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Abstract—In the language recognition, the phonetic informa-
tion has shown great potential for neural network to learn
the high-level representations. In this paper, we explore two
significant aspects to improve the system performance on oriental
language recognition (OLR) challenge under the short-duration
condition. Firstly, we propose to learn the language information
and phonetic information jointly with multi-task learning. The
classified networks can learn the extra phonetic representation
from a frame-level phone-task and extract the language embed-
ding at the segment level. Furthermore, we propose to introduce
length expanding strategy to provide supplemental information
of short-duration utterances by dithering the short duration
evaluation utterances at different speeds. The evaluation results
of the 3rd OLR Challenge showed that our proposed methods
obtained the best results on the short-duration condition.

Keywords: phonetic information, multi-task learning, length
expanding, speed perturbation pooling, short-duration, language
recognition

I. INTRODUCTION

Language recognition is to determine the category of lan-
guage corresponding to a given spoken utterance. Recently,
neural networks have been increasingly popular in the appli-
cation of language recognition. One of the most remarkable
use of neural networks is bottleneck feature (BNF). The BNF
has been originally developed for speech recognition [1] and
introduced successfully to speaker verification [2], [3], [4] and
language recognition [5], [6], [7], [8], [9]. BNF is extracted
from the output of one hidden layer of a trained automatic
speech recognition (ASR) neural network, it can also be con-
catenated together with acoustic features to generate tandem
features.

Besides the implement of BNF, recent researchers also
improved the performance of language recognition systems
using temporal modeling of neural networks. In [10], Tang et
al. introduced long-short term memory (LSTM) deep neural
network (DNN) to learn phonetic and language information
in frame-level embedding framework, namely phonetic tem-
poral neural (PTN) model. The LSTM based systems achieve
promising performance because LSTM framework considers
temporal information in language recognition. Later, bidirec-
tional LSTM (BLSTM) [11] and time delay neural network

(TDNN) [12], [13] are used to process the temporal informa-
tion, which are further conducted at the segment-level after a
statistics pooling. Furthermore, Cai et al. investigated various
kinds of encoding layers to learn utterance-level representation
based on convolutional neural network (CNN) and BLSTM
[14].

However, the use of BNF is based on two independent
neural networks, posing an uncooperative effect on language
recognition since the relationship between the phone and
language is weak. In this paper, a new framework of multi-task
learning (MTL) is proposed in speaker recognition [15] to train
the language classification with phonetic information jointly.
Considering phonetic representation can not be modeled at the
segment-level, we then train two tasks on different branches
respectively and they share layers at the frame-level. The
shared layers contain both language and phonetic information,
and the remaining layers of phonetic branch can be cut
to simplify the system after training. In order to enhance
the temporal modeling, our systems are developed based on
TDNN.

Furthermore, the very short-duration speech (about 1 sec-
ond) is quite difficult to be recognized because of limited clues.
In [16], the authors proposed to dither the same speech at
different speeds and splice them at time-axis to provide sup-
plement information, and the speed perturbation does not seri-
ously affect the phonetic and language information. Motivated
by this point, we investigate the length expanding strategy to
enhance the short-duration speech and extract the subsequent
x-vector [17], [18] based on TDNN. We firstly dither the
same evaluation utterances at different speeds and splice the
acoustic features at the time-axis to obtain the length expanded
feature, which is fed into TDNN afterwards. However, such a
length expanding strategy may not be suitable for temporal
modeling neural network. Hence, a more effective strategy
is proposed to expand the length, named speed perturbation
pooling (SPP). Firstly, we directly extract several x-vectors of
the dithered speech at different speeds, then an x-vector is
obtained by calculating the average of these x-vectors, which
could enrich the language information of short-duration speech
on the segment level.
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The remainder of this paper is as follows. Section II
describes the multi-task learning structure based on TDNN
for language recognition and phonetic information. Section III
introduces the proposed speed perturbation pooling method to
expand the utterance length for short duration language recog-
nition. Then the experimental setup is presented in section IV,
experimental results are analogized in section V. Finally, we
conclude this paper in section VI.

II. X-VECTOR SYSTEMS FOR LANGUAGE RECOGNITION

A. Standard X-vector

In this paper, our proposed systems are based on standard
x-vector architecture. The first 5 layers of the neural network
process the input at the frame-level, with a temporal context
centered at the current frame t. Similar to standard TDNN
configuration, the first layer splices the features at frames t−
2, t − 1, t, t + 1, t + 2. The inputs of next two hidden layers
are the spliced output of its previous frames at t− 2, t, t+ 2
and t − 3, t, t + 3, respectively, and then a statistic pooling
layer aggregates the representation across the time-axis, hence
the next layers operate on the segment-level. Besides the 5-th
hidden layer, all layers are 512-dimensional.

B. Splicing with Phonetic Representation
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Fig. 1. The language classification network with the phonetic representation
from ASR network.

For comparison, we also train a conventional joint train-
ing DNN with acoustic features and phonetic representation,
named the phonetic network (PN). It is the same with the
baseline framework in [10], [15]. In Figure 1, we firstly
train an ASR network that is modified from TDNN without
statistics pooling layer, and then we extract the phonetic
representation from the last hidden layer and splice them to
the 5-th frame-level layer of the language network. Since the
phonetic representation can be seen as the auxiliary features, it
can be trained based on a simple language-independent ASR
alignment information, and the difference from the BNF is that
the phonetic representation is spliced directly into the hidden
layer of language classification network, rather than in tandem
with acoustic features or being fed into the input layer.

C. Multi-Task Learning for Language and Phonetic Tasks
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Fig. 2. The multi-task learning for the language classification and ASR.

Considering the relationship between language and phone
tasks, we propose to utilize the multi-task learning to train
the two tasks jointly. In Figure 2, the frame-level hidden
layers are the shared part that learns the phonetic compensation
information for the language task. From a view of feature
space, the phonetic representation is invariant information that
is not affected by differences in language and duration. The
gradient descent of each task will affect the frame-level shared
layers in training and the x-vector will be extracted from the
penultimate segment-level layer in the language task branch.

III. SPEED PERTURBATION POOLING

The language recognition performance is often greatly
reduced when the length of evaluation utterance becomes
too short, such as 1 second duration utterance. In order
to compensate the short-duration condition, we propose to
expand the length of evaluation utterances by dithering the
speed. The difference in the speed not only enrich the language
information but weaken the speaker factor. Furthermore, the
speed perturbation used in the evaluation set does not require
same processing for the training set, i.e. it does not increase
the training cost, and if the speed of speech is modified too
much, it will affect the recognition accuracy of the utterance
[19], [20] and so we should control the disturbance factor
carefully. Hence, the following procession is based on three
kinds of speeds, including 0.9, 1.0 and 1.1 speed factors.

To integrate the different speeds of one utterance, the speed
perturbation concatenating (SPC) is developed in the reference
[16]. However, it’s a very rough process. Before being fed into
the DNN extractor, the acoustic features of different speeds are
concatenated at the time-axis firstly. Then the new features will
be mapped to the fixed-dimensional x-vector:

xspc ← concat(xsp0.9, xsp1.0, xsp1.1) (1)

Xspc = F (xspc) (2)

where F (x) denotes the extractor of neural network that maps
the variable-length acoustic features x to the fixed-dimensional
embedding.
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But we have found that SPC does not work well on the
x-vector framework and even make the performance become
very worse. In this paper, we propose another strategy, named
speed perturbation pooling (SPP). SPP averages the x-vectors
of same utterance into a new x-vector and the formulas are as
follows: Xsp0.9 = F (xsp0.9)

Xsp1.0 = F (xsp1.0)
Xsp1.1 = F (xsp1.1)

(3)

Xspp =
nsp0.9·Xsp0.9 + nsp1.0·Xsp1.0 + nsp1.1·Xsp1.1

nsp0.9 + nsp1.0 + nsp1.1
(4)

where n is the frames of corresponding utterance and (4) can
be seen as the weighted integration of x-vectors X for the
different speeds.

IV. EXPERIMENTAL SETUP

A. Datasets

As described in Table 1, all the datasets are recorded by
mobile phones with a sampling rate of 16 kHz and size of 16
bits. The Thchs30-train consists of 10 languages, including
Mandarin, Cantonese, Indonesian, Japanese, Russian, Korean,
Vietnamese, Kazakh, Tibetan and Uyghur [21]. The duration
of most utterances in BaseTrain and Dev-all are among 1-
30 seconds. Dev and Eval are segmented to the duration of
1 second from long-duration datasets, respectively. Specially,
Dev-all is a full-length version of Dev.

The BaseTrain is used to train x-vector system with 10
languages. And the Thchs30-train is used to train phonetic
DNN with phonetic labels. The phonetic labels of Thchs30-
train are forced alignment based on a GMM-HMM model of
Kaldi thchs30 recipe [22]. This GMM-HMM model is also
trained by Thchs30-train.

We evaluate our methods on the short-duration datasets,
Dev and Eval, and the long-duration Dev-all is used as a
comparison.

B. Data Augmentation

Because most of the datasets described in Section 4.1 have
little noise, we just consider two strategies, speed perturbation
and volume perturbation, to increase the amount and diversity
of the training data. For speed perturbation, we apply a speed
factor of 0.9 or 1.1 to slow down or speed up the original
recording, and then we get additional two copies of original
recording and add them to the original dataset list directly.
For volume perturbation, we apply a random volume factor to
change the volume of every recording of a dataset.

C. Front-End

1) Acoustic features: The Perceptual Linear Prediction
(PLP) coefficients are used in all experiments with a frame-
length of 25ms and frame-shift 10ms. Firstly, we compute the
acoustic features with 20 dimensions. Then the 3-dimensional

pitch features are also computed to be pasted in the end and
finally we attain 23-dimensional acoustic features.

Before the acoustic features being fed into DNN, nonspeech
frames are filtered out using an energy-based voice activity
detection (VAD) and then cepstral mean-normalized (CMN)
is performed over a sliding window of 3 seconds.

2) Baseline x-vector system: The standard x-vector frame-
work described in Section 2.1 is used as our baseline system.
The BaseTrain dataset is used to train our baseline system.
And 512-dimensional x-vectors are extracted at the segment
layer which is closed to the statistics pooling layer.

3) Phonetic representation-spliced x-vector system: In our
PN x-vector system, the phonetic architecture has 5 TDNN
layers and all layers have 650 nodes except the last hidden
layer with 128 nodes. The splicing information of these hidden
layers are { -2, -1, 0, 1, 2} {-1, 0, 1} {-1, 0, 1} {-3, 0, 3} and
{-6, -3, 0} by the first-to-last order. And the output layer is a
log-softmax layer with 3,447 nodes corresponding to phonetic
labels. During the training phase, the phonetic architecture is
pre-trained by Thchs30-train and then attached to the standard
x-vector architecture as described in Section 2.2. Finally, the
BaseTrain is used to train the x-vector architecture and the
phonetic architecture is still updated with a very low learning
rate at the same time.

4) Multi-task learning x-vector system: In our multi-task
learning x-vector system, there are four shared layers which
are the first four hidden layers of the standard x-vector
architecture. The last shared layer concatenates two branches.
One branch consists of the remaining layers of standard
x-vector architecture and another one contains three layers
with 512 nodes and a log-softmax output layer with 3,447
nodes corresponding to phonetic labels. As the same as the
phonetic x-vector system, the phonetic architecture of multi-
task learning system is also trained by Thchs30-train and the
x-vector architecture is trained by BaseTrain dataset.

D. Back-End

In the back-end, once the x-vectors are extracted, linear
discriminant analysis (LDA), subtract-mean and length nor-
malization are applied before the embeddings being fed into
a logical regression (LR) classifier. Specially, the LDA trans-
forms 512-dimensional x-vectors into 10-dimensional vectors.
And a cross-validation strategy between Dev/Dev-all and Eval
is used to avoid computing global mean from the evaluation
datasets themselves in the subtract-mean step. Both LDA and
LR are trained by BaseTrain. Finally, the scores of evaluation
datasets are generated by the LR.

All experiments are conducted with Kaldi toolkit [22].

V. RESULTS

In this section, we report results in terms of equal error-rate
(EER). And we firstly compare SPC method with SPP and
then compare the different x-vector frameworks based on the
optimal back-end.
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TABLE I

THE DATASETS PROFILES.

Name Datasets Total Utterances Total Duration Length

BaseTrain AP16-OL7, AP17-OL3(Train,Dev) 72,234 106.6h 1-30s

Thchs30-train Thchs30-Train 10,000 25.5h 4-16s

Dev-all AP17-OLR-Test(test all) 22,051 34.2h 1-30s

Dev AP17-OLR-Test(test 1s) 22,051 6.1h 1s

Eval AP18-OLR-Test(Task 1) 21,456 6.0h 1s

A. SPC vs. SPP

Before using SPC and SPP to expand the length of evalua-
tion utterances, there are three basic questions:

1) Why SPC does not work well on the x-vector frame-
work?

2) If SPP benefits to short-duration utterances, how about
long-duration utterances?

3) As both SPP and data augmentation are related to speed
perturbation, then what relations between SPP method
and speed perturbation of training?

To discuss these three questions, we conduct a series of
experiments based on two baseline systems. Specially, for
question 1, the self-concatenating (SC) is added to analyze
whether the concatenating process will result in bad perfor-
mance. For question 3, we train the two baseline systems
with and without speed perturbation and do not use volume
perturbation. We also control this variable in the training of
LDA and LR. And they are consistent with DNN training all
the time.

The results are presented in Table II. Firstly, we find that
both SC and SPC methods perform worse than the original
configuration, especially in short-duration condition. And we
also find that both CMN and extracting embedding are influ-
enced extremely by the concatenating process. It may bring
unnatural context and information redundancy. However, SPP
always outperforms the Original by 3%−5% for short-duration
datasets even using no SP in training. Therefore, SPP may not
rely on SP augmentation used in the training of DNN, LDA
and LR. Secondly, we see that SPP is not really suitable for
long-duration utterances by comparing the results of Dev-all
with Dev/Eval. But there is no negative influence if using data
augmentation of speed perturbation (SP) in DNN training.

TABLE II

THE EER (%) RESULTS WITH SPC AND SPP.

Datasets SP aug. Original SC SPC SPP

Dev
No 8.90 9.25 9.94 8.58

Yes 8.18 8.32 8.31 7.90

Eval
No 7.95 8.23 8.55 7.60

Yes 7.62 7.71 7.53 7.24

Dev-all
No 2.35 2.38 2.50 2.48

Yes 2.00 2.09 2.13 1.99

B. Multi-Task Learning for Language Recognition

In this experiment, we compare different x-vector frame-
works, which are referenced throughout Sections 4.3.2-4.3.4.
Because the Thchs30-train is a small dataset with one language
and the GMM-HMM model used to generate the alignments
of Thchs30-train is also not good. To observe the original
influence of phonetic information, data augmentation is not
used in Thchs30-train. But we still use two data augmentation
strategies in BaseTrain to train x-vector architectures. We also
use speed perturbation in LDA and LR to achieve better
performance. And SPP is used for all evaluation datasets.

As shown in Table III, training with phonetic information
(PN/MTL) is about 6% better than Baseline on short-duration
datasets. PN and MTL are 5% and 13% better than Baseline on
long-duration dataset respectively. Although MTL outperforms
PN by about 9% on long-duration dataset, the performances
between PN and MTL are almost at the same level. This may
be due to the limited context information of short-duration
utterance.

TABLE III

THE EER (%) RESULTS IN DIFFERENT X-VECTOR FRAMEWORKS.

Datasets Baseline PN MTL

Dev 7.68 7.16 7.29

Eval 6.92 6.62 6.50

Dev-all 1.72 1.64 1.50

VI. CONCLUSION

In this paper, we proposed SPP method to expand length
of short-duration utterances. It enriched the information and
benefited to short-duration utterances. Meanwhile, it had little
influence on long-duration utterances when training language
DNN with data augmentation of speed perturbation. We also
adapted multi-task learning to combine phonetic information
into the x-vector framework. We found that multi-task learning
could achieve excellent performance as the conventional joint
training and even better. The architecture of multi-task learning
was also simpler, and it was very useful that the number of
parameters can be reduced as same as the standard x-vector
architecture in test time.
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