                    Move group to the next location 
                Else If more unvisited paths than agents in group: 
                    Split all agents to all unvisited paths 
                    Remaining paths will remain unvisited 
                Else more agents in group than unvisited paths: 
                    Evenly distribute agents to groups 
                    Place new groups into the paths 
 

Fig. 2 Pseudocode of the proposed SIS search strategy 
 

With this autotest, each graph generated would be tested by          
an increasing number of agents traversing it, determined by         
the max flow of the graph from source to destination. This is            
because theoretically the maxflow of the graph from source to          
sink would be the maximum number of agents needed to          
traverse the graph[15]. Any additional agents added would        
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not have any further contribution as the graph does not have           
enough paths for the number of agents traversing, and the          
surplus agents would be redundant.  
 
The autotest would also reiterate the test for generating the          
graph from setting the maximum degree of the graph from 4,           
to the parameter inputted by the user. For each of the           
iteration, there would be a set number of tests where each test            
is a different generated graph with the same properties of the           
current iteration. With this in place it is possible to also test if             
the maximum degree of the graph would influence the         
effectiveness of a multi agent graph traversal.  

III. EXPERIMENT AND RESULT 

In the experiment, a total of 69,000 graphs are generated,          
each with different settings; from 100, 200, and 300 vertices.          
We iterate the test with a varying maximum degree per vertex           
from 4 to 26. Each iteration is run over 1000 rounds. In            
summary, the experiments run over approximately 7,291,000       
times (69,000*average max flow). For this paper we will         
present only the configuration that sets the maximum degree         
of the graph at 4, 16, and 26. 

 
We compare the performance of the proposed Swarm        

Intelligence Based Search Strategy with the Breadth First        
Search algorithm. The BFS is used for benchmarking as the          
search strategy will always reach completion; or find the goal          
state. For this study we would consider the sub-optimal         
solution to be 95%-100% of the shortest path. For example, if           
the shortest path of the graph takes 100 steps, and the           
algorithm found a path that takes 105 steps, then the          
algorithm found a path that is approximately 95.3% (100/105)         
as efficient compared to Breadth First Search. 

 
 

 
 

Fig. 3 Size 200 with vertices with maximum degree three, 
each line within the figure represents one run iteration on the 

autotest with the mentioned configuration 

We discuss our findings in three aspects as follows: 
 

A. Performance of algorithm plateau at approximately 16% 
of the max flow of the given graph  

All of the results returned from the tests, regardless of the           
configurations, would yield the same pattern as seen in Fig. 2,           
which is a noticeable performance plateau early on. When we          
take the suboptimal solution for all iterations with the same          
configurations and took the average agents it takes to reach          
our sub-optimal solution, 16% of the maxflow of the graph is           
the number of agents required for the suboptimal solution. In          
Fig. 3 we show an example of one of the results with a set              
configuration, and in Fig. 4 we show the mean of Fig. 3. 

 

 
Fig. 4 The mean of all 1000 iterations with the same 

configuration as Fig. 3 
 
Looking at Table 1 below, we can observe that the number of            
steps taken decreases as the number of agents involved         
increases, however the rate of change is not linear as the           
increase from one to two agents is much more than the           
increase from ten to forty agents, for all cases.  
 
The performance plateau can be explained by the decreasing         
likelihood of finding a shorter path than the previous         
iterations, once a short path is found. Using the well-known          
DFS algorithm as an example, with the premise that the DFS           
algorithm will always take a different path than before, to          
reach the destination. Let’s say the first run on the DFS           
algorithm has returned a path that is 200 steps long, and the            
shortest available path utilising BFS is 100 steps long. If the           
next subsequent run, the DFS algorithm returned a shorter         
path of length 150, then the probability of the next subsequent           
path to be shorter would be lower. This is because for each            
possible path there is a standard distribution for the         
probability that the path would be shorter or longer than the           
overall average length of all possible paths. So returning to          
the SIS algorithm, where conceptually it is like running a          
parallel DFS algorithms, if in the first iteration it returns a           
path center of the standard distribution, then in the second          
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iteration will yield an equal probability of returning a shorter          
or longer path. If it returns a shorter path, then the probability            
of the subsequent run returning a shorter path would be          
lowered. Since the proposed SIS algorithm terminates the        
moment the destination is found, a longer path in subsequent          
runs will not be returned as the increase in agent count would            
still yield the same result as the previous iteration, but with           
the addition of a single agent that might find a shorter path. 
 

Table 1  The average number of steps taken for each agent 
that is traversing the graph 

Size of  
Graph 

Max 
degree  

Number of Agents 
1 
(DFS) 

2 5 10 20 40 

100 4 41 22 12 9 8 8 
100 16 9 6 4 3 3 3 
100 26 6 4 3 3 3 3 
200 4 84 45 21 13 10 9 
200 16 17 10 6 4 3 3 
200 26 12 8 5 4 3 3 
300 4 130 64 29 18 13 11 
300 16 28 15 7 5 4 3 
300 26 16 9 5 4 3 3 

*It should be noted that in this experiment if only 1 agent is             
traversing the path, it is equivalent to a depth first search           
operation. The same logic is applied to Breadth First search as           
well, if m agents are traversing the path, where m is the            
maxflow of the graph, then it is equivalent to a BFS operation 
 

Table 2. The efficiency of using agents with 95%-100% 
effectiveness for graphs of different sizes 

Graphs with all   
vertices with maximum   
degree n, with different    
graph sizes 

Size 
of 
Graph 

n=4 n=16 n=26 

Average max flow of    
1000 graphs generated   
with vertices with   
maximum degree n  

100 24.6 72.8 76.1 

200 47.6 115 163 

300 71.1 155 228 

Average number of   
agents required to find    
a path within 5%    
difference of the actual    
shortest path (BFS   
performance) 

100 9 13 11 

200 11 19 17 

300 13 20 21 

Percentage of maxflow   
as number of agents    
needed to achieve   
>95% efficiency 

100 35% 17% 13% 
200 23% 15% 10% 
300 18% 12% 9% 

 

B. The increase in the maximum degree of the graph would 
improve the results 

Building on the previous argument where more agents        
increases the probability of finding a shorter paths during its          
run, increasing the maximum degree of the graph would also          
increase the probability of getting the shortest path, as each          
vertex would on average contain more possible paths to         
traverse, allowing for agents to search for more alternative         
paths in the meantime instead of having agents simply         
following a group to the next vertex until an alternative path           
shows up. 

C. In the context of the efficacy of the algorithm, the size of 
the graph does not proportionally scale to its max flow 

A larger size of the graph does on average increase the           
amount of steps taken to reach the destination, however the          
increase is not proportional to the max flow of the graph. As            
illustrated in Table 2, the percentage of max flow needed to           
reach above 95% effectiveness would decrease as the size of          
the graph increases. This is because as discussed in the first           
observation, the probability increases and decreases on the        
iterations, and does not rely on the maxflow of the graph.           
Therefore, the average number of agents required to achieve         
above 95% efficiency increases as the size of the graph          
increases. 

IV. CONCLUSIONS 

The proposed Swarm Intelligence Based Search Strategy is        
able to search through the graph efficiently at a highly          
reduced cost when compared to Breadth First Search        
algorithm. The statistical results from our experiments show        
that the SIS search strategy is able to achieve 95% to 100% of             
the performance of BFS, while requiring only on average         
16% of the cost or number of agents required by BFS. Our            
results also demonstrate that an increase in the number of          
agents, do not necessarily lead to better performance in         
swarm-based strategies. We demonstrate that the increase in        
the number of agents for traversal would reach a plateau.          
Interestingly, the different terrains do not have significant        
influence on the optimal number of agents required for search          
too. This alludes to the information exchange mechanism in         
swarm intelligence that leads to convergence or emergence        
behaviour, which is the optimal path in the context of this           
study. 

There are a number of possible directions where this study          
could explore further. Firstly, is to attempt at a mathematical          
proof of the probability of achieving 95 - 100% effectiveness          
with only 16% of the cost. We would also like to investigate            
if including swarm intelligence methods including Ant       
Colony Optimisation and Slime Mold Optimisation can be        
adapted for optimal path finding.   

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China 

1996



REFERENCES 

[1] Everitt, T., & Hutter, M. (2015, November). Analytical results         
on the BFS vs. DFS algorithm selection problem. Part I: tree           
search. In Australasian Joint Conference on Artificial       
Intelligence (pp. 157-165). Springer, Cham. 

[2] Cheung, T. Y. (1983). Graph traversal techniques and the         
maximum flow problem in distributed computation. IEEE       
Transactions on Software Engineering, (4), 504-512. 

[3] Kennedy, J., & Eberhart, R. (1995, November). Particle swarm         
optimization (PSO). In Proc. IEEE International Conference on        
Neural Networks, Perth, Australia (pp. 1942-1948). 

[4] Pugh, J., & Martinoli, A. (2007, April). Inspiring and modeling          
multi-robot search with particle swarm optimization. In 2007        
IEEE Swarm Intelligence Symposium (pp. 332-339). IEEE. 

[5] Kennedy, J. (2006). Swarm intelligence. In Handbook of        
nature-inspired and innovative computing (pp. 187-219).      
Springer, Boston, MA. 

[6] Bakhshipour, M., Ghadi, M. J., & Namdari, F. (2017). Swarm          
robotics search & rescue: A novel artificial intelligence-inspired        
optimization approach. Applied Soft Computing, 57, 708-726. 

[7] Blum, C., & Li, X. (2008). Swarm intelligence in optimization.          
In Swarm intelligence (pp. 43-85). Springer, Berlin, Heidelberg. 

[8] Röger, G., & Helmert, M. (2012, July). Non-optimal        
multi-agent pathfinding is solved (since 1984). In Workshops at         
the Twenty-Sixth AAAI Conference on Artificial Intelligence. 

[9] Sharon, G., Stern, R., Felner, A., & Sturtevant, N. R. (2015).           
Conflict-based search for optimal multi-agent pathfinding.      
Artificial Intelligence, 219, 40-66. 

[10] Bennewitz, Maren, Wolfram Burgard, and Sebastian Thrun.       
"Finding and optimizing solvable priority schemes for       
decoupled path planning techniques for teams of mobile        
robots." Robotics and autonomous systems 41.2-3 (2002):       
89-99. 

[11] Lovász, L. (1993). Random walks on graphs: A survey.         
Combinatorics, Paul erdos is eighty, 2(1), 1-46. 

[12] Wilson, D. B. (1996, May). Generating random spanning trees         
more quickly than the cover time. In STOC (Vol. 96, pp.           
296-303). 

[13] Rao, V. N., & Kumar, V. (1987). Parallel depth first search. Part            
I. implementation. International Journal of Parallel      
Programming, 16(6), 479-499. 

[14] Kumar, V., & Rao, V. N. (1987). Parallel depth first search. Part            
II. analysis. International Journal of Parallel Programming,       
16(6), 501-519. 

[15] Goldberg, A. V., Hed, S., Kaplan, H., Tarjan, R. E., & Werneck,            
R. F. (2011, September). Maximum flows by incremental        
breadth-first search. In European Symposium on Algorithms       
(pp. 457-468). Springer, Berlin, Heidelberg. 

[16] Couceiro, M. S. (2017). An overview of swarm robotics for          
search and rescue applications. In Artificial Intelligence:       
Concepts, Methodologies, Tools, and Applications (pp.      
1522-1561). IGI Global. 

[17] Arnold, R. D., Yamaguchi, H., & Tanaka, T. (2018). Search and           
rescue with autonomous flying robots through behavior-based       
cooperative intelligence. Journal of International Humanitarian      
Action, 3(1), 18. 

[18] Khaldi, B., & Cherif, F. (2015). An overview of swarm          
robotics: Swarm intelligence applied to multi-robotics.      
International Journal of Computer Applications, 126(2). 

[19] Stern, R., Sturtevant, N., Felner, A., Koenig, S., Ma, H.,          
Walker, T., ... & Boyarski, E. (2019). Multi-Agent Pathfinding:         

Definitions, Variants, and Benchmarks. arXiv preprint      
arXiv:1906.08291. 
 

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China 

1997




