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Abstract—The motion compensation algorithm in High 

Efficiency Video Coding (HEVC) has a large number of 
interpolation calculations at the same time, and it is difficult to 
achieve flexible switching of different coding blocks, which puts 
higher requirements on its computational efficiency and control 
logic. In order to solve such problems, the data is divided 
according to the characteristics of the algorithm, and the motion 
compensation algorithm is mapped onto the reconfigurable array 
structure, so that the previous serial algorithm can be processed 
in parallel. According to the data overlapping relationship 
between the next reference block and the current reference block 
of the encoding process, the data multiplex idea is used to reduce 
the number of the pixels which were read from the external 
storage, thereby shortening the reading time of the next reference 
block data. At the same time, according to the reconfigurable 
structural features, flexible switching of the algorithm variable 
block mode is designed to improve flexibility. Finally, parallel 
processing is performed according to the data rule of motion 
compensation algorithm and a large number of interpolation 
characteristics, which improves the computational efficiency of 
the algorithm. In this paper, a 16×16 Processing Element (PE) is 
used to dynamically process a 4×4-64×64 block size. On the 
Virtex-6 FPGA attached to the BeeCube, the reference block 
update speed is increased by 39.9%; in the case of an array size of 
16 PEs. In parallel, the degree of parallelism can reach 16, which 
has better flexibility while achieving higher execution efficiency. 
Keywords: High Efficiency Video Coding(HEVC), Motion 
compensation, Parallelization, Reconfigurable 

I. INTRODUCTION  

The new generation of multimedia video coding standard 
HEVC/H.265[1] proposed by the video coding joint group has 
significant compression performance, reducing 50% of the bit 
rate while providing coding mode similar to H.264[2]. 
Especially in inter prediction, the motion compensation 
algorithm uses an 8-tap luma interpolation filter and a 4-tap 
chroma interpolation filter as interpolation portions, which 
requires more reference frame information to be generated, 
resulting in a larger data manipulation amount. The entire 
HEVC interpolation filter accounts for 20~30% and 20~40% 
of the encoder and decoder execution time, respectively, which 
makes interpolation filter one of the most time-consuming 
coding parts in HEVC[3]. In order to improve the 
computational efficiency of motion compensation algorithms, 
scholars have proposed a variety of solutions. 

In[4][5] designed a hardware accelerator for fractional 
motion estimation. The core of the algorithm is to accelerate 
the interpolation calculation and improve the coding and 
 

 

energy efficiency. However, the acceleration architecture only 
designs 8×8 and 16×16 block sizes.The flexibility is not high. 
In [6], a new half-pixel and quarter-pixel interpolation filter are 
proposed, which can reduce the computation time of the 
algorithm by half, but can only process 4×4 blocks, which 
makes the algorithm less flexible. Reference [7] uses 64 
reconfigurable filters to satisfy different HEVC filter types. 
Although architecture can achieve high throughput, it is only 
suitable for 8×8 coded blocks and is less flexible. A simplified 
field-programmable gate array (FPGA) was proposed in [8] to 
implement a fractional motion estimation interpolation 
architecture that increased the rate by 13%, but only 
processing 8x8 coded blocks resulted in reduced flexibility. 
Low-energy HEVC sub-pixel interpolation hardware for all PU 
sizes is proposed in [9], which can process 30 frames of 
quadruple full HD (3840×2160) video per second, but its 
operating frequency is lower. Therefore, how to balance the 
flexibility of the algorithm and the computational efficiency of 
motion compensation has become a basic problem to be 
solved. 

This paper uses a dynamic programmable reconfigurable 
array processor to achieve parallelization of motion 
compensation algorithms. This reconfigurable array structure 
have taken the advantages of the flexibility of a 
general-purpose processor and the efficiency of a dedicated 
circuit[10], so it is an effective way to achieve video codec with 
high computational complexity and variable block modes. 
Based on the characteristics of this structure, the idea of data 
multiplexing can be used to reconstruct the variable block 
mode switching of the motion compensation algorithm. The 
results show that the proposed reconfigurable scheme has a 
great improvement in both resource consumption and 
algorithm operation efficiency. The organization structure of 
this paper is as follows. The first part mainly analyzes the 
related concepts of motion compensation algorithm, and the 
second part analyzes the update process of reference block data. 
The third part is a reconfigurable implementation of the motion 
compensation algorithm. The fourth part verifies the feasibility 
of the reconfigurable implementation of the motion 
compensation algorithm and analyzes the verification results. 
Finally, the full text is summarized. 

II. MOTIVATION 

In the latest video codec standard HEVC, Fig. 1 is a 
schematic diagram of the position of a motion compensation 
algorithm luminance interpolation score precision sample. The 
position of the integer sample in the figure is represented by 
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uppercase letters, and the position of the decimal sample is 
represented by lowercase letters. When the motion vector 
points to the position of the integer sample, the interpolation 
operation is not performed, and the integer sample value is 
directly output as the final prediction result. When the motion 
vector points to a non-integer position (fractional position), ie 
1/2 pixel precision or 1/4 pixel precision position, the motion 
compensated interpolation module will use the interpolation 
filter to perform samples on the integer around the non-integer 
sample prediction interpolation position.  
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Fig. 1 Schematic diagram of the sample location for the fractional precision 

of the brightness interpolation 

For the motion compensation algorithm, if only one pixel is 
processed at a time, it takes a long time, so that the calculation 
efficiency of the algorithm is also low. For example, to process 
a block size of 8x8, there is no data correlation between the 
interpolation calculation for each pixel and the interpolation 
calculation for the other 63 pixel values. Therefore, parallel 
ideas can be used to process multiple pixels simultaneously. 
Compared with H.264, HEVC inter mode achieves better 
coding efficiency at the expense of higher complexity, with 
prediction units ranging from 4 by 4 to 64 by 64[11]. The 
parallelization hardware architecture of the traditional 
interpolator is only processed by a single PU block[12]. If all the 
PU modes between frames are predicted, the hardware 
architecture is redesigned, which greatly wastes resources. 

In order to improve the flexibility of the algorithm, reduce 
the use of hardware resources. This paper is based on a 
reconfigurable array processor to achieve flexible switching of 
different block sizes of motion compensation algorithms. The 
reconfigurable array processor includes a global instruction 
memory, an input memory, an output memory, an array 
processor, and a global controller. The global controller is used 
to store the operation instructions and call instructions of the 
array processor, and also includes broadcasting of different 
block size operation instructions, distribution of call 
instructions, and collection of computing resource information, 
and the input memory is responsible for loading corresponding 
input data from the external memory. A layered programming 
network is formed between the host interface and the array 

processor during processing, and a layered programming 
network is used to implement control and management of array 
computing resources. In order to facilitate the addressing, in 
the addressing process, the bit width is gradually decremented 
to ensure that each instruction arrives at the PE at the same 
time, and the different PEs execute the corresponding 
operation after the instruction arrives. 

III. RECONFIGURABLE IMPLEMENTATION OF MOTION 

COMPENSATION ALGORITHM 

The kernel of the dynamic reconfiguration mechanism is the 
command delivery network. This paper mainly utilizes 
instruction broadcast operations and instruction issued 
operations to form the instruction delivery network. The 
instruction broadcast operation is for the reconstruction of the 
size in the reconstruction of this document. The reconstruction 
means to store the instructions in advance in the instruction 
memory of each PE in the array structure, and then to turn on 
all or part of the PE at the same time through the instruction 
broadcast operation. The instruction issuing operation delivers 
the instruction in the global instruction memory to the 
designated PE through the instruction issuing operation. The 
scale reconstruction has 256 PEs (16 PEGs), 64 PEs (4 PEGs) 
and 16 PEs (1 PEGs) and several irregular block mode sizes, 
as shown in Fig.2.When performing a block size of 
8x16-64x64, only size reconstruction is needed, and the block 
will be decomposed into a number of 8x8 block sizes. The 
local storage of PEG00-PEG33 simultaneously stores 8×8 
block size instructions, and its size reconstruction is shown in 
Fig. 2. If a 64×64 block size is used, all the clusters 
(PEG00-PEG33) will work through the instruction broadcast 
operation instruction, but each time a 32×32 block size can be 
executed at most, and therefore, four commands should be 
issued by the issuing instruction. Only one 64×64 block can be 
processed. If a block size of 32x32 is made, all the 16 clusters 
of PEG00-PEG33 will be operated by the broadcast operation 
instruction. If the 32×16 block size is processed, the eight 
clusters of PEG00-PEG13 will be operated by the broadcast 
operation instruction, and the remaining clusters do not operate at 
the same scale. (Specifically shown in Fig.2).Each cluster has an 
8x8 block size, and other block sizes are handled by combining 
cluster sizes. When executing a block size of 4×4-16×4, since 
only 8×8 block size instructions are stored in the local storage, it 
is necessary to transfer the network to PEG00, PEG01, PEG02, 
PEG03, PEG10, PEG11, PEG12 through the instruction 
transmission network. PEG13, PEG20, PEG21, PEG22, PEG23, 
PEG30, PEG31, PEG32, PEG33 issues 4×4 block size instructions. 
The block size in this range is divided into a number of 4×4 block 
sizes, and 4×4 instructions are issued through the instruction 
transmission network, as shown in Fig.3. When processing a block 
size of 16×12, PEG00-PEG03, PEG10-PEG13, and 
PEG20-PEG23 were operated by the broadcast manipulation 
instruction.  
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Fig. 2 8×16-64×64 motion compensation algorithm reconfigurable function 

map 
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Fig.3 4×4-16×4 motion compensation algorithm reconfigurable functional 

map 
The following is an example of how to switch a block size 

of 16x12 to a 32x32 block size as an example. The first block 
address of the encoded block should be stored as different 
resolution test sequences before loading. First, the YUV test 
sequence has to be converted to a decimal value, which can be 
identified by the array structure using MATLAB Lab software. 
The data is distributed in an array format and stored in DIM. 

First, the 64x32 block size is processed, broken down into 
32 8x8 blocks and processed in PEG00-PEG37, respectively. 
The 8x8 motion compensation instructions are stored in the 
local instruction memory of PEG00-PEG37. Processing a 
16×12 block size requires decomposing it into 12 4×4 blocks 
for processing in PEG00-PEG03, PEG10-PEG13 and 
PEG20-PEG23, respectively, and transmitting 4×4 motion 
compensation instructions through the command transmission 
network. Go to the local instruction memory of each PE 
requiring it. 

Next, if the block size is 32 × 32, it indicates that the 
instruction transmission network performs a broadcast (bit 
[31:30] = 10) operation, And at the same time, the execution 
operation of each PE is started. If the block size is 16 x 12, the 
command transmission network performs instruction transfer 
(bits [31:30] = 01) and issues a 4x4 motion compensation 
command to PEG00-PEG03, PEG10-PEG13 and 
PEG10-PEG13. In the local instruction memory of 
PEG20-PEG23, as shown in Fig. 3 and 4, solid arrows indicate 

that the execution operation of each PE is turned on, and 
dotted arrows indicate the issued instructions. 

Finally, start execution the motion compensation code is 
started. The specific execution process of each cluster is the 
same. 

 Step1: Data loading; PE01 accesses the DOM through 
register R11 and reads the corresponding reference pixel value. 
PE00 accesses the DIM through register R11 and reads the 
corresponding original pixel value. When loading data, it is 
executed from left to right and top to bottom. 

Step 2: The reference pixel value is then sent to the 
corresponding PE. The data transfer order is PE01 to PE00, 
PE01, PE02, PE03 and PE11. The, PE00 is sent to PE10, PE20 
and PE30; PE11 is delivered to PE21 and PE31; PE02 is sent 
to PE12, PE22 and PE32; PE03 is sent to PE13, PE23 and 
PE33. In order to improve the efficiency, no other PEs will be 
issued until PE00 has been issued. Instead, the PE will transfer 
the data to the appropriate PE as soon as it receives the data. 

Step 3: After each PE receives the data, it starts to perform 
1/2 or 1/4 interpolation calculation. After the calculation is 
completed, 4 predicted values are stored in each PE, and then 
each PE sequentially transmits 4 predicted values in its own 
memory to PE03 in sequence. 

Step 4: Calculate the residual based on the predicted value 
and the original pixel. The process of processing the block size 
of 16x12 is similar to the above. 

IV. REFERENCE BLOCK DATA UPDATE 

The update of reference block is ensured based on the 
position of the current coding block in the previous coding 
block, There are four positional relationships, as shown in Fig4. 
The reference block design update can be divided into four 
cases. According to the four cases, the data amount of data 
overlap is different. According to the update direction, it can be 
divided into two ways. One is to update only the right data, 
and the other is to update. The data on the right side also 
updates the next row of data.  

The current coding block is next to the previous coding 
block. As shown in Fig. 4(a), the process of updating the 
reference block is divided into two steps. Step one is to process 
the pixels of the reference block by column: First, delete the 
first 8 columns of pixel values of the 15x15 reference block in 
the processing element. At the same time the ninth column 
pixel of the 15×15 reference block pixel in the processing 
element is taken as the first column pixel of the reconstructed 
15×15 reference block. Then, the 10th column pixel of the 
15×15 reference block pixel in the processing element is 
regarded as the second column of pixels of the 15×15 
reconstructed reference block. And so on, using the 15th 
column of the 15×15 reference block pixels in the processing 
element as the 7th column of pixels reconstructing the 15×15 
reference block, this completes the reconstruction Refer to the 
first 7 columns of the block. 
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Fig.4 Data overlap between adjacent reference blocks 
Step two is to load the remaining reference block data from 

the external memory: since the first 7 columns of pixels have 
already existed, this step loads 8 columns of pixel data by row. 
The first 8 pixels are loaded from the external memory, 
updated to the pixel position in the 1st row of the 15×15 
reference block. Then 8 pixels in the next row are updated to 
the pixel position of the 2nd row of the reconstructed 15×15, 
etc. Finally the eight pixels of the fifteenth line is loaded from 
the external memory and updated to the pixel position of the 
fifteenth line of the 15x15 reference block. The process of Fig4. 
(b) is essentially the same as the process to the right of the 
current coded block of the previously coded block. 

The current coding block is immediately adjacent to the 
lower right side of the previous coding block. As shown in 
Fig4. (c), the process of updating the reference block is also 
divided into two steps: Step one is to process the reference 
block column by column: first, delete the pixel value of the 
first row and the first 8 columns of pixels of the 15x15 
reference block in the processing element, and so did the ninth 
column pixel (only 14 pixels) of the 15 × 15 reference block 
pixels in the post-processing element is deleted as the first 
column pixel of the 15 × 15 reference block. Then the 15 × 15 
reference block in the processing block is processed. The 10th 
column pixel of the pixel (only 14 pixels) is used as the 2nd 
column pixel of the 15×15 reference block. And so on, the 15th 
column pixel (only 14 pixels) of the 15×15 reference block 
pixel is finally processed. The 7th column of pixels of the 
15x15 reference block is reconstructed, which first processes 
the first 7 column blocks of the reconstruction reference 

Step two is to load the data line by line from the external 
memory: since the first 7 columns of pixels already exist, this 
step processes the 8 columns and the last row of pixels. Data is 
loaded the data line by line. The first 8 pixels are loaded from 
the external memory, placed at the position of the pixel in the 

1st row of the 15x15 reference block. Then the 8 pixels in the 
next row are loaded from the external memory and placed in 
the reconstruction 15x15. Referring to the position of the pixel 
in row 2 of block 15. Loading 8 pixels of the 3rd row from the 
external memory, placing the pixel position of the 3rd row of 
the 15x15 reference block. And so on, up to 8 pixels of the 
14th row Loaded from external memory and placed on the 
14th row of pixels of the 15x15 reference block. Finally, 15 
pixels are loaded from the external memory and placed on the 
14th row of pixels in the 15x15 reference block. The process of 
Fig. 4(d) is essentially the same as the process immediately 
below the current coded block of the previously coded block. 

V. IMPLEMENTATION AND RESULT 

In order to verify the feasibility of the reconfigurable 
implementation of motion compensation algorithm, dynamic 
reconfigurable array structure is used for verification in this 
paper. The method is as follows: first, modify the configuration 
file of the test model HM10.0, obtain test data and block 
partition information, store it in off-chip memory. And then , 
use QuestaSim simulation to map the reconfigurable scheme to 
the dynamically reconfigurable array platform for verification. 
Among them, the motion compensation algorithm performs 
time statistics and comparison under serial execution and 
parallel execution conditions respectively. As shown in Fig. 5, 
parallel execution saves about 88% of coding time than serial 
execution. The reconfigurable coding block time results are 
shown in Table 1. After the simulation verification of the 
reconfigurable implementation of the motion compensation 
algorithm, the time for each block size and resource 
occupation is calculated. It can be seen that as the number of 
PE arrays increases, the size of blocks that can be processed is 
larger, the circuit scale is in an increased state, and the running 
time is also increasing. For different block sizes, a 
reconfigurable implementation can be implemented to enable 
flexible algorithm switching. 

 
Fig.5 Serial time and parallel comparison 

Table1 The Experimental Results of Motion Compensation 

Array 

size 

Processing 

block size 
Time(s) Frequency(MHZ) Resources 

0.000001

0.000091

0.000181

0.000271

0.000361

0.000451

0.000541

0.000631

0.000721

8×8 4×4

Parallel time

Serial time
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4×4 
4×4 

8×8 

2.153×10-5 

9.254×10-5 
156 

31200(LUT) 

9800(Flip-flops) 

8×4 
8×4 

16×8 

4.291×10-5 

1.943×10-4 
156 

63521(LUT) 

18654(Flip-flops) 

16×8 
16×8 

32×16 

1.943×10-4 

7.362×10-4 
156 

250354(LUT) 

79053(Flip-flops) 

16×12 
16×12 

32×24 

2.206×10-4 

1.088×10-3 
156 

375232(LUT) 

117549(Flip-flops) 

16×16 
16×16 

32×32 

3.445×10-4 

1.481×10-3 
156 

485789(LUT) 

157320(Flip-flops) 

The current coding block is adjacent to the right side of the 
previous coding block and has a type of a. The current coding 
block is located at the right b of the last coding block, and the 
current coding block is located at the lower right corner of the 
previous coding block as c. The coding block is located at the 
lower right corner of the last coding block, d. According to the 
following analysis, when the current coding block is 
immediately adjacent to the right side of the previous coding 
block, the time for updating the reference block is increased by 
46.6%; when the current coding block is located on the right 
side of the previous coding block and the current coding block 
is immediately adjacent to the right of the previous coding 
block At the bottom, the update speed of the reference block is 
increased by 39.9%; when the current code block is located at 
the lower right of the previous block, the reference block 
update speed is increased by 33.4%. as shown in Table 2. 

Table2 Comparison of Reference Block Update Time (Unit: Clock Period) 

Parallel 

scheme 

Traditional 

reference block 

update time 

Reference block update 

time after data 

multiplexing 

Increase the 

percentage 

of time 

a 

3059 

1632 46.6% 

b 1836 39.9% 

c 1836 39.9% 

d 2040 33.4% 

average 3059 1836 39.9% 

Compared with the ASIC implementation introduction of the 
parallel implementation of the HEVC motion compensation 
algorithm based on the reconfigurable video array processor in 
table 3. Literature [5] designed a parallel architecture of the 
interpolator, but its frequency is lower than this paper, and the 
resource occupancy is higher than this paper. The parallel 
structure proposed in [6] can also handle variable block size by 
extending the hardware architecture, but its parallelism can 
only reach half of the paper. [6] Although the hardware 
resources are smaller than the design in this paper, the working 
frequency and parallelism are smaller than this paper. The 

highly parallel pipeline design proposed in [11] can process 32 
pixels simultaneously. The parallel structure proposed in this 
paper is equivalent to the resource consumption of 32 PE 
arrays. However the parallelism is slightly higher than it. 

Table3 Comparison with other ASIC architectures 
Compare 

items 
Technology Frequency Resources parallelism 

[5] 0.13um 200(MHZ) 148.653(gate) / 

[6] 180nm 185(MHz) 41.97k(gate) 8 

[11] 40nm 342(MHz) 297.3k(gate) 32 

This work 90nm 357(MHz) 137.425k(gate) 16 

Table 4 shows a comparison with the FPGA 
implementation. Although the resource occupancy in [5] is 
lower than this paper, its frequency is much lower than this 
paper. [7] is an FPGA implementation of interpolation 
filters, so their hardware area is slightly smaller than the 
design of this article. However, it only works with 8×8 
coded blocks and has poor flexibility. In [13], the hardware 
frequency is slightly lower, and the hardware resources are 
more than four times that in this paper. The hardware 
structure of this article is highly scalable. 16 PE-level array 
structures can achieve 16 degrees of parallelism, and 32 PE 
array structures can achieve 32 degrees of parallelism. 

Table4 Comparison with other FPGA architectures 
Compare 

items 

Technology Frequency Resources(LUT) parallelism 

[5] Arria Ⅱ GX 100(MHz) 19.106 / 

[7] Arria Ⅱ GX 200(MHz) 28.757k 64 

[13] Zynq 7045 150(MHz) 126 k / 

This work Virtex-6 156(MHz) 31.2k 16 

VI. CONCLUSIONS 

Based on the reconfigurable video array processor 
architecture, a new high-parallelism reconfigurable scheme of 
the HEVC variable block motion compensation algorithm is 
proposed. Firstly, the parallelization of the motion 
compensation algorithm is implemented according to the data 
correlation, and the reference block data is updated by the data 
multiplexing idea. Secondly, the size of the video array 
processor can be dynamically adjusted according to different 
coding block sizes, and reconfigurable implementations of 
different block sizes can be implemented. This design allows 
for flexible block size switching and maximizes the use of 
reconfigurable array processors. The experimental results show 
that for the implementation of the motion compensation 
algorithm, the structure can increase the average speed of the 
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reference block update by 39.9%. For the block mode 
switching of the motion compensation algorithm and the 
dynamic adjustment of the processor scale, the structure can be 
correctly scheduled and can be improved Parallelism. The 
most outstanding advantage of this structure is that the 
reconfigurable structure has better flexibility to facilitate 
different needs and is more suitable for market applications. 
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