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Abstract—In the field of speaker verification, the speaker
systems based on x-vector framework are widely used in many
scenarios. However, it suffers from the performance degradation
caused by noise disturbance. In this paper, we firstly analyzed
the noisy robustness of x-vector by training the networks using
a mixture dataset which includes clean data and corrupted data.
Then, we proposed a novel adversarial strategy against noise
interference and extracted the noise-robust speaker embedding
with x-vector. The proposed adversarial method named as triple-
net GAN employs three connected networks: a generator network
(G), a discriminator network (D) and a classifier network (C). The
spectral coefficients of clean and noisy speech utterances are fed
to the G, of which the structure is nearly the same as x-vector. The
outputs of G are transferred in a parallel way to the D and C. And
the labels of D are set binary for clean data and corrupted data,
while the labels of C are set corresponding to speaker identities,
which aims to learn the speaker embedding features invariant to
the noise. Finally, we executed the experiments with different
variants of triple-net GAN to verify the denoising capability
of the proposed adversarial method. Experimental results on
Librispeech corpus demonstrate that our proposed method could
achieve a better performance under the noisy environments.

Keywords: noise-robust, generative adversarial networks, s-
peaker embedding, speaker verification.

I. INTRODUCTION

Recently deep learning [1] has shown remarkable success in
speech processing tasks [2], [3], [4]. Several solid studies [5],
[6], [7] focused on using different neural networks to verify
the speaker indentities. The most typical one is the x-vector
[8], which uses a feed-forward deep neural network to map
the utterances into the fixed-dimension speaker embeddings
and then PLDA [9] is used for scoring. Since proposed by
Snyder et al, the x-vector has outperformed the i-vector [10]
system in most scenarios of speaker verification, and has been
widely recognized as one of the state-of-the-art frameworks.

In the field of speaker verification, there is a large quantity
of literature concerning the noise robustness of the speaker
verification systems, since the noises sharply degrade the
performance. A common way to improve the noise robustness
of the speaker verification systems is to train the PLDA
model using a dataset consisting of clean data and corrupted
data (data with noise) [11], [12]. In addition, most of the
denoising methods, like [13], a PLDA mixture model for
noisy robustness [14] and model adaptation on noise condition
[15], are based on the traditional speaker verification systems,
like GMM-UBM [16] or i-vector. However, rare methods [17]

are concentrated on improving the noise robustness on the
embedding level.

More recently, much attention has been poured into explor-
ing the possibility of generative adversarial networks (GANs)
[18]. Several approaches based on GANs have also been pro-
posed to solve the issues in speaker verification. In the paper
[19], Zhang et al. attempted to use conditional GANs to solve
the impact of performance degradation caused by the variable-
duration of utterances. Ding et al. [20] proposed a multi-task
GANs framework to extract more distinctive speaker repre-
sentation. And Yu et al. [21] trained an adversarial network to
extract bottleneck feature for front-end denoising. Moreover,
Bhattacharya et al. [22], [23] borrowed the adversarial training
idea from GANs to tackle domain mismatch problems. The
aforementioned works found that GANs could be applied
to different scenarios of speaker verification and provide a
significant performance improvement.

In this paper, we propose a new adversarial strategy a-
gainst noise interference to extract the noise-robust speaker
embedding. Motivated by [11], [12], we first explore the robust
capability of the x-vector model by training the x-vector using
a mixture dataset including clean data and corrupted data
with different types of noise in different signal-to-noise ratios
(SNRs). Then a triple-net GAN is proposed to be incorporated
in x-vector to form a new framework for the noise-robust
speaker embedding extraction, which could further eliminate
the noisy disturbance and improve the performance under
the noisy conditions. Besides, we have also experimented the
proposed framework using two other variants of GANs to
further verify the effectiveness of the proposed adversarial
strategy in extracting noise-robust speaker embedding.

II. DNN SPEAKER EMBEDDING SYSTEM

In this work, we use the typical x-vector model [8] to
extract the utterance-level representation. The whole archi-
tecture includes the time delay neural network (TDNN) [24]
layers that are operated on the frame level, a statistics pooling
layer that aggregates over the frame-level output, and finally
the fully-connected (FC) layers on the segment level. And
the implementation details are outlined in TABLE I. The
network is trained to classify the speaker identities using the
conventional cross entropy loss. When the training phase is
over, the output layer of the network will be discarded and
the x-vectors will be extracted at layer FC2. Rectified Linear
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TABLE I
THE TOPOLOGY OF X-VECTOR ACHITECTURE.

Layer Layer context Total context Input × output
TDNN1 [-2, +2] 5 23 × 256
TDNN2 [-2, +2] 9 256 × 512
TDNN3 [-3, +3] 15 512 × 512
TDNN4 {t} 15 512 × 1024
TDNN5 {t} 15 1024 × 1024

Stats pooling [0,T] T 1024T × 2048
FC1 {0} T 2048 × 1024
FC2 {0} T 1024 × 1024

Softmax {0} T 1024 × N

The x-vectors are extracted from layer FC2, and N corresponds to
the number of speakers in the training set.

Unit (RELU) is used as non-linear activations for all layers
of the network expcept FC2, while the layer FC2 uses the
sigmoid function as the non-linear activation. Additionally,
batch normalization is used on all layers except the statistics
pooling layer. In the verification stage, length normalization
and linear discriminant analysis (LDA) [25] transformation
will be applied to the x-vectors and then PLDA will be used
for scoring.

III. NOISE-ROBUST SPEAKER EMBEDDING

A. Generative Adversarial Networks

The generative adversarial networks (GANs) [18] consist of
two parts: a generator (G) that is trained to generate samples
indistinguishable from real samples (x) by taking random
noise (z) as input, and a discriminator (D) that is trained to
determine which distribution the samples obey, the generated
data distribution pG(z) or the real data distribution p(x). In
order to get a well-trained generator, the GANs would be
trained in an adversarial way by playing a minimax game. The
minimax game can be executed with the GANs loss (which
means the loss for GAN training) function V (D,G), which
could be formulated as follow:

min
G

max
D

V (D,G) = Ex∼p(x)
[logD(x)]

+ Ez∼pG(z)[log(1−D(G(z)))]
(1)

where x is the real sample and z is the random noise input.
G(∗) and D(∗) refer to the output of the generator and
discriminator, respectively. The first item Ex∼p(x) [logD(x)]
represents the mathematical expectation that the discriminator
classifies the real samples correctly, and the second item
Ez∼pG(z)[log(1−D(G(z)))] represents the mathematical ex-
pectation that the discriminator classifies the generated sam-
ples incorrectly.

In the resent years, various variants of GANs have been
proposed, each of which has its own particular characteris-
tic. For example, Least Squares GANs (LSGAN) [26] and
Wasserstein GANs (WGAN) [27], both of which have the
same architecture of GANs but differ in loss function.

B. X-vector Incorporating GANs

We proposed a triple-net adversarial framework to extract
the noise-robust speaker embedding as shown in Figure 1.
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Fig. 1. The diagram of the proposed triple-net adversarial framework. Specif-
ically, a standard x-vector architecture includes generator and classifier while
a standard GAN includes generator and discriminator.

This new framework consists of three connected network-
s: a generator (G), serving as a transformer, that tries to
transform clean samples (xc) and corrupted samples (xn) to
clean embeddings and corrupted embeddings, respectively, a
discriminator (D) that tries to determine whether the input
embeddings are generated from corrupted samples or clean
samples, and a classifier (C) that classifies the embeddings
to its corresponding speaker labels. Specically, we train the
classifier cooperated with the generator to extract the discrim-
inative speaker representation. Besides, we play a minimax
game by training the discriminator to classify the embeddings
correctly, and simultaneously training the generator to generate
the embeddings to fool the discriminator. Through the training
strategy with the proposed adversarial method, the embeddings
extracted from the generator maintain the speaker characteris-
tic and simultaneously improve the noise robustness.

For the training, we train the classifier (parametrized by θc)
using the cross entropy loss:

LC(x) = −
1

M

M∑
i=1

log[fsoftmax(C(x
∗
i ))] (2)

where M is the batch size, C(x∗i ) is the output of classifier that
corresponds to the ground truth of the ith sample in a batch.
And fsoftmax is a softmax function, which can be formulated
as follows:

fsoftmax(C(xi)) =
eC(xi)∑N
j eC(xj

i )
(3)

where xji (j = 1, 2, ..., N) means the jth output corrsponding
to label j. As to the adversarial training, rather than directly
using the minimax loss, we split the optimization into two
independent objectives, one for the generator (parametrized
by θg) and one for the discriminator (parametrized by θd).
Therefore, we train the generator by min

θg
LG and synchronous-

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China 

1642



ly train the discriminator by min
θd

LD, which can be formulated

as follow:

min
θg

LG(xc, xn) =
λ

M

M∑
i=1

log(1−D(G(xin)))

+ LC(xc) + LC(xn)

(4)

min
θd

LD(xc, xn) = −
1

M

M∑
i=1

[log(D(xic))

+ log(1−D(G(xin)))]

(5)

where λ is a scale parameter. xic means the ith clean sample
in a batch and xin means the ith corrupted sample in a batch.

C. Training Algorithm
During training, the generator and the discriminator are

competing against each other in an adversarial way. Addition-
ally, the classifier is trained in a straight back-propagation. The
complete training pseudo-code of the triple-net GAN shown in
Algorithm 1. Pairs of samples (xc, xn) are randomly chosen
to train the networks using Adam optimizer [28] with learning
rates α1, α2, α3 for different networks backpropagation re-
spectively. Crucially, we train the generator k times to balance
the adversarial training.

Our implementation is realized on the Tensorflow toolkit
[29]. In our experiments, the hyperparameters are set as
follows: α1 = 0.003, α2 = 0.003, α3 = 0.003, k = 3, λ = 1.

IV. EXPERIMENTS
A. Dataset and Experimental Setting

To evaluate the effective performance of the proposed
method in the noisy environments, text-independent speaker
verication (SV) experiments are conducted based on Lib-
rispeech [30]. In the experiments, the train-clean-500 part of
Librispeech is used as a training dataset which contains about
148,688 utterances from 1,166 speakers and the test-clean part
of Librispeech is used as a test dataset, in which 15 utterances
of each speaker are selected as enrollment utterances and the
remains are used for verification (about 80,800 trials).

We have made a noise corrupted version of the training
data and the test data mentioned above by artificially adding
different types of noise at different SNR levels. Specifically,
the corrupted utterances for training are made by adding one
of the five noise types (White, Babble, Mensa, Cafeteria,
Callcener)1 randomly on the SNR levels of 10dB or 20dB.
Additionally, we also have made a mixture dataset, in which
five out of six samples in clean training data are added by the
random noise in the same way mentioned above. However, for
the speaker verification the corrupted utterances are obtained
by adding one of the five noise types on the SNR levels of
0dB, 5dB, 10dB, 15dB and 20dB, respectively.

All audios are converted to 23-dimensional MFCCs with
a frame-length of 25ms and a frame shift of 10ms. Then,

1White and Babble were collected by Guoning Hu, and could be download-
ed at http://web.cse.ohio-state.edu/pnl. Besides, Cafeteria Noise, Callcener,
and Mensa were provided by HUAWEI TECHNOLOGIES CO., LTD.

Algorithm 1: The training procedure of the triple-net GAN

1. Initialize the parameters of generator, discriminator and classifier
θg, θd, θc. Specifically, we initial the parameters of generator
θg from the pre-trained x-vector structure.

2. repeat

3. Sample the training data (xc, xn)

4. Update the classifier using Adam optimizer

θc← θc −α1∇θc [LC (xc) + LC (xn)]

5. Update the discriminator using Adam optimizer:

θd← θd −α2∇θd
LD (xc, xn)

6. For k steps do

Update the generator using Adam optimizer:

θg ← θg −α3∇θgLG (xc, xn)

End For
7. until θg, θd, θc converge.

a frame-level energy-based voice activity detector (VAD) is
conducted to the spectral coefficients. During the training
process, we randomly sample 2 seconds from each recording.
Since the average duration of utterances in the training dataset
is about 12 seconds, we repeat six times to form an epoch.
Specifically, we constitute pairs by taking the clean utterance
and its corrupted counterpart as a pair.

Since the noise-robust embedding architecture is based on
the x-vector framework, the implementation details of the
generator are outlined in TALBLE I except the softmax layer.
The classifier is one fully-connected layer with N nodes, which
corresponds to the number of speakers in the training data,
while the discriminator is also one fully-connected layer but
with only two nodes corresponding to the binary lables for the
clean data and the corrupted data.

B. Results and Analysis

Firstly, we investigate the performance of baseline system
(Baseline), which is the standard x-vector system trained with
the clean data. As shown in TABLE II, under the clean
condition the x-vector would achieve a competitive result, but
the noisy disturbance could sharply degrade the performance
of x-vector, especially the White noise. Then, we explore
the robustness of x-vector by training the network using the
mixture dataset (MIX). From TABLE II, it could be found that
the MIX system dramatically obtains the better performance
under noisy environments. Though the performance might be
slightly degraded under the clean condition since the training
process is not condition-specfic comparing with the Baseline,
but that is still comparable with that of the baseline system.

Thereafter, we investigate the capability of triple-net GAN
(TNGAN) for extracting the noise-robust speaker embedding.
Specially, we initialize the parameters of generator using the
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TABLE II
EER(%) OF THE SV SYSTEMS FOR DIFFERENT NOISE TYPES

AND SNRS.

Noise SNR(dB) Baseline MIX TNGAN
- Clean 1.39 3.02 2.82

White

00 38.12 14.41 11.63
05 33.07 8.27 6.73
10 27.18 6.58 5.30
15 22.52 5.64 4.65
20 17.72 4.85 4.11

Mean 27.72 7.95 6.48

Babble

00 31.93 12.57 10.40
05 25.84 6.04 5.64
10 19.50 4.55 4.21
15 14.60 4.11 3.71
20 9.65 3.76 3.61

Mean 20.30 6.21 5.52

Cafeteria

00 29.9 8.71 7.67
05 24.31 5.64 4.90
10 18.71 4.41 4.06
15 13.86 4.01 3.71
20 9.85 3.81 3.42

Mean 19.33 5.32 4.75

Callcenter

00 28.32 8.86 7.18
05 22.28 5.15 4.65
10 16.93 4.06 3.86
15 11.19 3.81 3.52
20 7.08 3.56 3.37

Mean 17.16 5.09 4.51

Mensa

00 31.98 10.50 9.21
05 26.63 6.04 5.20
10 20.69 4.85 4.46
15 15.25 4.31 3.91
20 10.45 4.11 3.91

Mean 21.00 5.96 5.34

parameters of the pre-trained MIX system. Comparing the
results on column 4 and 5 of TABLE II, we can observe
a significant relative reduction in equal error rate (EER)
across different SNR levels. The relative reduction of average
EERs comparing with the MIX system are about 18.5% on
White noise, 11.1% on Babble noise, 10.7% on Cafeteria
noise, 11.4% on Callcenter noise and 10.4% on Mensa noise,
which have shown the effectiveness of the proposed generative
adversarial strategy on extracting a noise-robust embedding.

Besides, we further verified the proposed generative ad-
versarial strategy by using two different variants of triple-net
GAN, triple-net LSGAN (TNLSGAN) and triple-net WGAN
(TNWGAN) respectively, which may learn different aspects
of feature space. The results shown in TABLE III reflect that
the different types of triple-net GAN could achieve the better
performance in different SNR levels on different noises respec-
tively, and all of which outperformed the Baseline and the MIX
systems. It is definitely promising that the proposed triple-net
adversarial framework could improve the performance under
the noisy environments.

V. CONCLUSION

This paper proposed an adversarial framework by incorpo-
rating GANs with x-vector framework for noise-robust speaker
embedding extraction. We demonstrated that the performance
of speaker verification system degrade sharply under noisy
environments and proposed the adversarial framework to deal

TABLE III
EER(%) OF THE DIFFERENT GAN-BASED SV SYSTEMS FOR

DIFFERENT NOISE TYPES AND SNRS.

Noise SNR(dB) TNGAN TNLSGAN TNWGAN
- Clean 2.82 2.87 2.87

White

00 11.63 11.53 11.58
05 6.73 6.78 6.88
10 5.30 5.40 5.30
15 4.65 4.60 4.65
20 4.11 4.11 4.11

Mean 6.48 6.48 6.50

Babble

00 10.4 10.54 10.54
05 5.64 5.69 5.59
10 4.21 4.26 4.31
15 3.71 3.81 3.81
20 3.61 3.52 3.56

Mean 5.52 5.56 5.56

Cafeteria

00 7.67 7.62 7.62
05 4.90 5.00 4.90
10 4.06 4.06 3.96
15 3.71 3.81 3.71
20 3.42 3.32 3.47

Mean 4.75 4.76 4.73

Callcenter

00 7.18 7.33 7.08
05 4.65 4.60 4.60
10 3.86 3.91 3.86
15 3.52 3.47 3.42
20 3.37 3.27 3.27

Mean 4.51 4.51 4.45

Mensa

00 9.21 8.86 8.96
05 5.20 5.25 5.25
10 4.46 4.46 4.51
15 3.91 3.91 3.91
20 3.91 3.86 3.86

Mean 5.34 5.27 5.30

with such issue. Results on Librispeech showed that our
proposed method could achieve a significant performance
improvement under the noisy environments. Additionally, we
further verified the capability of the proposed triple-net adver-
sarial framework for extracting noise-robust speaker embed-
ding by using two another variants of GANs.
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