

A Reconfigurable Implementation of Motion
Compensation in HEVC

Xiaoyan Xie*, Xiang Lei*, Jinna Zhou*, Yun Zhu*, Lin Jiang*
*Xi’an University of Posts & Telecommunications, Xi’an, China

E-mail: 18829290892@163.com Tel: +86-29-1882929082
Abstract—The motion compensation algorithm in High

Efficiency Video Coding (HEVC) has a large number of
interpolation calculations at the same time, and it is difficult to
achieve flexible switching of different coding blocks, which puts
higher requirements on its computational efficiency and control
logic. In order to solve such problems, the data is divided
according to the characteristics of the algorithm, and the motion
compensation algorithm is mapped onto the reconfigurable array
structure, so that the previous serial algorithm can be processed
in parallel. According to the data overlapping relationship
between the next reference block and the current reference block
of the encoding process, the data multiplex idea is used to reduce
the number of the pixels which were read from the external
storage, thereby shortening the reading time of the next reference
block data. At the same time, according to the reconfigurable
structural features, flexible switching of the algorithm variable
block mode is designed to improve flexibility. Finally, parallel
processing is performed according to the data rule of motion
compensation algorithm and a large number of interpolation
characteristics, which improves the computational efficiency of
the algorithm. In this paper, a 16×16 Processing Element (PE) is
used to dynamically process a 4×4-64×64 block size. On the
Virtex-6 FPGA attached to the BeeCube, the reference block
update speed is increased by 39.9%; in the case of an array size of
16 PEs. In parallel, the degree of parallelism can reach 16, which
has better flexibility while achieving higher execution efficiency.
Keywords: High Efficiency Video Coding(HEVC), Motion
compensation, Parallelization, Reconfigurable

I. INTRODUCTION

The new generation of multimedia video coding standard
HEVC/H.265[1] proposed by the video coding joint group has
significant compression performance, reducing 50% of the bit
rate while providing coding mode similar to H.264[2].
Especially in inter prediction, the motion compensation
algorithm uses an 8-tap luma interpolation filter and a 4-tap
chroma interpolation filter as interpolation portions, which
requires more reference frame information to be generated,
resulting in a larger data manipulation amount. The entire
HEVC interpolation filter accounts for 20~30% and 20~40%
of the encoder and decoder execution time, respectively, which
makes interpolation filter one of the most time-consuming
coding parts in HEVC[3]. In order to improve the
computational efficiency of motion compensation algorithms,
scholars have proposed a variety of solutions.

In[4][5] designed a hardware accelerator for fractional
motion estimation. The core of the algorithm is to accelerate
the interpolation calculation and improve the coding and

energy efficiency. However, the acceleration architecture only
designs 8×8 and 16×16 block sizes.The flexibility is not high.
In [6], a new half-pixel and quarter-pixel interpolation filter are
proposed, which can reduce the computation time of the
algorithm by half, but can only process 4×4 blocks, which
makes the algorithm less flexible. Reference [7] uses 64
reconfigurable filters to satisfy different HEVC filter types.
Although architecture can achieve high throughput, it is only
suitable for 8×8 coded blocks and is less flexible. A simplified
field-programmable gate array (FPGA) was proposed in [8] to
implement a fractional motion estimation interpolation
architecture that increased the rate by 13%, but only
processing 8x8 coded blocks resulted in reduced flexibility.
Low-energy HEVC sub-pixel interpolation hardware for all PU
sizes is proposed in [9], which can process 30 frames of
quadruple full HD (3840×2160) video per second, but its
operating frequency is lower. Therefore, how to balance the
flexibility of the algorithm and the computational efficiency of
motion compensation has become a basic problem to be
solved.

This paper uses a dynamic programmable reconfigurable
array processor to achieve parallelization of motion
compensation algorithms. This reconfigurable array structure
have taken the advantages of the flexibility of a
general-purpose processor and the efficiency of a dedicated
circuit[10], so it is an effective way to achieve video codec with
high computational complexity and variable block modes.
Based on the characteristics of this structure, the idea of data
multiplexing can be used to reconstruct the variable block
mode switching of the motion compensation algorithm. The
results show that the proposed reconfigurable scheme has a
great improvement in both resource consumption and
algorithm operation efficiency. The organization structure of
this paper is as follows. The first part mainly analyzes the
related concepts of motion compensation algorithm, and the
second part analyzes the update process of reference block data.
The third part is a reconfigurable implementation of the motion
compensation algorithm. The fourth part verifies the feasibility
of the reconfigurable implementation of the motion
compensation algorithm and analyzes the verification results.
Finally, the full text is summarized.

II. MOTIVATION

In the latest video codec standard HEVC, Fig. 1 is a
schematic diagram of the position of a motion compensation
algorithm luminance interpolation score precision sample. The
position of the integer sample in the figure is represented by

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China

1449978-988-14768-7-6©2019 APSIPA APSIPA ASC 2019

uppercase letters, and the position of the decimal sample is
represented by lowercase letters. When the motion vector
points to the position of the integer sample, the interpolation
operation is not performed, and the integer sample value is
directly output as the final prediction result. When the motion
vector points to a non-integer position (fractional position), ie
1/2 pixel precision or 1/4 pixel precision position, the motion
compensated interpolation module will use the interpolation
filter to perform samples on the integer around the non-integer
sample prediction interpolation position.

 A-1,2 A0,2 A1,2 A2,2a0,2 b0,2 c0,2

 A-1,1 A0,1 A1,1 A2,1a0,1 b0,1 c0,1

 A-1,0 A0,0 A1,0 A2,0a0,0 b0,0 c0,0

A0,-1 A1,-1
 A-1,-1 A2,-1A0,-1 a0,-1 b0,-1 c0,-1

 d-1,0 d0,0 d1,0 d2,0

h-1,0 h1,0 h2,0

n-1,0 n0,0 n2,0n1,0

e0,0 f0,0 g0,0

i0,0 j0,0 k0,0h0,0

p0,0 q0,0 r0,0

Fig. 1 Schematic diagram of the sample location for the fractional precision

of the brightness interpolation

For the motion compensation algorithm, if only one pixel is
processed at a time, it takes a long time, so that the calculation
efficiency of the algorithm is also low. For example, to process
a block size of 8x8, there is no data correlation between the
interpolation calculation for each pixel and the interpolation
calculation for the other 63 pixel values. Therefore, parallel
ideas can be used to process multiple pixels simultaneously.
Compared with H.264, HEVC inter mode achieves better
coding efficiency at the expense of higher complexity, with
prediction units ranging from 4 by 4 to 64 by 64[11]. The
parallelization hardware architecture of the traditional
interpolator is only processed by a single PU block[12]. If all the
PU modes between frames are predicted, the hardware
architecture is redesigned, which greatly wastes resources.

In order to improve the flexibility of the algorithm, reduce
the use of hardware resources. This paper is based on a
reconfigurable array processor to achieve flexible switching of
different block sizes of motion compensation algorithms. The
reconfigurable array processor includes a global instruction
memory, an input memory, an output memory, an array
processor, and a global controller. The global controller is used
to store the operation instructions and call instructions of the
array processor, and also includes broadcasting of different
block size operation instructions, distribution of call
instructions, and collection of computing resource information,
and the input memory is responsible for loading corresponding
input data from the external memory. A layered programming
network is formed between the host interface and the array

processor during processing, and a layered programming
network is used to implement control and management of array
computing resources. In order to facilitate the addressing, in
the addressing process, the bit width is gradually decremented
to ensure that each instruction arrives at the PE at the same
time, and the different PEs execute the corresponding
operation after the instruction arrives.

III. RECONFIGURABLE IMPLEMENTATION OF MOTION

COMPENSATION ALGORITHM

The kernel of the dynamic reconfiguration mechanism is the
command delivery network. This paper mainly utilizes
instruction broadcast operations and instruction issued
operations to form the instruction delivery network. The
instruction broadcast operation is for the reconstruction of the
size in the reconstruction of this document. The reconstruction
means to store the instructions in advance in the instruction
memory of each PE in the array structure, and then to turn on
all or part of the PE at the same time through the instruction
broadcast operation. The instruction issuing operation delivers
the instruction in the global instruction memory to the
designated PE through the instruction issuing operation. The
scale reconstruction has 256 PEs (16 PEGs), 64 PEs (4 PEGs)
and 16 PEs (1 PEGs) and several irregular block mode sizes,
as shown in Fig.2.When performing a block size of
8x16-64x64, only size reconstruction is needed, and the block
will be decomposed into a number of 8x8 block sizes. The
local storage of PEG00-PEG33 simultaneously stores 8×8
block size instructions, and its size reconstruction is shown in
Fig. 2. If a 64×64 block size is used, all the clusters
(PEG00-PEG33) will work through the instruction broadcast
operation instruction, but each time a 32×32 block size can be
executed at most, and therefore, four commands should be
issued by the issuing instruction. Only one 64×64 block can be
processed. If a block size of 32x32 is made, all the 16 clusters
of PEG00-PEG33 will be operated by the broadcast operation
instruction. If the 32×16 block size is processed, the eight
clusters of PEG00-PEG13 will be operated by the broadcast
operation instruction, and the remaining clusters do not operate at
the same scale. (Specifically shown in Fig.2).Each cluster has an
8x8 block size, and other block sizes are handled by combining
cluster sizes. When executing a block size of 4×4-16×4, since
only 8×8 block size instructions are stored in the local storage, it
is necessary to transfer the network to PEG00, PEG01, PEG02,
PEG03, PEG10, PEG11, PEG12 through the instruction
transmission network. PEG13, PEG20, PEG21, PEG22, PEG23,
PEG30, PEG31, PEG32, PEG33 issues 4×4 block size instructions.
The block size in this range is divided into a number of 4×4 block
sizes, and 4×4 instructions are issued through the instruction
transmission network, as shown in Fig.3. When processing a block
size of 16×12, PEG00-PEG03, PEG10-PEG13, and
PEG20-PEG23 were operated by the broadcast manipulation
instruction.

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China

1450

Handle 8×8
 block size

Handle 16×16
block size

Handle 32×32
block size

Handle32×16
block size

Global controller

PEG20 PEG21

PEG02

PEG10

PEG01 PEG03

PEG11 PEG12 PEG13

PEG22 PEG23

PEG00

PEG30 PEG31 PEG32 PEG33

PEG10 PEG11

PEG00 PEG01

PEG12 PEG13

PEG02 PEG03

PEG10 PEG11

PEG00 PEG01

PEG00

Fig. 2 8×16-64×64 motion compensation algorithm reconfigurable function

map

PEG00

PEG20 PEG21

PEG02

PEG10

PEG01 PEG03

PEG11 PEG12 PEG13

PEG22 PEG23

PEG00

PEG30 PEG31 PEG32 PEG33

Global controller

PEG20 PEG21

PEG02

PEG10

PEG01 PEG03

PEG11 PEG12 PEG13

PEG22 PEG23

PEG00
PEG01PEG00

Handle 8x4
block sizes

Handle16x12
block sizes

Handle16x16
block sizes

Fig.3 4×4-16×4 motion compensation algorithm reconfigurable functional

map
The following is an example of how to switch a block size

of 16x12 to a 32x32 block size as an example. The first block
address of the encoded block should be stored as different
resolution test sequences before loading. First, the YUV test
sequence has to be converted to a decimal value, which can be
identified by the array structure using MATLAB Lab software.
The data is distributed in an array format and stored in DIM.

First, the 64x32 block size is processed, broken down into
32 8x8 blocks and processed in PEG00-PEG37, respectively.
The 8x8 motion compensation instructions are stored in the
local instruction memory of PEG00-PEG37. Processing a
16×12 block size requires decomposing it into 12 4×4 blocks
for processing in PEG00-PEG03, PEG10-PEG13 and
PEG20-PEG23, respectively, and transmitting 4×4 motion
compensation instructions through the command transmission
network. Go to the local instruction memory of each PE
requiring it.

Next, if the block size is 32 × 32, it indicates that the
instruction transmission network performs a broadcast (bit
[31:30] = 10) operation, And at the same time, the execution
operation of each PE is started. If the block size is 16 x 12, the
command transmission network performs instruction transfer
(bits [31:30] = 01) and issues a 4x4 motion compensation
command to PEG00-PEG03, PEG10-PEG13 and
PEG10-PEG13. In the local instruction memory of
PEG20-PEG23, as shown in Fig. 3 and 4, solid arrows indicate

that the execution operation of each PE is turned on, and
dotted arrows indicate the issued instructions.

Finally, start execution the motion compensation code is
started. The specific execution process of each cluster is the
same.

 Step1: Data loading; PE01 accesses the DOM through
register R11 and reads the corresponding reference pixel value.
PE00 accesses the DIM through register R11 and reads the
corresponding original pixel value. When loading data, it is
executed from left to right and top to bottom.

Step 2: The reference pixel value is then sent to the
corresponding PE. The data transfer order is PE01 to PE00,
PE01, PE02, PE03 and PE11. The, PE00 is sent to PE10, PE20
and PE30; PE11 is delivered to PE21 and PE31; PE02 is sent
to PE12, PE22 and PE32; PE03 is sent to PE13, PE23 and
PE33. In order to improve the efficiency, no other PEs will be
issued until PE00 has been issued. Instead, the PE will transfer
the data to the appropriate PE as soon as it receives the data.

Step 3: After each PE receives the data, it starts to perform
1/2 or 1/4 interpolation calculation. After the calculation is
completed, 4 predicted values are stored in each PE, and then
each PE sequentially transmits 4 predicted values in its own
memory to PE03 in sequence.

Step 4: Calculate the residual based on the predicted value
and the original pixel. The process of processing the block size
of 16x12 is similar to the above.

IV. REFERENCE BLOCK DATA UPDATE

The update of reference block is ensured based on the
position of the current coding block in the previous coding
block, There are four positional relationships, as shown in Fig4.
The reference block design update can be divided into four
cases. According to the four cases, the data amount of data
overlap is different. According to the update direction, it can be
divided into two ways. One is to update only the right data,
and the other is to update. The data on the right side also
updates the next row of data.

The current coding block is next to the previous coding
block. As shown in Fig. 4(a), the process of updating the
reference block is divided into two steps. Step one is to process
the pixels of the reference block by column: First, delete the
first 8 columns of pixel values of the 15x15 reference block in
the processing element. At the same time the ninth column
pixel of the 15×15 reference block pixel in the processing
element is taken as the first column pixel of the reconstructed
15×15 reference block. Then, the 10th column pixel of the
15×15 reference block pixel in the processing element is
regarded as the second column of pixels of the 15×15
reconstructed reference block. And so on, using the 15th
column of the 15×15 reference block pixels in the processing
element as the 7th column of pixels reconstructing the 15×15
reference block, this completes the reconstruction Refer to the
first 7 columns of the block.

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China

1451

 previous
coding block

 current
 coding block

previous reference block

 current reference block

 previous
coding block

 current
coding block

previous reference block

 current reference block
(a)Immediately to the right of (b) located to the right of the

the previous coding block previous coding block

 previous
coding block current

coding block

previous reference block

 current reference block

 previous
coding block current

coding block

previous reference block

 current reference block
(c) Immediately to below the right (d) located on the lower right

side of the previous coding block side of the previous coding block

Fig.4 Data overlap between adjacent reference blocks
Step two is to load the remaining reference block data from

the external memory: since the first 7 columns of pixels have
already existed, this step loads 8 columns of pixel data by row.
The first 8 pixels are loaded from the external memory,
updated to the pixel position in the 1st row of the 15×15
reference block. Then 8 pixels in the next row are updated to
the pixel position of the 2nd row of the reconstructed 15×15,
etc. Finally the eight pixels of the fifteenth line is loaded from
the external memory and updated to the pixel position of the
fifteenth line of the 15x15 reference block. The process of Fig4.
(b) is essentially the same as the process to the right of the
current coded block of the previously coded block.

The current coding block is immediately adjacent to the
lower right side of the previous coding block. As shown in
Fig4. (c), the process of updating the reference block is also
divided into two steps: Step one is to process the reference
block column by column: first, delete the pixel value of the
first row and the first 8 columns of pixels of the 15x15
reference block in the processing element, and so did the ninth
column pixel (only 14 pixels) of the 15 × 15 reference block
pixels in the post-processing element is deleted as the first
column pixel of the 15 × 15 reference block. Then the 15 × 15
reference block in the processing block is processed. The 10th
column pixel of the pixel (only 14 pixels) is used as the 2nd
column pixel of the 15×15 reference block. And so on, the 15th
column pixel (only 14 pixels) of the 15×15 reference block
pixel is finally processed. The 7th column of pixels of the
15x15 reference block is reconstructed, which first processes
the first 7 column blocks of the reconstruction reference

Step two is to load the data line by line from the external
memory: since the first 7 columns of pixels already exist, this
step processes the 8 columns and the last row of pixels. Data is
loaded the data line by line. The first 8 pixels are loaded from
the external memory, placed at the position of the pixel in the

1st row of the 15x15 reference block. Then the 8 pixels in the
next row are loaded from the external memory and placed in
the reconstruction 15x15. Referring to the position of the pixel
in row 2 of block 15. Loading 8 pixels of the 3rd row from the
external memory, placing the pixel position of the 3rd row of
the 15x15 reference block. And so on, up to 8 pixels of the
14th row Loaded from external memory and placed on the
14th row of pixels of the 15x15 reference block. Finally, 15
pixels are loaded from the external memory and placed on the
14th row of pixels in the 15x15 reference block. The process of
Fig. 4(d) is essentially the same as the process immediately
below the current coded block of the previously coded block.

V. IMPLEMENTATION AND RESULT

In order to verify the feasibility of the reconfigurable
implementation of motion compensation algorithm, dynamic
reconfigurable array structure is used for verification in this
paper. The method is as follows: first, modify the configuration
file of the test model HM10.0, obtain test data and block
partition information, store it in off-chip memory. And then ,
use QuestaSim simulation to map the reconfigurable scheme to
the dynamically reconfigurable array platform for verification.
Among them, the motion compensation algorithm performs
time statistics and comparison under serial execution and
parallel execution conditions respectively. As shown in Fig. 5,
parallel execution saves about 88% of coding time than serial
execution. The reconfigurable coding block time results are
shown in Table 1. After the simulation verification of the
reconfigurable implementation of the motion compensation
algorithm, the time for each block size and resource
occupation is calculated. It can be seen that as the number of
PE arrays increases, the size of blocks that can be processed is
larger, the circuit scale is in an increased state, and the running
time is also increasing. For different block sizes, a
reconfigurable implementation can be implemented to enable
flexible algorithm switching.

Fig.5 Serial time and parallel comparison

Table1 The Experimental Results of Motion Compensation

Array

size

Processing

block size
Time(s) Frequency(MHZ) Resources

0.000001

0.000091

0.000181

0.000271

0.000361

0.000451

0.000541

0.000631

0.000721

8×8 4×4

Parallel time

Serial time

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China

1452

4×4
4×4

8×8

2.153×10-5

9.254×10-5
156

31200(LUT)

9800(Flip-flops)

8×4
8×4

16×8

4.291×10-5

1.943×10-4
156

63521(LUT)

18654(Flip-flops)

16×8
16×8

32×16

1.943×10-4

7.362×10-4
156

250354(LUT)

79053(Flip-flops)

16×12
16×12

32×24

2.206×10-4

1.088×10-3
156

375232(LUT)

117549(Flip-flops)

16×16
16×16

32×32

3.445×10-4

1.481×10-3
156

485789(LUT)

157320(Flip-flops)

The current coding block is adjacent to the right side of the
previous coding block and has a type of a. The current coding
block is located at the right b of the last coding block, and the
current coding block is located at the lower right corner of the
previous coding block as c. The coding block is located at the
lower right corner of the last coding block, d. According to the
following analysis, when the current coding block is
immediately adjacent to the right side of the previous coding
block, the time for updating the reference block is increased by
46.6%; when the current coding block is located on the right
side of the previous coding block and the current coding block
is immediately adjacent to the right of the previous coding
block At the bottom, the update speed of the reference block is
increased by 39.9%; when the current code block is located at
the lower right of the previous block, the reference block
update speed is increased by 33.4%. as shown in Table 2.

Table2 Comparison of Reference Block Update Time (Unit: Clock Period)

Parallel

scheme

Traditional

reference block

update time

Reference block update

time after data

multiplexing

Increase the

percentage

of time

a

3059

1632 46.6%

b 1836 39.9%

c 1836 39.9%

d 2040 33.4%

average 3059 1836 39.9%

Compared with the ASIC implementation introduction of the
parallel implementation of the HEVC motion compensation
algorithm based on the reconfigurable video array processor in
table 3. Literature [5] designed a parallel architecture of the
interpolator, but its frequency is lower than this paper, and the
resource occupancy is higher than this paper. The parallel
structure proposed in [6] can also handle variable block size by
extending the hardware architecture, but its parallelism can
only reach half of the paper. [6] Although the hardware
resources are smaller than the design in this paper, the working
frequency and parallelism are smaller than this paper. The

highly parallel pipeline design proposed in [11] can process 32
pixels simultaneously. The parallel structure proposed in this
paper is equivalent to the resource consumption of 32 PE
arrays. However the parallelism is slightly higher than it.

Table3 Comparison with other ASIC architectures
Compare

items
Technology Frequency Resources parallelism

[5] 0.13um 200(MHZ) 148.653(gate) /

[6] 180nm 185(MHz) 41.97k(gate) 8

[11] 40nm 342(MHz) 297.3k(gate) 32

This work 90nm 357(MHz) 137.425k(gate) 16

Table 4 shows a comparison with the FPGA
implementation. Although the resource occupancy in [5] is
lower than this paper, its frequency is much lower than this
paper. [7] is an FPGA implementation of interpolation
filters, so their hardware area is slightly smaller than the
design of this article. However, it only works with 8×8
coded blocks and has poor flexibility. In [13], the hardware
frequency is slightly lower, and the hardware resources are
more than four times that in this paper. The hardware
structure of this article is highly scalable. 16 PE-level array
structures can achieve 16 degrees of parallelism, and 32 PE
array structures can achieve 32 degrees of parallelism.

Table4 Comparison with other FPGA architectures
Compare

items

Technology Frequency Resources(LUT) parallelism

[5] Arria Ⅱ GX 100(MHz) 19.106 /

[7] Arria Ⅱ GX 200(MHz) 28.757k 64

[13] Zynq 7045 150(MHz) 126 k /

This work Virtex-6 156(MHz) 31.2k 16

VI. CONCLUSIONS

Based on the reconfigurable video array processor
architecture, a new high-parallelism reconfigurable scheme of
the HEVC variable block motion compensation algorithm is
proposed. Firstly, the parallelization of the motion
compensation algorithm is implemented according to the data
correlation, and the reference block data is updated by the data
multiplexing idea. Secondly, the size of the video array
processor can be dynamically adjusted according to different
coding block sizes, and reconfigurable implementations of
different block sizes can be implemented. This design allows
for flexible block size switching and maximizes the use of
reconfigurable array processors. The experimental results show
that for the implementation of the motion compensation
algorithm, the structure can increase the average speed of the

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China

1453

reference block update by 39.9%. For the block mode
switching of the motion compensation algorithm and the
dynamic adjustment of the processor scale, the structure can be
correctly scheduled and can be improved Parallelism. The
most outstanding advantage of this structure is that the
reconfigurable structure has better flexibility to facilitate
different needs and is more suitable for market applications.

ACKNOWLEDGMENT

This paper is supported by the National Natural Science
Foundation of China under Grant No.61802304, No.61772417,
No.61834005, No.61602377, No.61874087 and No. 61634004,
The Shaanxi Province Co-ordination Innovation Project of
Science and Technology under Grant, and the National Science
under Grant No.2016KTZDGY02-04-02, The Shaanxi
Provincial key R&D plan under Grant No.2017GY-060 and
Shaanxi International Science and Technology Cooperation
Program No.2018KW-006.

REFERENCES

[1] Team J V. Draft ITU-T Recommendation and Final draft
international standard of joint video specification.2013.

[2] Sullivan G J, Ohm J R, Han W J, et al. Overview of the High
Efficiency Video Coding (HEVC) Standard[J]. IEEE Transactions
on Circuits & Systems for Video Technology, 2012,
22(12):1649-1668.

[3] Ugur K, Alshin A, Alshina E, et al. Interpolation filter design in
HEVC and its coding efficiency-complexity analysis[C]// IEEE
International Conference on Acoustics, Speech and Signal
Processing,2013:1704-1708.

[4] I. Seidel, V. Rodrigues Filho, L. Agostini et al.Coding- and
Energy-Efficient FME Hardware Design[C]// 2018 IEEE
International Symposium on Circuits and Systems (ISCAS),
Florence, 2018:1-5.

[5] Pastuszak, Grzegorz et al. Optimization of the Adaptive
Computationally-Scalable Motion Estimation and Compensation
for the Hardware H.264/AVC Encoder[J]. Journal of Signal
Processing Systems, 2016,82(3): 391-402.

[6] Kammoun M, Atitallah A B, Masmoudi N. An efficient hardware
architecture for interpolation filter of HEVC decoder[C]// IEEE
12th International Multi-Conference on Systems, Signals &
Devices(SSD15),2015:1-5.

[7] Pastuszak G, Trochimiuk M. Architecture design of the
high-throughput compensator and interpolator for the H.265/HEVC
encoder[J]. Journal of Real-Time Image Processing, 2016, 11(4):
663-673.

[8] Afonso V, Maich H, Agostini L, et al. Low cost and high
throughput FME interpolation for the HEVC emerging video
coding standard[C]// IEEE 4th Latin American Symposium on
Circuits and Systems (LASCAS), 2013: 1-4.

[9] Kalali E, Hamzaoglu,et al. A low energy HEVC sub-pixel
interpolation hardware[C]// IEEE International Conference on
Image Processing (ICIP), 2014:1218-1222.

[10] Li Tao, Jiang Lin, Liu Zhenwei, Han Jungang, Du Huimin. A
Novel Array Video Signal Processing Unit Structure [P], China,
(National Property Rights Bureau of the People's Republic of
China) 20012 China Public, 201110046537.

[11] Wang S, Zhou D, Zhou J, et al. VLSI Implementation of HEVC
Motion Compensation With Distance Biased Direct Cache
Mapping for 8K UHDTV Applications[J]. IEEE Transactions on
Circuits and Systems for Video Technology, 2017, 27(2):380-393.

[12] J. S. León, C. S. Cárdenas and E. V. Castillo.A high parallel
HEVC Fractional Motion Estimation architecture[C]//2016 IEEE
ANDESCON, Arequipa, 2016:1-4.

[13] Abeydeera M, Karunaratne M, Karunaratne G, et al. 4K
Real-Time HEVC Decoder on an FPGA[J]. IEEE Transactions on
Circuits & Systems for Video Technology, 2015, 26(1):236-249.

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China

1454

