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Abstract— Aiming at the problem that the fusion rules of 
cooperative spectrum sensing have great impact on performance, 
a cooperative sensing algorithm based on LSTM, which is 
implemented on multiple USRPs is proposed.  The received 
signal has different sequence characteristics when the primary 
user signal is present or absent.  LSTM is used to extract the 
temporal characteristics of each primary user’s signal sequence, 
and the fully connected layer is used to fuse the features in the 
fusion center, then softmax is used to classify fusion features.  A 
number of USRPs and a host are built a spectrum sensing system, 
and the LSTM model obtained by offline training is used to 
perform online real-time detection. The system can effectively 
detect the primary user signal.   

I. INTRODUCTION 

Spectrum sensing is an important part of cognitive radio. 
There are many spectrum sensing method, such as energy 
detection, eigenvalue detection and matching filtering, 
thereby determines the access time.  

In order to overcome the problems of hidden terminals and 
shadow fading, Cooperative Spectrum Sensing (CCS) 
algorithm based multiple Secondary User (SU) is studied.  
The decision results of multiple distributed SU or data 
collected are fused in Fusion Center (FC) for the final 
decision, so the fusion method is the key of CCS.  A large 
number of CCS algorithms, have been published, including 
decision fusion and data fusion (maximum ratio combining 
[2], equal gain fusion [3], et al).  In [4], based on the energy 
detection algorithm, an adaptive dual-threshold spectrum 
sensing algorithm is proposed.  The SU whose decision 
statistics are beyond the double threshold is fused in decision 
fusion, and the other SUs are fused in data fusion.  Meanwhile, 
the detection probability is maximized by adjusting the double 
threshold value and the number of SU in each decision area.  
In [5], each SU adopts the eigenvalue detection algorithm, 
and two fusion methods are also used in the fusion center.  
For the SU between the two thresholds, the weighting factor 
is selected based on the Signal-to-Noise Ratio(SNR), and then 
the data fusion is performed.  These algorithms need to design 
specific rules for fusion, while the reference [6] uses the 
energy detection method for local sensing, and uses the 
Convolutional Neural Networks (CNN) to fuse the sensing 
results of each SU in the fusion center.  Performance has been 
improved compared to the traditional CCS algorithm.  
Recurrent Neural Networks (RNN) is suitable for identifying 
signal sequences with correlation.  The reference [7] uses 

RNN to identify different protocol sequences and obtain good 
classification results.  In the process of spectrum sensing, the 
Primary User (PU) signal sequence has correlation, which 
decays faster as the sequence grows, and the early information 
will be forgotten.   

The Universal Software Radio Peripheral (USRP) can set 
the digital baseband and intermediate frequency parameters of 
wireless communication flexibly, which can be conveniently 
used to study the performance of the spectrum sensing 
algorithm on the received air interface signal.  In [8], it uses 
CNN to perform non-cooperative offline spectrum sensing of 
USRP received signals.   

In this paper, we propose and implement a novel 
cooperative spectrum sensing algorithm on multiple USRPs 
which is based on Long Short-Term Memory (LSTM). The 
contributions of this paper can be summarized as follows. 

1) We propose a LSTM-based cooperative spectrum 
sensing algorithm. The LSTM is used in each SU to 
extract temporal characteristics of the received signal 
sequence. Due to the different environments of the SUs, 
their temporal characteristics have different effects on 
the final decision.  Therefore, the fusion center uses 
two fully connected layers to fuse the temporal 
characteristics to make the final decision. 

2) Several USRPs are used to build a spectrum sensing 
system, and the real-time sensing performance of the 
cooperative spectrum sensing algorithm based on 
LSTM in real environment is analyzed. USRP is used 
to collect real signals and build training and test 
datasets that are used to train the models offline.  
Finally, GNU Radio and trained models are used for 
real-time online cooperative spectrum sensing.   

3) Through simulation, we confirm that the proposed 
algorithm has a better performance than other schemes. 
Moreover, the algorithm has been successfully 
implemented in USRPs, and shows some anti-
frequency offset characteristics. 

The remainder of this paper is organized as follows. In 
Section II, we introduce the system model and the proposed 
LSTM-base CCS scheme. In Section III and Section IV, We 
analyze the simulation performance of the algorithm and the 
performance of USRPs implementation respectively, and 
Section V concludes the paper. 
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II. SYSTEM MODEL 

A. Cooperative Spectrum Sensing Model 

In the following section, we consider a cognitive network 
that include N SU nodes, one PU node and one FC node.  
Each SU uses the method Θ(•) to perform local signal feature 
extraction on the received signal.  And the FC uses the 
method Ψ(•) to fuse the features extracted by the SU. 
Therefore, the binary hypothesis test of the existence state of 
PU can be expressed as:  
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Where H0 and H1 represent hypotheses that the primary 
user absent and present, xPU represents the signal transmitted 
by the PU node, hi represents the channel coefficient between 
the PU and the i-th SU, and vi represents the received noise.  
Let yi denote the signal received by the i-th SU node: 

yi = [ yi(1), yi(2),…, yi(n)] 
Where n represents the length of the received signal 

sequence.  When there is a primary user signal, the received 
signal of the SU is yi=hixPU+vi. When it is not present, the 
received signal is yi=vi.   

B. Decision Model Based on LSTM 

LSTM is an improved unit of RNN, one of which is shown 
in Fig. 1.  It has a hidden layer ht and three gate control units, 
including a forgotten gate ft, an input gate it and an output 
gate ot.  The input gate can determine how much input 
information enters the current unit, the forgotten gate can 
determine how much information the previous memory vector 
Ct-1 should forget, and the output gate can determine what 
information the current unit will provide.   
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Fig. 1 LSTM Neural Unit 

 
Each LSTM unit consists of multiple neural units whose 

calculation equations are defined as follows: 
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The cooperative spectrum sensing network model based on 
LSTM is shown in Fig. 2.   
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Fig. 2 Cooperative Spectrum Sensing Model Based on LSTM 

 
The featuresu_i represents feature eigenvector of the i-th SU, 

combined feature sequence is obtained in the FC as follows: 
featuresu = [featuresu_1, featuresu_2, … , featuresu_i] 

Each dimension feature has different effects on the final 
decision result.  Therefore, multiple fully connected layers are 
added to the combinatorial feature sequences, and the back-
propagation and gradient descent algorithms are used to adjust 
the connection weight parameters, which can fuse the features 
of all dimensions in the process of training.   

The final classification layer uses the Softmax function that 
output form is a two-dimensional probability vector [a, b]T.  
Ideally, [0,1]T indicates the presence of the primary user and 
[1,0]T indicates that the primary user does not exist. In fact, 
the values of a and b are not 0 or 1, but two real numbers 
between 0 and 1.  Err represents the Euclidean distance 
between the output and [0,1]T, which expressed as follows: 

2 2( 0) ( 1)err = a - + b -  

The errth represents error threshold, which is set to ensure 
that the Probability of Detection (Pd) is greatly increased in 
the case of a low Probability of False Alarm (Pf).  It is 
determined that there is a primary user when the err is smaller 
than the errth, otherwise the primary user does not exist.   

C. Spectrum Sensing System Built by Multi USRPs 

In order to verify the sensing performance of the proposed 
method in this paper, a cooperative sensing system was built 
using GNU Radio and USRP.  GNU Radio is an open source 
framework that provides a lot of signal processing modules 
for implementing Software Defined Radio (SDR).   

The cooperative sensing hardware system consists of one 
host and three USRPs.  The host GPU uses GeForce GTX 
1080 with four Gigabit ethernet cards, and the USRP X310 
works with SBX-120 daughter boards.  Fig. 3 shows the 
hardware block diagram of the actual cooperative spectrum 
sensing system.   
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Fig. 3 Cooperative Spectrum Sensing Hardware System 
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Each USRP is connected to the host through the 

corresponding ethernet card, and their Internet Protocol (IP) 
address is set under the same network segment.  The USRP 
uses the daughter board to downconvert the Radio Frequency 
(RF) signal to the Intermediate frequency (IF) signal, and then 
downconverts the IF signal to the digital baseband signal 
through the FPGA of the motherboard, and finally transmits 
baseband signal data to the PC host through the Ethernet port.  
The USRP hardware driver (UHD) interface of GNU Radio is 
used to receive the signal sequence collected by USRP in the 
PC host for cooperative spectrum sensing.   

In order to obtain data in real time for spectrum sensing, the 
transceiver system is built using GRC (GNU Radio 
Companion). The flow diagram of the system is shown in Fig. 
4.   

The upper path of Figure 4 is the signal transmission flow 
diagram of USRP. The transmitted signal is a QPSK signal 
with a sampling point of 4 per symbol, a roll-off factor of 0.5, 
and a sampling rate of 2 MHz.  Then the QPSK signal which 
was up-converted to a center frequency of 1 GHz is 
transmitted through a TX antenna.  The lower three paths are 
the signal reception flow diagram of the USRP.  The three 
USRPs downconvert the center frequency 1 GHz signal to the 
digital baseband signal and transmit the baseband signal to the 
GRC’s Vector Sink block through the Gigabit Ethernet port.  
A function of dataset generation is added to the source code 
which is generated from Fig. 4, and the baseband signals 
received from the three USRPs are used to form the training 
and test dataset.   

 

 
Fig.4 USRP transceiver flow diagram built in GRC 

 
The cooperation spectrum sensing model that shows in Fig. 

2 is built with the scikit-learn library and the Keras 
framework, therefore the procedure of training can be 
accelerated by CUDA and cuDNN.  The training dataset is 
used to train the model parameters, which are saved for online 
spectrum sensing.  Since the actual signal transmission 

environment may change, training is resumed at regular 
intervals.   

III. SIMULATION AND ANALYSIS 

A. Influence of Network Parameters 

This section analyzes the influence of the number of 
memory cells unit_num of LSTM, the number of fully 
connected layer neurons of FC, and the number of training 
epoch_num on spectrum sensing performance.  The dataset, 
which generates 1000 pairs of signal data with 10, 20 and 40 
SUs receiving signal to noise ratios of -20dB~-1dB, is 
generated by Matlab.   

Table 1 shows the Pd and the Pf obtained when the number 
of different memory units and the number of connected 
neurons are selected.  Pf and Pd are the average of 1000 test 
results using the signal data set of 10 SUs.   

It can be seen from Table 1 that with the increase of the 
dense_num, the trend of change of Pd is unstable, when the 
units_num of the LSTM is 20; The Pd gradually decreases 
with the increase of the density_num when the units_num is 
25 and 30.  And when the dense_num is not greater than 10, 
the Pd is higher than the Pd with units_num of 20.  Therefore, 
the simulation below selects units_num as 30 and dense_num 
as 10, considering the value of Pd and Pf comprehensively.   

 
Table 1 Influence of network parameters on sensing 
performance. 

unit_num 20 25 30 
probability Pd Pf Pd Pf Pd Pf 

 dense_num 

5 0.623 0.025 0.806 0.111 0.797 0.095 

10 0.586 0.024 0.687 0.056 0.790 0.091 

15 0.623 0.038 0.582 0.031 0.589 0.032 

20 0.622 0.037 0.541 0.025 0.584 0.028 

25 0.530 0.022 0.493 0.021 0.514 0.022 

30 0.566 0.021 0.488 0.018 0.489 0.017 

 
Figure 5 shows the relationship between the Pd of the 

training model and the number of training when the number 
of SUs is 10, 20, and 40.   
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Fig.5. Convergence curve of Pd of the model 
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It can be seen from Fig. 5 that when the number of SUs is 
10, 20, and 40, and the epoch_num is about 15, 5, and 4, the 
Pd of the trained models reach a convergence state.  Therefore, 
for the number of SUs of 10, 20, and 40, the number of 
trainings selected is 15, 5, and 4, respectively.   

B. Comparison of Algorithm Performance 

In this section, we compare the performance between the 
LSTM-based cooperative sensing algorithm (named LSTM 
algorithm), the energy-detected dual-threshold cooperative 
sensing method (named ED algorithm) [10] , the cooperative 
sensing algorithm based on the difference between the 
maximum and minimum eigenvalues (named DMM algorithm) 
[11], and CNN-based cooperative sensing algorithm(named 
CNN algrithm).   

We have trained LSTM-based and CNN-based cooperative 
sensing models respectively for the same datasets with the 
SUs of 10, 20 and 40 and the SNR of -20~-1dB.   

We adjust the err of LSTM and CNN algorithm through 
multiple tests to make the Pf reach 0.1, and calculate the 
detection threshold of the ED algorithm and the DMM 
algorithm directly when the Pf is 0.1.  The relationship curves 
between the Pd and the SNR of the four algorithms when the 
number of SU is 10, 20 and 40 and Pf=0.1 are shown in Fig. 6.   
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Fig.6. Pd of four algorithms under different SNR 

 
From Fig. 6 we can see that the performance of the LSTM 

algorithm is better than that of the other three algorithms.  
When the number of SU is 40 and the SNR is -12 dB, the Pd 
of LSTM reaches 1, while the Pd of ED and DMM is less than 
0.10.  When the number of SU is 20 and the SNR is -11 dB, 
the Pd of LSTM reaches 1, while the Pd of DMM and ED are 
0.14 and 0.04, respectively.  When the number of SU is 10 
and the SNR is -10 dB, the Pd of LSTM reaches 1, while the 
Pd of DMM and ED are 0.16 and 0.00, respectively.   

When the SNR is -13dB, the Receiver Operating 
Characteristic (ROC) curve of the four algorithms are shown 
in Fig. 7.   

As can be seen from Fig.7, the performance of the LSTM 
algorithm is significantly better than that of the three 
comparison algorithms.  When the SNR is -13dB, the Pf is 

0.20, and the number of SU is 10, 20, and 40, the Pd of the 
LSTM algorithm is about 0.88, 0.94, and 0.99, the CNN 
algorithm is about 0.49, 0.72, 0.92, while the Pd of the other 
two comparison algorithms is less than 0.50. 

 
Fig.7. ROC curves of the four algorithms 

IV. PERFORMANCE ANALYSIS OF HARDWARE SYSTEM 

A. Offline Training 

We use the hardware and software platform built in Section 
2.3 for cooperative spectrum sensing.  The QPSK signal 
transmitted by the transmitter has a bandwidth of 1.5MHz and 
the transmit gain expressed by Gaintx and the receive gain 
expressed by Gainrx are all set to 10dB.  Each receiving end 
receives 1000 sets of signal sequences with frame length of 
200 as positive samples.  Then, without changing the 
receiving center frequency of the receiving end, the 
transmitting end is tuned to 400MHz to receive 1000 sets of 
negative sample sequences with frame length of 200.  Finally, 
the above 2000 sets of positive and negative samples are 
combined into a training set.   

The training parameters units_num, dense_num, and 
epoch_num of LSTM are set to 30, 10, and 40, respectively.  
Then the offline model of LSTM is trained by using the 
training set data.   

B. Performance of Real-time Detection 

The experimental parameters are the same as those in 
Section 4.1.  Since the prior information of the environmental 
noise is unknown, the USRP cannot be used to set an accurate 
SNR for the signal.  Therefore, we change the received SNR 
of each USRP receiver indirectly by adjusting the USRP's 
Gaintx and Gainrx.  The LSTM model obtained in Section 4.1 
is used to detect 1000 cases of the presence of the primary 
user signal and the absence of the primary user signal.  The 
detection probability of the real-time received signal under 
different antenna gain which is expressed as 
Gain(Gain=Gaintx+Gainrx) is shown in Fig. 8.   

As can be seen from Fig. 8, with the increase of Gain, the 
detection probability of the sensing system increases gradually.  
When Gain reaches 16dB, the probability of detection is 1. 
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Fig. 8 Probability of detection of the hardware sensing system 

 
The center frequency of the transmitter remains unchanged 

at 1GHz, and the Gain of the antenna is 16dB.  The center 
frequency of the receiver is adjusted from 1~ 1.001GHz to 
receive signals, and the corresponding detection probability 
curve is shown in Fig. 9.   
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Fig.9. Anti-frequency offset performance of the hardware 

sensing system 
 

As shown in Fig. 9, when the center frequency is shifted by 
1 MHz, the detection probability is about 0.10, and as the 
offset decreases, the detection probability increases 
accordingly. When the frequency shift is less than 0.4 MHz, 
the detection probability reaches 1.  Therefore, the proposed 
algorithm has a certain anti-frequency offset performance in 
the actual signal detection process.   

V. CONCLUSION 

In this paper, each secondary user node uses LSTM to 
extract the temporal characteristics of the received signal, and 
the fusion center uses two fully connected layers to fuse all 
temporal features to obtain the final decision result.  The 
simulation results show that the proposed algorithm has 
higher detection performance than CNN, ED and DMM 
algorithms, and still has higher detection probability in the 
case of low SNR.  In addition, the cooperative spectrum 

sensing system is built by three USRPs and the detection 
performance of the algorithm is verified.  And the algorithm 
has certain anti-frequency offset performance.   
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