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Abstract—Nowadays there are a lot of videos containing
walking people on the web (e.g. YouTube). These videos can cause
a privacy issue because the walking people can be identified by
silhouette-based gait recognition systems which have been rapidly
advanced in recent years. To solve the issue, in this paper, we
propose a method for anonymizing human gait silhouettes. A
gait silhouette consists of a static component including the body
shape and a dynamic component including postures. We refer
to the former and the latter as a shape component and a phase
component, respectively. The proposed method anonymizes given
gait silhouettes as follows: First, each of the given silhouettes
is decomposed into its shape and phase components. Next,
both components are separately perturbed. Finally, a new gait
silhouette is generated from the perturbed components. Owing to
the perturbation, the original silhouettes become less informative
in the static aspect as well as the dynamic aspect, by which
the gait recognition performance is seriously degraded. In our
experimental results, the accuracy was actually degraded from
100% to 30% or less, without yielding any unnatural appearance
in the output anonymized gait silhouettes.

I. INTRODUCTION

Nowadays, a lot of videos are uploaded and published on
video sharing services (VSS) such as YouTube. Although these
videos can be freely accessed from all over the world, they
often contain the appearance of private citizens, which can
cause a privacy issue. To solve the issue, it is desirable that
the provider of VSS should anonymize human regions in the
uploaded videos before publishing them.

A typical example of the privacy-sensitive human regions is
face. Thus, methods for anonymizing face regions in a video
have been widely studied. Moreover, in recent years, human
gait has also become privacy-sensitive, with the rapid growth
of the performance of gait recognition systems [1], especially
silhouette-based ones [2]. If an attacker has a sophisticated
gait recognition system, he can analyze any video on VSS
and identify people in the video. Nevertheless, there are few
studies attempting to anonymize gait information.

From the above backgrounds, we focus on the task of
anonymizing human gait in a given video. A naı̈ve way to
achieve this is to visually abstract whole human region by
blocking out, blurring, pixelization, and so on [3]. However,
visual abstraction makes the input video unnatural, which can
frustrate its viewers and prevent their comfortable viewing.
Hence, we consider another strategy as below:

(1) Detect and crop every human region in each frame of
the input video.

(2) Binarize the cropped region to extract its silhouette.
(3) Slightly deform the silhouette so that gait recognition

systems cannot correctly identify the human.
(4) Map the texture of the original human region onto the

deformed silhouette and fill it back to the input video.
We refer to the deformation process in the third step as human
gait anonymization, which plays a key role in the above
strategy. Hence, we only focus on the third step and propose a
method for achieving it in this paper. Note that it is not good
to just replace each silhouette with some pre-constructed one,
because it makes the fourth step quite difficult and easily yields
unnatural appearance.

In a video of a person’s gait silhouettes, his/her body shape
is static and does not change. We call it a shape component.
In contrast, the person’s posture dynamically changes with
phase of walking motion. We call it a phase component. In
the proposed method, we anonymize a given gait silhouette
video by perturbing its shape and phase components. The
contribution of this paper is summarized as follows: First,
this is the first work focusing on the problem of human gait
anonymization from the aspects of both shape and phase.
Second, we establish a general encoder-decoder framework for
human gait anonymization that does not restrict the network
structure of the encoder and that of the decoder.

In the remainder of this paper, we first review the related
work in Section 2. Next, in Section 3, we describe the proposed
method in detail, whose performance is experimentally evalu-
ated in Section 4. Finally, we conclude this paper in Section
5.

II. RELATED WORK

A. Anonymization of Visual Information

People’s appearance in images and video includes various
kinds of privacy sensitive information. To protect the informa-
tion, methods for anonymizing the people’s appearance, espe-
cially their face, have been actively studied in the past decades.
Early studies proposed to apply visual abstraction techniques
such as blurring and pixelization to a given face region [3],
[4], which can successfully prevent human observers from
identifying people from their face. However, visual abstraction
is not necessarily effective for preventing automated face
recognition systems [5]. In addition, visual abstraction makes
the given face region quite unnatural. For these reasons,
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Fig. 1. Relationship between silhouette and its phase.

another approach have been studied in recent years: replacing
given face regions with some other face images. A typical
example is the work of Bitouk and his colleagues [6]. For
a given face region, they proposed to select a face image
similar to the given one from a pre-constructed face library
and replace the given region with the selected face image
by seamlessly blending their colors. Gross et al. proposed
the method named k-Same and its extension named k-Same-
Select [7], [8]. In these methods, k images that are closest to
a given face region are first searched from a pre-constructed
face library, and then the given region is replaced with an
average of the k-closest images. More recently, Nakashima
et al. proposed a patch-based replacing approach, which can
achieve face anonymization without missing facial expressions
[9].

Compared to face anonymization, there are only a few meth-
ods of human gait anonymization. Agrawal et al. proposed a
visual abstraction-based approach, which applies a blurring
filter to whole human region [10]. This method is not suitable
to the videos on VSS because of unnatural appearance in
the anonymization result. Unlike this, Tieu et al. proposed to
slightly deform human gait silhouettes [11] by simply mixing
an input silhouette with another one called a noise silhouette.
However, their method only focuses on the static aspect of
human gait although the dynamic aspect is also important and
privacy sensitive. In contrast, we focus on both aspects in this
paper.

B. Silhouette-based Gait Recognition

Silhouette-based gait recognition is another research field
deeply related to our work. Existing methods for this task
can be divided into two types. One is the methods directly
processing a sequence of gait silhouettes, and the other is
the methods compressing the gait information contained in
a given sequence into a single image before recognizing a
person. As an example of the former, Kale et al. proposed to
employ a hidden Markov model for directly modeling each
person’s gait silhouette sequences [12]. Since this type of
methods is disadvantageous in computational efficiency, the
latter has been more actively studied, whose typical example
is gait energy image (GEI) proposed by Man [13]. GEI is
obtained by averaging one cycle of gait silhouette images and
can be directly used as a feature for gait recognition. Due to the
averaging process, GEI loses dynamic information. To cope

with this drawback, Bashir et al. proposed gait entropy image
(GEnI) [14], which is obtained by computing the Shannon
entropy of the gray level of each pixel. Since the pixels
corresponding to dynamically moving body parts such as arms
and legs tend to have large entropy, GEnI modestly includes
dynamic information as well as static information. Frequency
domain feature (FDF) [15], which is obtained as the Fourier
transform of the given gait silhouette sequence, is another
example having dynamic information. These features are input
to a deep neural network (DNN) that outputs person ID in
modern gait recognition methods [2].

III. ANONYMIZING GAIT SILHOUETTE VIDEO

A. Overview

As mentioned in Section 1, a gait silhouette consists of a
static shape component, i.e., body shape, and a dynamic phase
component, i.e., posture. Based on this consideration, we let
Ia(θ) denote the gait silhouette of a person a with phase θ.
Note that θ can be defined as a real value in the range of
[0, 2π] because human walking is a periodic motion (see Fig.
1). Using this notation, an input gait silhouette video of a
certain person a is represented as {Ia(θi)|i = 1, 2, · · · }, where
Ia(θi) is the i-th frame of the input video and θi is its phase.
The purpose of our gait anonymization method is to transform
each frame Ia(θi) into Ia′(θ′i), which means the silhouette of a
non-existing person a′ with phase θ′i. We achieve this process
as follows, where xa and yθ are feature vectors representing
the shape component and the phase component, respectively
(see also Fig. 2). In the remainder of this paper, we refer to
xa and yθ as shape code and phase code, respectively.

(1) For each frame Ia(θi), estimate its phase θi.
(2) Extract a shape code xa from Ia(θi) for each i. Ideally,

the same shape code should be extracted for any i.
(3) Perturb the phase θi and the shape code xa. Let ∆θ

and ∆x be the perturbation for the phase and that for
the shape code, respectively. Using these perturbations,
θi is transformed into θ′i = θi + ∆θ. Similarly, xa is
transformed to xa′ = xa +∆x.

(4) Calculate a phase code yθ′
i

from θ′i, and generate a new
silhouette image Ia′(θ′i) using yθ′

i
and xa′ .

Thanks to the perturbation ∆x, we can anonymize the static
shape component of the input video. At the same time, its
dynamic phase component can also be anonymized due to
the perturbation ∆θ. In the step (3), the same ∆x is used
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Fig. 2. Overview of the proposed method.

for all i so that the body shape does not unnaturally change
in the resultant gait silhouette video. In contrast, different
∆θ is used for different i. In the steps (2) and (4), we use
DNNs for extracting the shape codes as well as generating
the new silhouettes. Hereafter, we describe each of the above
four steps in detail. Note that, for all gait silhouette videos
used in the subsequent subsections, we extract their one cycle
using autocorrelation function as a pre-process.

B. Phase Estimation

Before describing a phase estimation method in detail, we
first define the phase itself clearly. The definition of the phase
should satisfy the following two conditions: First, all the
silhouettes with the same posture should have the same phase
regardless of individual people. Second, silhouette appearance
should continuously change with respect to phase. To satisfy
these conditions, we use a certain reference video of a cycle
of gait silhouettes. Let R = (r0, r1, · · · , rN−1) be the
reference video, where ri is its i-th frame and N is the number
of the frames in R. For each ri, we define its phase as 2πi

N .
Based on this definition, we estimate the phase of every other
gait silhouette video V = (v0, v1, · · · , vM−1) by making a
correspondence between R and V with DP matching, where
vj is the j-th frame in V and M is the number of the frames
in V .

If we directly apply DP matching to R and V , v0 is always
matched with r0 although a person’s posture in v0 is not
necessarily same with that in r0. To cope with this problem, we
circularly shift the frames in V . Let Vl be the l-shifted version
of V , that is, Vl = (vl, vl+1, · · · , vM−1, v0, v1, · · · , vl−1).
We apply DP matching to R and Vl. Let C(R, Vl) be the
matching cost. We perform the above process for all l ∈
{0, 1, · · · , M−1} and find the best l̂ that minimizes the
cost C(R, Vl), that is, l̂ = argminl C(R, Vl). Based on the
matching result of R and Vl̂, we estimate the phase of vj as
2πi
N if vj was matched to ri.

C. Code Extraction and Silhouette Generation

Using the phase estimated in the previous section, we define
the phase code yθ of each silhouette Ia(θ) as

yθ = (sin θ cos θ)
T ∈ R2 (1)

in order to avoid the discontinuity between 0 and 2π.
Next, we train a DNN that extracts a shape code from a

given gait silhouette. Note that this DNN should extract the
same code xa from all Ia(θi) regardless of θi. To train the
DNN, some ground-truth data of the shape codes are required,
which is difficult to be directly collected. Hence, we employ an
indirect approach. First, using a certain training dataset of gait
silhouette videos, we train a variational autoencoder (VAE)
that can compress an input silhouette into a low-dimensional
feature vector and reconstruct the same silhouette from the
feature vector. Let E and D be the encoder and decoder parts
of the trained VAE. By E, each silhouette Ia(θi) in the training
dataset is transformed to a feature vector za(θi) = E[Ia(θi)].
Using the transformed vectors, we calculate their average as

x̂a =
1

Ma

Ma∑
i=1

za(θi) , (2)

where Ma is the length of the gait silhouette video of the
person a. The calculated x̂a is used as the ground truth of
the shape code of a person a to train another encoder Ex that
can extract a shape code from any unknown gait silhouettes.
Using the trained Ex, we can extract the almost same code
xa = Ex[Ia(θ)] from all Ia(θ) regardless of θ.

In addition, we train one more DNN that generates a new
gait silhouette from an input phase code and a shape code.
To this end, we first train a code combiner F that combines
yθi and xa into za(θi), using the same training dataset. After
successfully training F , we serially concatenate F and D,
which is finally used as the silhouette generator. Fig. 3 shows
the relationship between E, D, Ex, and F . As shown in Fig.
3, D, Ex, and F form a single large network. Hence, we
simultaneously train Ex and F in practice by minimizing the
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Fig. 3. Detail of the proposed encoder-decoder framework for human gait anonymization.

following loss function, i.e.,

L(Ex, F ) =
∑
a

Ma∑
i=1

||Ex[Ia(θi)]− x̂a||2

+ λ ||F [yθi , Ex[Ia(θi)]]− za(θi)||2 , (3)

where λ is a weighting constant to control the balance between
the performance of Ex and that of F .

D. Perturbing Phase and Shape Codes

In this subsection, we describe how to perturb a phase and
a shape code in detail.

First, to perturb a phase, we directly change a phase value θ
to θ′ = f(θ) using a certain function f . To avoid the unnatural
posture change in the resultant sequence of anonymous gait
silhouettes, the function f should be continuous, differentiable,
and monotonically increasing. To satisfy this condition, we use

f(φ) =


{
αβ − (α− φ)β

} 1
β (0≤φ<α)

α+
{
(1−α)

1
β −(1−φ)

1
β

}β

(α≤φ≤1)
, (4)

where α and β are constants satisfying 0 ≤ α ≤ 1 and
0 < β. Fig. 4 shows a sketch of this function. Because
the domain of the above f is 0 ≤ ϕ ≤ 1, we actually
calculate θ′ as θ′ = 2πf( θ

2π ). This is equivalent to setting
∆θ = θ′ − θ = 2πf( θ

2π ) − θ. The phase code after the
perturbation is computed as yθ′ = (sin θ′ cos θ′)

T.
For shape perturbation, we directly change a shape code by

the following strategy: For a given shape code xa, we first
find its K-nearest neighbors from a pre-constructed library of
shape codes. In practice, the library is constructed by reusing
the training dataset that was used to train E, D, Ex, and F .
Let x(j)

a (j = 1, · · · ,K) be the j-the nearest neighbor of xa.
Their average is next calculated and then used as the perturbed
shape code xa′ , i.e.,

xa′ =
1

K

K∑
j=1

x(j)
a . (5)
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Fig. 4. Sketch of the graph of the function f with several combinations of α
and β.

This is equivalent to setting ∆x = xa′ − xa. The above
strategy is inspired by k-Same [7] described in Section 2-A,
which has two advantages. First, it can successfully change
the appearance of the input silhouette shape. Since the shape
codes in the library are not uniformly but biasedly distributed
in a feature space in general, the averaged code xa′ becomes
different from the original code xa. Second, the averaged code
can keep a certain level of visual naturalness unless K is too
large.

IV. EXPERIMENTS

A. Experimental Setup

To evaluate the effectiveness of the proposed method, we
conducted an experiment, in which we employed treadmill
dataset A and treadmill dataset B from the OU-ISIR Gait
Database [1] as the datasets for training and evaluation. The
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Fig. 5. Structure of variational autoencoder (i.e., E and D) used in the experiment.

treadmill dataset A includes gait silhouette videos of 34
people, whose walking speed is ranged from 2 [km/h] to 10
[km/h]. This dataset has less variety of clothes. On the other
hand, the treadmill dataset B includes gait silhouette videos
of 68 people who are walking with 32 kinds of clothes. The
total number of the videos in the dataset is 68 × 32 = 2176.
In our experiment, we first trained E, D, Ex, and F using the
treadmill dataset B, and then anonymized the videos in the
treadmill dataset A using the proposed method, only targeting
204 videos in which a person is walking at the speed of 4, 5,
and 6 [km/h]. This is because only these speeds are natural as
a waking speed of ordinary citizens.

For parameter setting, we set the dimension of the shape
codes as 32. K was empirically set as 20. α and β in Formula
(4) were also empirically set as follows: α was uniformly
sampled from the range [0, 1] and β was randomly set as
either

√
2 or 1√

2
. For network structures, E and Ex were

simply designed, consisting of four convolutional layers, two
max-pooling layers, and two fully-connected layers with ReLU
gates. D was designed in a similar way, employing up-pooling
layers instead of pooling layers. F consisted only of three
fully-connected layers, whose input layer receives xa′ and yθ′ .
Fig. 5 shows the network structure of E and D, and Fig. 6
shows the structure of F . The structure of Ex was totally same
with that of E. Note that this design is just an example; any
other structures can be used in our proposed method.

The performance of the proposed method was evaluated
from the following two aspects: gait recognition accuracy and
visual naturalness. For the former, we performed leave-one-
out cross validation using the above 204 videos, employing
GEI, GEnI, and FDF. Although they are typically input to
a DNN in the state-of-the-art methods of gait recognition,
we did not have sufficient number of videos for successfully
training DNN in this experiment. Therefore, we employed a
multi-layer perceptron having three layers as a gait recognizer,
whose input is a feature vector extracted from GEI, GEnI, and

phase code

shape code

fully-connected

fully-connected

fully-connected

32

32

2

64

32 32 32

fully-connected

Code combiner

Fig. 6. Structure of code combiner F .

FDF by compressing them into 34 dimensional vectors by
principal component analysis and linear discriminant analysis.
For the latter, i.e., visual naturalness, we conducted two kinds
of questionnaire surveys, whose detail is described later. To
separately evaluate the performance of phase perturbation
and that of shape perturbation, we compared the following
three cases: only perturbing phase (named phase-only), only
perturbing shape (shape-only), and using both perturbations
(both).

B. Results and Discussion

1) Examples of anonymized gait silhouettes: Fig. 7 shows
an example of the anonymization results. We can see that the
anonymized silhouettes keep human-like appearance, which
are not so different from the original ones. This result demon-
strates that the proposed method does not yield unnatural
silhouettes.

2) Evaluation of anonymization performance: Table I
shows the results of the gait recognition based on GEI, GEnI,
and FDF. In Table I, the recognition accuracy is near 100% for
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Fig. 7. Anonymization results of gait silhouette videos.

all the methods in the case of using original gait silhouettes.
Compared to this, the accuracy is drastically degraded by the
proposed method, especially with shape-only and both. This
result demonstrates the effectiveness of the proposed method.

In the case of phase-only, a recognition accuracy of around
60% is still achieved by GEI and GEnI. This is because
these methods do not reflect the dynamic component of
human gait. Since a sequence of phase codes represents the
dynamic component, the phase perturbation is expected to be
helpful for anonymizing the dynamic aspect of human gait.
However, GEI-based gait recognizer originally does not use
the dynamic component. Hence, the phase perturbation cannot
give a serious effect on the accuracy of GEI. This is also the
case with GEnI. Indeed, GEnI reflects the dynamic component
a little, but it lacks the information about changes in phase.
Unlike GEI and GEnI, FDF reflects the dynamic component
as well as the static component, because it is calculated by
Fourier transform. Hence, both the phase perturbation and the
shape perturbation work well. In fact, the recognition accuracy
is degraded to 20% or less with phase-only in the case of FDF.
This result indicates that the phase perturbation is useful when
a gait recognizer considers the dynamic aspect of human gait.

3) Evaluation of visual naturalness: To evaluate the pro-
posed method from the aspect of visual naturalness, we
conducted two kinds of questionnaire surveys. For the first
survey, we recruited 20 participants and provided them five
videos of gait silhouettes, one of which is anonymized by the
proposed method and the others are original. Then we asked
the participants to identify which is the anonymized one. If

TABLE I
GAIT RECOGNITION ACCURACY USING GEI, GENI, AND FDF AS

RECOGNITION METHODS.

original phase-only shape-only both
GEI 99.0% 59.3% 25.9% 28.9%
GEnI 100% 57.8% 24.5% 21.6%
FDF 100% 23.5% 6.8% 3.9%

TABLE II
RESULTS OF QUESTIONNAIRE SURVEYS ABOUT VISUAL NATURALNESS.

WE CALCULATED AVERAGE SCORE IN THE SECOND SURVEY.
original phase-only shape-only both

1st survey - 35.0% 10.0% 25.0%
2nd survey 3.75 1.54 2.36 2.25

the anonymized silhouettes are visually natural as much as the
original ones, the accuracy of the participants’ answers will be
around the chance rate, namely 20%. For the second survey,
we recruited other 17 participants and provided them either a
video of original silhouettes or that of anonymized ones. Then
we asked the participants to evaluate how much the provided
video looks visually natural on a five-point scale (1: worst, 5:
best). We separately performed the above trials for the three
cases, i.e., phase-only, shape-only, and both. Table II shows
the result of the two surveys.

As seen in the result of the first survey, the participants
cannot correctly identify the anonymized gait silhouettes. This
indicates that the proposed method does not yield seriously
unnatural appearance in the anonymization results. Only in the
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case of phase-only, the accuracy is significantly higher than
20%. In addition, in the result of the second survey, we can
see that the score of phase-only considerably decreases from
that of original. This is because we used the original shape
code in the case of phase-only when generating an anonymous
gait silhouette for each frame of a given video. Ideally, it is
desirable that the encoder Ex provides the same shape code
xa for all frames Ia(θi) regardless of i. However, since it
is difficult to perfectly train Ex in practice, the shape codes
obtained from different Ia(θi), i.e., Ex[Ia(θi)], are slightly
different with each other. Hence, anonymous gait silhouettes
generated from the shape codes are also slightly different with
each other in terms of a person’s body shape. Due to the
difference, the silhouette in the resultant sequence does not
change smoothly with time, which might cause the degradation
of the evaluation score. In contrast, in the cases of shape-
only and both, we always use the same shape code, i.e., xa′

for all frames Ia(θi) regardless of i. Hence, the evaluation
score is not so seriously degraded. However, arms sometimes
partly disappear in the resultant silhouettes. This is why the
evaluation score is somewhat degraded even in the cases
of shape-only and both. This problem can be improved by
employing a more sophisticated network for the decoder D.

V. CONCLUSIONS

In this paper, we proposed a method for anonymizing
gait silhouette video. Our method perturbs the shape and
phase codes extracted from each frame of a given video and
generates a new silhouette from the perturbed codes for each
frame using a DNN. Our experimental results showed that the
proposed method degrades the accuracy of silhouette-based
gait recognition from 100% to 30% or less without seriously
yielding unnatural appearance in the resultant anonymized gait
silhouettes.

As a next step, we will try to propose a method for mapping
the texture of a human region in the original video onto the
corresponding anonymized silhouette in a future work.

This work was supported by JSPS KAKENHI Grant Num-
bers JP16H06302, JP15H01686, and JP18H04120.
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