
Implementation of multiple routing configurations
on software-defined networks with P4

Kouji Hirata∗ and Takuji Tachibana†
∗ Faculty of Engineering Science, Kansai University, Osaka, Japan

E-mail: hirata@kansai-u.ac.jp
† Graduate School of Engineering, University of Fukui, Fukui, Japan

E-mail: takuji-t@u-fukui.ac.jp

Abstract—In order to maintain high availability of communi-
cation networks, we should recover failures immediately after
the failures occur. As one of techniques achieving such fast
failure recovery, multiple routing configurations (MRC) have
been proposed. In MRC, multiple backup routing configurations
are prepared in advance to fast repair a single link/node failure.
When a failure occurs during data transmission using a normal
routing configuration, MRC changes the routing configuration
to another routing configuration that does not use the failed
point. Thus, MRC can realize fast recovery within few tens
of milliseconds and continue the data transmission. In this
paper, we implement MRC on software-defined networks with
P4 (Programming Protocol-independent Packet Processeros). P4
is a programming language that enables us to define the behavior
of the data plane of network equipment. We examine the MRC
implementation, using Mininet.

I. INTRODUCTION

Recently, software-defined networking (SDN) has been
widely used due to its flexible characteristic. SDN makes it
possible to control networks more flexibly and efficiently [5].
The feature of SDN is the separation of the control plane,
which is responsible for a routing control function, from
the data plane, which is responsible for a packet forwarding
function. Communications between these planes are carried
out by a communication protocol such as OpenFlow [2]. As the
control plane, a centralized controller named SDN controller
is used. It translates network management policies into packet
forwarding rules, which are called flow entries, and installs
them on flow tables of network devices (i.e., data plane) such
as SDN switches. The network devices forward packets based
on their flow tables. Each flow entry is composed of match
field, action, and counter. The match field is used to identify
packet flows based on elements in packet headers such as
IP address, MAC address, and port number. For instance,
in OpenFlow 1.4, the match field can use 41 elements to
identify packet flows. We can change the granularity of flows
by adjusting the match field. The actions define how switches
process flows, e.g., forward and drop. The counter records
statistical information such as the number of arrival packets.

In conventional SDN environments, we can modify the be-
havior of the control plane but not the data plane. Specifically,
routing policies can be flexibly defined, but the corresponding
actions cannot be flexibly done. In order to resolve this
problem, a programming language for the data plane named

P4 (Programming Protocol-independent Packet Processeros)
has been proposed [3]. P4 can express how incoming packets
are processed by the data plane (i.e., SDN switches), while
it does not specify the behavior of the control plane, which
is managed by SDN controllers. Because P4 is an open-
source and permissively licensed language, it is currently
widely used. In this paper, we implement multiple routing
configurations (MRC) [4], which provide fast recovery from
a single node/link failure, on SDN environments with P4.

In order to maintain high availability of communication
networks, we should recover failures immediately after the
failures occur. MRC is one of techniques achieving such fast
failure recovery. In MRC, multiple backup routing config-
urations are prepared in advance. When a single node/link
failure occurs during data transmission using a normal routing
configuration, MRC immediately changes the routing config-
uration to another routing configuration that does not use the
failed point, and thus continue the data transmission. MRC
can realize fast recovery within few tens of milliseconds.
Furthermore, the routing control of MRC is stable at the time
of failure recovery because each node has common routing
configurations. In this paper, we examine the MRC imple-
mentation using Mininet [1], which is an emulator creating
SDN environments.

The rest of this paper is organized as follows. Section II
briefly explains MRC. In Section III, we discuss the imple-
mentation of MRC with P4. Furthermore, we examine the
behavior of the MRC implementation, using Mininet. We state
the conclusion of this paper in Section IV.

II. MULTIPLE ROUTING CONFIGURATIONS

MRC prepares K (K > 1) backup routing configurations in
advance to realize fast failure recovery. Even when a link/node
failure occurs on a normal routing configuration, MRC can
continue data transmission by using a backup routing con-
figuration that does not use the failure point. In K backup
routing configurations, each node is classified into a normal
node and an isolated node. Also, each link is classified into a
normal link, an isolated link, and a restricted link. The normal
link/node represents a link/node that can be directly used for
data transmission when a failure occurs. The isolated link/node
represents a link/node that cannot be used for data transmission
when a failure occurs. The restricted link represents a link

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China 

13978-988-14768-7-6©2019 APSIPA APSIPA ASC 2019



Fig. 1. Routing configurations.

that is used only for the first hop or the last hop of data
transmission, which takes into account the possibility that an
isolated node connecting to the restricted link is not failed.

Fig. 1 shows an example that a normal configuration and
K backup configurations generated form the normal configu-
ration. In MRC, a normal configuration and K backup routing
configurations should meed the following conditions.

1) Respective nodes and links become isolated nodes and
isolated links in at least one backup routing configura-
tions.

2) In each backup routing configuration, there exists a
connected graph consisting of all the normal nodes and
the normal links.

3) A restricted link or an isolated link are connected to an
isolated node while a normal link is not connected to an
isolated node.

4) At least one of links connecting to an isolated node are
restricted links.

5) In the case where two nodes are connected by a re-
stricted link, one is a normal node and the other is an
isolated node.

6) In the case where two nodes are connected by an isolated
link, one is an isolated node.

By using one of K backup routing configurations, MRC main-
tains high availability. Specifically, when a single node failure
occurs, MRC selects a backup routing configuration in which
the node is an isolated node. Similarly, when a single link
failure occurs, MRC selects a backup routing configuration
in which the link is an isolated link. Note that in the selected
backup routing configuration, there are cases where non-failed
links/nodes are treated as isolated links/nodes. For example,
in Fig. 1, when a single node failure occurs in the normal
configuration and backup routing configuration 1 is used, there
are no failures in two isolated nodes and seven isolated links.
These isolated nodes without failures can transmit and receive
data, using restricted links. Therefore, MRC can continue data
transmission without identification of a node failure or a link
failure.

Fig. 2 shows the procedure of MRC when a single link/node
failure occurs. When a failure occurs on a routing path during
data transmission, the previous node of failed point detects
the failure. The node selects an appropriate backup routing
configuration in which the failed point is selected as an isolated

Fig. 2. Failure recovery procedure.

Fig. 3. Procedure of packet forwarding in SDN switches.

link/node. The node then continues data transmission, using
the selected backup routing configuration. Furthermore, the
node puts the information on the selected backup routing
configuration into packets and notifies other nodes of the
information. As a result, MRC realizes fast failure recovery
only with simple route modification.

III. IMPLEMENTATION OF MULTIPLE ROUTING
CONFIGURATIONS

A. The concept of P4

P4 uses the concept of match-action pipelines. Packet
forwarding in SDN switches is done by table lookups and
corresponding actions. Fig. 3 shows the procedure of packet
forwarding in SDN switches. An incoming packet is first
handled by the parser. The parser only handles the packet
header and data in the packet is assume to be buffered. The
parser recognizes and extracts fields from header based on the
programmed parse graph.

The extracted header field is then passed to the ingress
match+action tables consisting of lookup keys (e.g., IP ad-
dresses and MAC addresses), corresponding actions (i.e.,
forward and drop), and parameters. The match+action tables

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China 

14



header ipv4_t {
bit<4> version;
bit<4> ihl;
bit<8> diffserv;
bit<16> totalLen;
...
...

}

Fig. 4. IP packet header.

state parse_ipv4 {
packet.extract(hdr.ipv4);
transition accept;

}

Fig. 5. Header extraction in the parser.

process the packet header according to the lookup keys and the
actions, which we can modify by programming. Furthermore,
it determines an egress port and a queue into which the packet
is placed. Then the packet is passed to the egress match+action
tables. We can also define the egress match+action tables.
Finally, the packet is forwarded to the output port.

B. Assumption

In this paper, we implement MRC in OpenFlow and P4 envi-
ronments, which aims at performing fast recovery that selects
a backup configuration when a single link/node failure occurs.
This paper focuses on making backup routing configurations
and confirms that we can use MRC with P4. Note that we do
not consider failure detection. We left the failure detection as
future work.

We examine the behavior of MRC under the following
assumption. We prepare a normal routing configuration and
some backup routing configurations. The use of the backup
routing configurations is determined in an offline manner.
Specifically, each node has the backup routing configurations
and set common identification number to them among nodes
(i.e., 0 for the normal routing configuration and 1 to K
for the backup routing configurations). Each sender puts an
identification number into packets in order to use the corre-
sponding routing configuration. Each node selects the routing
configuration based on the information in the packets.

In this paper, we realize MRC by selecting routing con-
figurations based on the value of the Type Of Service (TOS)
field in the packet header, assuming that each sender detects
a failure occurrence immediately after the failure occurs and
changes the value of the TOS field according to the failure
point. In the following, we particularly explain the implemen-
tation of MRC in SDN switches.

C. Implementation

We first define the IP packet header as shown in Fig. 4.
The TOS field is “bit <8> diffserv” in the header definition.
We change this value according to failures in order to use
backup routing configurations. When a packet arrives at an

table ipv4_lpm {
key = {

hdr.ipv4.dstAddr: lpm;
}
actions = {

ipv4_forward;
drop;
NoAction;

}
size = 1024;
default_action = drop();

}

Fig. 6. Match+action table.

action drop() {
mark_to_drop();

}

action ipv4_forward(macAddr_t dstAddr,
egressSpec_t port) {

standard_metadata.egress_spec =
port;

hdr.ethernet.srcAddr =
hdr.ethernet.dstAddr;

hdr.ethernet.dstAddr = dstAddr;
hdr.ipv4.ttl = hdr.ipv4.ttl - 1;

}

Fig. 7. Action definition.

SDN switch, the parser extracts the IP header of the packet,
which is described in the P4 program as shown in Fig. 5. The
extracted header is passed to the ingress match+action tables
according to the value of the TOS filed in the header.

Fig. 6 represents the definition of an ingress match+action
table described in the P4 program. The table consists of
key and corresponding actions. In this case, the key is the
destination IP address and the actions are forward and drop.
The actions are defined as shown in Fig. 7. The drop action
drops incoming packets that do not match the flow table.
On the other hand, the forward action rewrites the packet
headers such as MAC addresses and the value of TTL and
then passes the packets to the egress+match action tables.
In our implementation, we prepare some match+action tables
and select one according to the value of the TOS field.
This implementation is described as shown in Fig. 8, where
there are three match+action tables: ipv4 lpm, ipv4 lpm2, and
ipv4 lpm3. In this example, if the value of TOS field is equal
to 0, the table ipv4 lpm is selected. Also, if the value of TOS
field is equal to 1, the table ipv4 lpm2 is selected; otherwise,
the table ipv4 lpm3 is selected. Note that the tables ipv4 lpm2
and ipv4 lpm3 are defined as well as the table ipv4 lpm
shown in Fig. 6. In the implementation, we do not prepare
the egress match+action tables.

In the ingress and the egress processing, the packet is
processed based on the flow table, part of which is represented
in Fig. 9. The flow table determines which action is applied
to the packet and which egress port the packet is sent to. For

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China 

15



apply {
if (hdr.ipv4.isValid()) {

if(hdr.ipv4.diffserv == 0){
ipv4_lpm.apply();

}
else if(hdr.ipv4.diffserv == 4){

ipv4_lpm2.apply();
}
else{

ipv4_lpm3.apply();
}

}
}

Fig. 8. Table selection based on the TOS field.

{
"table": "MyIngress.ipv4_lpm",
"match": {

"hdr.ipv4.dstAddr":
["10.0.1.1", 32]

},
"action_name":

"MyIngress.ipv4_forward",
"action_params": {

"dstAddr": "00:00:00:00:01:01",
"port": 1

}
}

Fig. 9. Flow table.

each SDN switch, we install a flow table that consists of entries
for each match+action table (i.e., ipv4 lpm, ipv4 lpm2, and
ipv4 lpm3).

D. Evaluation

In order to confirm the implementation of MRC, we conduct
a practical experiment using Mininet [1]. Fig. 10 shows the
routing configurations used in this experiment. The bandwidth
of each link is equal to 1 Mbps. We prepare an normal routing
configuration (A) and two backup routing configurations (B)
and (C). In each routing configuration, three UDP flows (node
1 to node 6, node 2 to node 4, and node 3 to node 5) are
transmitted for 180 seconds by Iperf. Each sender sets the
value of TOS field according to the routing configurations.
Specifically, when we use the routing configurations (A), (B),
and (C), the value of TOS filed is set to be 0, 4, and 8,
respectively, at each sender. In this scenario, we use the backup
routing configuration (B) (resp. (C)) against a link failure
between nodes 2 and 5 (resp. nodes 2 and 3). Therefore, nodes
2 and 3 can transmit packets, using restricted links.

Table I shows the throughput of each flow obtained from
the experiment. As we can see from this table, in the routing
configuration (A), flows 2 and 3 share link 2-5. Thus, the
throughput of flows 2 and 3 is smaller than the throughput
of flow 1. Because all the flows share link 3-6 in the backup
routing configuration (B), they have similar throughput. In the
backup routing configuration (C), the throughput of flow 3

Fig. 10. Model.

TABLE I
THROUGHPUT EVALUATION.

Configuration Flow 1 Flow 2 Flow 3 Total

(A) 880 kbps 500 kbps 475 kbps 1,855 kbps
(B) 320 kbps 318 kbps 338 kbps 976 kbps
(C) 477 kbps 503 kbps 965 kbps 1,945 kbps

is the largest because flows 1 and 2 share link 2-5. These
observations indicate MRC works well in the experiment.
Furthermore, in the experiment, we confirm that these flows
correctly use the routing configurations based on the value of
the TOS field in transmitted packets.

IV. CONCLUSION

In this paper, we implemented MRC on software-defined
networks with P4. We examined the MRC implementation,
using Mininet. As future work, we will implement a failure
detection mechanism and a mechanism that rewrites the value
of TOS field according to the failure detection.

ACKNOWLEDGEMENT

This research was partially supported by SCOPE of the
Ministry of Internal Affairs and Communications, Japan, under
Grant No. 191605004.

REFERENCES

[1] Mininet: http://mininet.org/
[2] Open Networking Foundation,

https://www.opennetworking.org
[3] P. Bosshart et al., “P4: Programming Protocol-Independent Packet Pro-

cessors,” ACM SIGCOMM Computer Communication Review, vol. 44,
no. 3, pp. 88–95, 2014.

[4] A. Kvalbein, A. Hansen, T. Cicic, S. Gjessing, and O. Lysne, “Mul-
tiple routing configurations for fast IP network recovery,” IEEE/ACM
Transactions on Networking, vol. 17, no. 2, pp. 473–486, 2009.

[5] B. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, and T. Turletti,
“A survey of software-defined networking: Past, present, future of
programmable networks,” IEEE Communications Surveys & Tutorials,
vol. 16, no. 3, pp. 1617–1634, 2014.

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China 

16




