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Abstract—Noise pollution is one of the serious issues for
citizens. Mapping urban noise is essential to improve the quality
of life for residents and construction for smart cities. Yet, most
cities lack effective classification or tagging methods to monitor
urban noise. To tackle this challenge, we propose a multi-feature
fusion based method for urban sound tagging (UST). This method
combines various features and Convolutional Neural Networks
(CNNs) to predict whether noise of pollution is present in a 10-
second recording. Log-Mel, harmonic, short-time Fourier trans-
form (STFT) and Mel Frequency Cepstral Coefficents (MFCC)
spectrograms are fed into different CNN architectures. And
a fusion method is applied to make the final outputs. The
proposed method is evaluated on the DCASE2019 task5 dataset
and achieves a macro-AUPRC score of 0.68, outperforming the
baseline system of 0.54.

Index Terms—Noise pollution, Urban Sound Tagging, Multi-
feature, Model fusion

I. INTRODUCTION

It has been proved that noise pollution have effects on
human life, economy and society. On the one hand, the
exposure under noise can cause sleep disruption, heart disease
and hearing loss, even learning and cognitive impairment in
children [1]. On the other hand, although harmful levels of
noise predominantly affect low-income and unemployed resi-
dents, these residents are the least likely to take the initiative
of filing a complaint to the city officials. For reasons of
comfort, public health and improving fairness, accountability,
and transparency in public policies against noise pollution,
to control and learn the distribution of noise is essential for
government [2]. IEEE Audio and Acoustic Signal Processing
(AASP) Challenge on Detection and Classification of Acoustic
Scenes and Events (DCASE) [3] is a series of challenges
aimed on supporting the development of computational scene
and event analysis methods. DCASE2019 task5 is a challenge
evaluates systems for tagging short audio recordings with
urban sound tags related to urban noise pollution. Meanwhile
some of the most successful techniques in the challenge could
inspire the development of an embedded solution for low-
cost and scalable monitoring, analysis, and mitigation of urban
noise.

Previous work on environmental sound classification relies
on hand-craft features [4] and single feature type [5], and clas-
sifiers are usually based on Gaussian Mixtures Models (GMM)
and Hidden Markov Models (HMM) [6] and deep CNN [7].
CNNs have been widely used in computer vision and have
achieved state-of-the-art performance in several tasks such as

image classification [8]. The filters can capture local patterns
of the input feature maps, such as edges in lower layers and
profiles of objects in higher layers. In sound detection and
classification, the CNNs are successfully applied and achieve
great results such as bird sound detection [9], acoustic scene
classification [10] and domestic activities [11], [12]. CRNN
has been proved to be state-of-art method of sound event
detection [13], CapsNet [14] also achieve best results in sound
event detection [15]. Inception-v3 [16] is applied in bird sound
detection and improve detection performance [17]. Log-Mel
spectrogram is a common feature and widely used in DCASE
[18], [13].

In our system, firstly, log-Mel, harmonic, STFT, MFCC
spectrograms are extracted as features. Then we experiment
different features on VGG-like networks and analysis the in-
fluence between 8 coarse classes. After that, a gated activation
[19] is further applied for sound event detection. Finally, we
evaluate on evaluation data and fuse the results referred to the
results of evaluation metrics between different classes.

This paper is organized as follows: the proposed method
for UST will be introduced in Section II. Section III gives
evaluation details such as datasets, evaluation metrics and
settings. In Section IV, the evaluation results and discussion
are shown and a conclusion is made in Section V.

II. METHOD

In this section, we illustrate the multi-feature fusion based
method. The diagram of the proposed method is shown in Fig.
1.

A. Features

All recordings are resampled to target sample rate and
converted to time-frequency spectrograms with STFT. This can
be expressed as

STFT(t, ω) =

∫ +∞

−∞
s(τ)g(τ − t)e−jωτdτ (1)

where g(τ) is the window function, s(τ) is time-domain
signal, t denotes the time index to obtain time localization
by taking Fourier transform and ω is angular frequency.

Mel spectrum of each frame is computed by applying Mel
filters, which is given by

MelSpec(m) =

fMel(m+1)∑
k=fMel(m−1)

Hm(k) ∗ |X(k)|2 (2)
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Fig. 1. The diagram of the proposed multi-feature fusion based method for Urban Sound Tagging

where |X(k)|2 is the kth power spectrum, Hm(k) is the
mth Mel filter. The mapping from linear frequency to Mel
frequency is shown in Eq. 3.

fMel = 2595 · lg
(
1 +

f

700

)
(3)

Finally, log-Mel spectrum is calculated by applying logarithm.
To generate MFCC, discrete cosine transform (DCT) is

applied and the expression can be defined as follows

cMFCC(i) =
M∑
m=1

(lgMelSpec(m))

cos

[
(m− 0.5)

iπ

M

] (4)

where M is the number of Mel filter, cMFCC(i) is the ith

MFCC coefficient.
The harmonic percussive source separation (HPSS) [20] can

split a signal w(t) into harmonic part h(t) and percussive
part p(t) and there are several approaches to separate. We
can simplify the separation procedure as follows [21]

w(t)
HPSS(l)−→ h(t), p(t) (5)

B. Network

To investigate different CNN architectures on the UST,
VGG-like, CRNN, Inception-v3 and CapsNet are experi-
mented based on log-Mel spectrogram with 64 Mel bands.

In VGG, the bigger convolutional kernels are replaced by
smaller ones (3 ∗ 3) and they are stacked to increase the
depth of CNN [8]. CRNN can take the advantages of CNN

and RNN by stacking them. Inception-v3 factorizes bigger
convolutions kernel into smaller ones and optimizes Inception
module. CapsNet can catch space relationship by applying
capsule and routing.

Several VGG-like networks are presented as main networks.
The CNN5 and CNN9 architectures are similar to [22], it
contains 4 convolitional layers or blocks and 1 dense layer, BN
represents batch normalization , ReLu means leaky-ReLu acti-
vation. CRNN3 contains 3 convolutional layers and 2 recurrent
layers, in CRNN9, 4 convolutional blocks are applied. Here we
presented a new type of activation function named ”gated”, it
is a deformation of the non-linear activation presented in [19]
and can be expressed as

Z1 = ReLu(Y) (6)

Z2 = Sigmoid(Y) (7)

Z = Z1⊗ Z2 (8)

where Y is the output feature map, Sigmoid is the activation
function, then we multiply Z1 and Z2 to get the output of the
gated activation Z.

Both log-Mel and MFCC features are fed into CNN9, but
STFT and harmonic spectrograms are fed into CNN5 because
of the larger input parameters. The details of these network
architectures are described in Table I.

C. Fusion

We use voting strategy as our fusion method. This strategy
can be described as:

F (n, c) =
∑

Fm (n, c) ∗ I (n, c) (9)
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TABLE I
FEATURE AND NETWORK ARCHITECTURE

CNN5 CNN9 CNN9 gated
features STFT HPSS h log-Mel MFCC

Conv1 3*3@64,BN,ReLu (3*3@64,BN,ReLu)*2 (3*3@64,BN,Gated)*2
Pool1 2*2 average pooling
Conv2 3*3@128,BN,ReLu (3*3@128,BN,ReLu)*2 (3*3@128,BN,Gated)*2
Pool2 2*2 average pooling
Conv3 3*3@256,BN,ReLu (3*3@256,BN,ReLu)*2 (3*3@256,BN,Gated)*2
Pool3 2*2 average pooling
Conv4 3*3@512,BN,ReLu (3*3@512,BN,ReLu)*2 (3*3@512,BN,Gated)*2
Pool4 1*1 average pooling
Dense 512

where Fm(n, c) is the result matrix of the mth model, I(n, c)
is a matrix that its jth column is set to 1 if the model achieve
the best macro-AUPRC score among the models of one class,
otherwise to 0, ∗ represents hadamard product.

III. EVALUATION
A. Development and evaluation datasets

We evaluate the proposed approach on the dataset of
DCASE2019 task5 challenge. The development dataset con-
tains a train split of 2351 recordings and a validate split of
443 recordings.

These recordings are from SONYC acoustic sensor network
for urban noise pollution monitoring. The train and validate
splits are disjoints and it make participants to develop com-
putational systems for multilabel classification in a supervised
manner. And validation subset can prevent overfitting during
the training. The reference labels are coarse-level and fine-
level taxonomies and each recording are listened at least three
humans independently. The evaluation dataset contains 274
recordings and may be from validate split.

B. Evaluation Metrics

The UST challenge is a task of multilabel classification.
The area under the precision-recall curve (AUPRC) is the
classification metrics to evaluate. We vary τ between 0 and
1 and compute true positives (TP), false positives (FP), and
false negatives (FN) for each coarse category. Then we can
compute micro-averaged precision

P = TP/(TP + FP) (10)

and recall
R = TP/(TP + TN) (11)

giving an equal importance to every sample. All values of τ in
the interval [0, 1] will be computed to obtain different P and
R. Finally, we can compute the area under the P-R curve. For
each coarse category, the computations can be summarized as

TP =

(
K∑
k=1

tkyk

)
+ t0

(
1−

K∏
k=1

tkyk

)
(
1−

K∏
k=0

(1− yk)

) (12)

Fig. 2. Coarse-level taxonomy of urban sound tags in the DCASE Urban
Sound Tagging task.

FP = (1− t0)

((
K∑
k=1

(1− tk) yk

)

+y0

(
K∏
k=1

(1− tk)

)(
1−

K∏
k=1

yk

)) (13)

FN =

(
K∑
k=1

tk (1− yk)

)
+ t0

(
K∏
k=1

(1− tk)

)
(

K∏
k=0

(1− yk)

) (14)

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China 

1315



where t0 and y0 respectively represent the presence of an
incomplete tag in the ground truth and prediction, and tk
and yk respectively represent the presence of fine tag k in
the ground truth and prediction. For coarse-grained and fine-
grained, micro-AUPRC and macro-AUPRC are both com-
puted. We can compute (P1, R1), (P2, R2), ..., (Pn, Rn) on
every confusion matrix and then we get macro-P and macro-R
by average them.

macro−P =
1

n

n∑
i=1

Pi (15)

macro−R =
1

n

n∑
i=1

Ri (16)

If we average the corresponding elements, TP , FP , FN will
be get firstly and then micro-P and micro-R are computed as
following

micro−P =
TP

TP + FP
(17)

micro−R =
TP

TP + FN
(18)

We mainly focus on coarse-level evaluation metrics for result
analysis and model fusion. During experiments, f1score is
also calculated as an extensional evaluation metrics, which
is described as

F1 =
2× P ×R
P +R

(19)

C. Settings

Main features are extracted with python librosa functions
and audio recordings are preprocessed as follows.

Recordings are resampled to 32000 Hz and converted to
time-frequency spectrogram with a Hanning window size of
1024 and hop length of 500 samples. Mel filters with different
bands (64, 80 and 128) are applied and frequencies lower than
50 Hz and beyond 14000 Hz are removed. MFCC of 24 n-
MFCC is calculated from log-Mel spectrogram.

Due to the limitation of GPU memory, recordings are
resampled to 16000 Hz. Then STFT spectrograms with a
Hanning window size of 1024 samples and a hop length of 664
samples, are extracted from recordings. The harmonic features
can be converted from STFT. All spectrograms are converted
to power spectrograms yielding a dynamic range of 80 dB.

Batch normalization [23] is applied to speed up and prevent
overfitting during train steps. Leaky-ReLu or gated function
are used as a non-linear activation after batch normalization
respectively. Average pooling with size of 2*2 is applied to
reduce the feature map. Then the frequency axis is averaged
out and frame axis is maxed out after the last convolutional
layer. For training, Tensorflow is implemented. Sigmoid cross
entropy is utilized as loss function and AdamOptimizer as
optimizer with a learning rate of 0.001. Training is done with
batch size of 32 and we early stop the training if the macro-
AUPRC does not improve in last 3 steps.

IV. EXPERIMENT RESULTS

A. CNN Architectures

We experiment CNN, CRNN, Inceptions-v3 and CapsNet,
the results of different network architectures with Mel spec-
trograms of 64 bands are shown in Table II.

As we can see, the best CNN architecture for UST is CNN9,
it achieve 0.06, 0.07 and 0.09 improvement on micro-AUPRC,
micro-f1score and macro-AUPRC separately compared with
baseline. CNN9 with gated function also achieves second best
result. CRNN3 is far beyond CRNN9 and approximate to the
result of Inception-v3. The worst result is CapsNet and it takes
much more time to train.

B. Features Fusion

As it is described in Table III, the best macro-AUPRC
of each coarse class is shown. Log-Mel performs well on
’machinery’, ’non-machinery’, ’alert’ and ’human-voice’. As
for ’music’, obviously, harmonic components can be helpful
for detecting music. MFCC is the most sensitive feature
about ’dog’.For the ’engine’ and ’powered-saw’ classes, these
additive noise seem to be differentiated by STFT. To fuse the
results, the corresponding columns of I(n, c) in Eq. 9 are set
to 1, for example, the column refers to ’music’ of harmonic
result matrix is set to 1, others to 0. The results of log-Mel,
harmonic, STFT and MFCC models are fused to get the final
result.

TABLE II
COARSE-LEVEL BEST PERFORMANCE

Micro-AUPRC Micro-f1score Macro-AUPRC

Baseline 0.76 0.67 0.54
CNN9 0.82 0.74 0.63

CNN9 gated 0.81 0.72 0.62
CRNN3 0.72 0.66 0.51

Inception-v3 0.72 0.69 0.50
CRNN9 0.51 0.54 0.38
CapsNet 0.54 0.34 0.35

TABLE III
BEST MACRO-AUPRC SCORE OF EACH CLASS ON VALIDATE SPLIT

Coarse class Feature Macro-AUPRC

1 engine STFT 0.85
2 machinery log-Mel 0.54

3 non-machinery log-Mel 0.62
4 powered-saw STFT 0.80

5 alert log-Mel 0.86
6 music HPSS h 0.47

7 human-voice log-Mel 0.95
8 dog MFCC 0.33

C. Discussion

By comparing the results, some conclusions can be made
as follows:

In UST challenge, some architectures are supposed to obtain
great performance, but they turn out to be worse, especially
CRNN and CapsNet. Some reasons could be selecting the
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Fig. 3. Harmonic spectrogram of an example of music from dataset

appropriate hyper parameters of these architectures, or the
hardness of training recurrent and capsule layers.

Different features should be generated for tagging different
source of urban sound. STFT spectrogram can explore en-
gine and power because it contains the original information.
Harmonic spectrogram is discovered to recognize music better,
because music contains harmonic waves apparently. Compared
with other features, MFCC can future improve dog score from
about 0.05 to 0.22. These may inspire us to classification
different sound with specific features rather than one single
type.

In our experiment, gated activation can further improve dog
macro-AUPRC from 0.22 to 0.33 in comparison with leaky-
ReLu activation in CNN9.

Final result is calculated by summarizing 4 different models,
simple voting strategy can achieve a macro-AUPRC score of
0.68 and a 0.14 improvement compared with baseline system.

V. CONCLUSION

In this paper, we proposed a multi-feature fusion based
method for the UST task. In our approach, four different fea-
tures are generated as inputs of the networks. Then, VGG-like
based CNN architectures are applied for urban sound tagging.
Finally, we fused different results of the models according
to the evaluation metrics of coarse classes. It is found that
different features can be benefit for tagging different source
of sound rather than one single type of feature. Our fusion
method can achieve a macro-AUPRC score of 0.68, which
is significantly better than DCASE task5 baseline system.
For further work, different network architectures and hyper
parameters selection will be studied, and advantages of tagging
urban sound with different features will be researched as well.
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