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Abstract—Spatial image and optical flow provide comple-
mentary information for video representation and classification.
Traditional methods separately encode two stream signals and
then fuse them at the end of streams. This paper presents a
new multi-stream recurrent neural network where streams are
tightly coupled at each time step. Importantly, we propose a
stochastic fusion mechanism for multiple streams of video data
based on the Gumbel samples to increase the prediction power.
A stochastic backpropagation algorithm is implemented to carry
out a multi-stream neural network with stochastic fusion based
on a joint optimization of convolutional encoder and recurrent
decoder. Experiments on UCF101 dataset illustrate the merits of
the proposed stochastic fusion in recurrent neural network in
terms of interpretation and classification performance.

I. INTRODUCTION

In recent years, deep learning has achieved a great success

in different emerging tasks and challenging domains where a

variety of information systems in computer vision and natural

language processing have been constructed. The key to this

success is because deep neural networks can capture the

complicated high-dimensional mapping between input data

and output targets. As we know, the convolutional neural

network (CNN) [1] and the recurrent neural network (RNN)

[2][3] are two representative paradigms in deep learning which

are powerful to learn different kinds of spatial and temporal

data. In general, CNN is fitted to various computer vision

tasks because the convolution layers are suitable to extract

the spatial features from an image while the max-pooling

layers make the trained model robust to noise interference and

invariant to feature shifting. CNN has been widely extending

to build numerous complex systems with state-of-the-art per-

formance. On the other hand, RNN is seen as the specialized

neural architecture with recurrent feedback which is suitable

to characterize the sequential patterns and reflect the temporal

behaviors via the cell or internal memory based on a dynamic

state over time. Apparently, video data are regarded as the

sequential signals which contain both spatial and temporal

information. Intuitively, CNN and RNN can be applied for

video representation and classification. A simple idea is to

utilize CNN to encode the images and then apply RNN to

represent the causal relations among frames.

For video classification, some papers aim to introduce

hand-crafted features into deep learning framework. The most

popular hand-crafted feature is optical flow. Optical flow [4]

can be viewed as a set of displacement vector fields between

the pairs of consecutive frames. Empirically, trying to capture

temporal information with single stream is not enough since

optical flow of images provides additional information for

video representation. Therefore, two-stream based approaches

[5] are mainstream in video classification nowadays. One

stream is original frames, which is also known as spatial

stream. The other is optical flow. Because optical flow is

about movement between consecutive frames, we can see it

as temporal stream. The experiment shows that with the help

of optical flow, the performance can be improved significantly.

A crucial issue in video classification is to design an

effective approach to encode two streams and then fuse

those streamed features to identify the corresponding classes.

Traditionally, this issue was tackled by separately encoding

two streams for final fusion of their hidden codes in the end of

video clip [5]. The mutual information of two streams at each

individual time step was totally disregarded. The classification

performance was constrained. This paper presents a stochastic

multi-stream network where CNN encoder is applied to extract

two streams of features from raw images and optical flows

and then RNN decoder with stochastic fusion at each time

frame is performed for video classification. Importantly, the

hidden states of two streams are considered at each time.

The mutual information between two streams is characterized.

With a reasonable stochastic fusion, this multi-stream attention

network can improve the classification performance when

compared with the single stream network, the separate multi-

stream network and the single combined stream networks.

Visualization of stream weights in time axis can interpret the

tradeoff between spatial images and optical flows in a video

clip. Our contribution can be summarized as follows:

1) We introduce stochastic fusion on hidden states of

LSTMs, which makes information flows mix more rea-

sonably, and gains benefits from mutual information.

2) Taking advantage of better information fusion, our

model outperforms other RNN based methods.

3) Because of stochastic fusion, the usage of multi-stream

is more interpretable and comprehensive now.

In next section, we will introduce some related works and how

others dealt with this issue recently.

II. BACKGROUND SURVEY

This paper deals with the video classification for different

actions where a sequence of frames in a video clip is observed.
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Each static raw image depicts the spatial content at each time

step. In addition to the spatial resolution manifested by a

raw image at each time step, the optical flow [4] provides

a complementary information besides visual representation.

Relative to the spatial resolution from a single image frame,

the temporal evidence based on the optical flow is calculated

from consecutive frames which are collected at each time

step. In particular, the optical flow by definition measures

the displacement vector fields between pairs of consecutive

frames. Such measurement provides instantaneous temporal

dynamics at each time instant. In practice, the displacement

vector fields can be further decomposed into horizonal and ver-

tial directions according to the Euclidean coordinates, denoted

as optical x and y respectively. Consequently, one has three
aligned and complementary streams which can be combined

to improve the accuracy for video classification. Without loss

of generality, in the following discussion we simply formulate

our solution as two-stream data, where in general our method

can be straightforwardly extend to multiple streams [6].

A. Information Fusion

A direct solution to characterize the long-term temporal

information for stream data is based on the RNN or long

short-term memory (LSTM) [7]. To use the two streams of

video data, [8] combined the stream data at the embedding

or encoding stage with CNNs and a single LSTM was then

applied for video classification. More meaningfully, two data

streams can be separately encoded by CNNs and individually

processed by two different LSTMs. The optical flow reveals

the movement of consecutive frames of temporal instants.

Given the spatial stream and optical flow, two LSTMs can be

separately run and jointly fused at the last time frame T [5],

where this separate multi-stream network would perform better

than the single spatial stream network for action recognition.

However, the information integration can also be executed

by the linear transformation and combination [9] or via the

adaptive weight fusion [10]. The fused features was treated as

a context vector for classification based on the support vector

machine [11]. Overall, the movement in a video clip is highly

correlated to the spatial scene, and thus treating the streams

independently may suffer from the loss of video content. It is

always encouraged to combine two streams early before the

final stage. This study works toward refining the video task by

synchronously fusing and exchanging different stream sources

at each time step using a recurrent machine.

B. Stream Interpretation

In fact, the fusion over different streams of features or

embeddings can be interpreted in two ways with different

perspectives. First, the fusion over steams is regarded as an

attention over time-dependent latent codes in many temporal

deep learning algorithms. The solutions to attention mech-

anism could be helpful for information fusion. In [12], the

transformer was proposed to realize the attention mechanism

[13] so as to achieve the claim that all the need for sequential

learning was attention. In [14], the attention method was

introduced to fuse the multimodal features or hidden states

over different time steps as a global view of the whole video.

Attention was applied over time while we concern about the

fusion over steams. On the other hand, a recent work, called

the Markov RNN [15], [16], was proposed to characterize

multiple states behind an observed sequence data based a

stochastic Markov process. The scheme to indicate the discrete

hidden state or identify the one-hot vector zt at each time

frame xt can be adopted as a fusion mechanism to combine

multiple streams if the sequences of stream data are observed.

This paper is motivated to carry out a fusion mechanism over

the state space based on a multi-stream RNN framework. A

streamed LSTM is implemented in an efficient way.

Optical flow

CNN encoder

Image frames

CNN encoder

RNN decoder

Fig. 1. Multi-stream encoders and decoder for classification output.

III. MULTI-STREAM FUSION NETWORK

A multi-stream fusion network is built by the CNN stream

encoder and the RNN fusion decoder with a stochastic fusion

which are jointly trained by the backpropagation algorithm.

Figure 1 shows the construction of CNN encoder and RNN

decoder for finding classification output y of a video clip with

the detailed descriptions provided below.

Spatial Image

Convolution Convolution
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Connected

Spatial Image
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Fig. 2. CNN encoders for spatial images (top) and optimal flows (bottom).
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A. CNN Stream Encoder

An input video clip with two streams of spatial images (k =

1) and optical flows (k = 2), {o(k)
1 , . . . ,o

(k)
T }2k=1 is encoded

via two separate multi-layer CNNs with parameters {θ(k)
c }2k=1,

as shown in Figure 2, to calculate two streams of features

{x(k)
1 , . . . ,x

(k)
T }2k=1, such that

x
(k)
t = CNN-encoder(o

(k)
t ). (1)

There are t time steps in a steam. The dimension of x
(k)
t

is typically smaller than that of o
(k)
t . Extracting two comple-

mentary streams of features is beneficial to achieve a desirable

performance for image recognition. Since the configuration of

CNNs for finding the embedded features {x(k)
t } at the front

end also plays a crucial role for the final performance, the

parameters {θ(k)
c }2k=1 were jointly trained with the subsequent

RNNs for the best performance.

B. RNN Fusion Decoder

For video classification, the conventional method [5] was

developed by treating the encoded features {x(k)
t } as the

observation vectors and then decoding two streams of feature

vectors by using two separate RNNs or LSTMs so as to find

the sequences of hidden codes {h(k)
1 , . . . ,h

(k)
T }2k=1 for spatial

images and optical flows. In [5], the fusion was considered

only at the last time step T by transforming the last two hidden

codes {h(k)
T }2k=1 as one, i.e., considering the concatenated

vector

hT =
[
(h

(1)
T )�(h(2)

T )�
]�

(2)

to derive the output prediction vectors

ŷT = softmax (σ(WyhT + by)) (3)

for the final class posteriors based on a fully connected

layer {Wy,by} as showed in Figure 3(a) and thus the final

classification result was obtained. We also denote this solution

as the separate multi-stream RNN, which disregarded the

dependencies between two synchronous and complementary

streams at each individual frames.

To strengthen the weakness presented in [5], we propose

two approaches to combine two encoded streams {x(1)
t } and

{x(2)
t } at each time step for video classification. The first

approach is called the single combined stream RNN with
multiple states as depicted in Figure 3(b). Using this approach,

two encoded vectors are concatenated at each time frame to

form a single augmented vector xt = [(x
(1)
t )�(x(2)

t )�]�.

To explore rich statistics in hybrid latent space for a se-

quence of augmented vectors, we allocate two latent codes

{h(1)
t ,h

(2)
t }Tt=1 associated with two discrete states zt = {z(k)t }

in a form of

ht = zt �
(
h
(1)
t ,h

(2)
t

)
=

2∑
k=1

z
(k)
t h

(k)
t , ∀t ∈ [0, T ] (4)

where z
(k)
t ∈ {0, 1} and z

(1)
t +z

(2)
t = 1 for all t ∈ [0, T ]. Now

Eq. (4) clearly indicates the stream fusion takes place over all

x
(1)
t x

(1)
t+1

h
(1)
t h

(1)
t+1

ŷ
(1)
t ŷ

(1)
t+1

x
(2)
t x

(2)
t+1

h
(2)
t h

(2)
t+1

ŷ
(2)
t ŷ

(2)
t+1

x
(1)
T

h
(1)
T

ŷ
(1)
T

x
(2)
T

h
(2)
T

ŷ
(2)
T

...

...

ŷT

Fully connection 
neural network

(a) separate multi-stream RNN
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(b) single combined stream RNN with multiple states
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(c) multi-stream RNN with stochastic fusion

Fig. 3. Architectures for different RNN decoders.

temporal moments. It is obvious that Eq. (2) of [5] is only a

special case of Eq. (4) where previous stream selections zt ≡ 0
with t < T are not considered. In addition, it is also novelty to

introduce a stochastic indicator zt, where the details shall be

provided later in Eq. (6). In the end, the fused hidden state hT

is computed to provide classification prediction by ŷT which

represents the final class posteriors of a fully connected layer.

After obtaining the prediction vector ŷT with the softmax

activation, the cross entropy error function between posterior

output ŷT and true label yT over all video clips is minimized

for model training. This method is comparable of running

the Markov RNN [15] with Markov transition between two

Markov states {h(1)
t ,h

(2)
t } at each time t using zt.

The second proposed approach, called a multi-stream RNN
with stochastic fusion illustrated in Figure 3(c), allows two

separate encoded streams {x(k)
t }2k=1 to be decoded by two

separate hidden codes {h(k)
t }2k=1 respectively via RNNs such

that

h
(k)
t = σ

(
W

(k)
h x

(k)
t +U

(k)
h h

(k)
t−1 + b

(k)
h

)
. (5)

Similarly, the posterior output of this approach ŷT is then

calculated at the final frame T . Importantly, a stochastic

indicator variable zt is drawn to attend or fuse the hidden
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codes from multiple streams based on Eq. 4 . The fusion is

automatically aggregated at each time t by selecting the feature

vector either from spatial image x
(1)
t or optical flow x

(2)
t .

Such a selection can also be regarded as a kind of masking.

The classification output depends on the class posterior ŷT

calculated by integrating the features of spatial images and

optimal flows at different frames. The fusion mechanism using

zt aims to integrate different streams and select one stream at

each individual time t. The sequence {zt}Tt=1 is drawn based

on a stochastic optimization.
Finally, we remark that the key difference between the first

and second approach is that in the former two hidden states

{h(1)
t ,h

(2)
t } were derived by exactly the same input informa-

tion xt = [(x
(1)
t )�(x(2)

t )�]� of two streams combined, while

in the latter two hidden codes h
(1)
t and h

(2)
t were fed with

different encoded streams x(1)
t and x

(2)
t , respectively. Thus the

first approach forces the two hidden states see the same thing,

but require them to interpret differently out of the same input.

The second approach has two hidden states to see different

things with different contents and variations.

C. Stochastic Fusion and Optimization
This study presents a stochastic fusion and optimization

method where the joint log likelihood of training clips is

maximized. In stochastic optimization, the random fusion

variable zt is characterized by a categorical distribution.

Given the data collection consisting of video clips o1:T =
{ot}Tt=1 and true classes yT , the parameters of CNN stream

encoder θc = {θ(k)
c } and RNN fusion decoder θr =

{W(k)
h ,U

(k)
h ,b

(k)
h ,Wy,by,Ws} are estimated by maximiz-

ing the expectation of conditional log likelihood

Epφ(z1:T |o1:T )[log pθ(yT |o1:T , z1:T )] +

T∑
t=1

H[pφ(zt|zt−1,ot)]

(6)

or equivalently minimizing the expectation of cross entropy

error function, where θ = {θc,θr}. In Eq. (6), the entropy

function, denoted by H, of transition probability is imposed as

a regularization term in the maximization process to encourage

the exploration in learning process. The expectation with re-

spect to the stochastic fusion mask zt is optimized. Following

[17], [18], [15], the Gumbel-softmax is introduced to tackle the

non-differentiable expectation function in inference procedure

due to the sampling of discrete variable zt. The Gumbel-

max trick with relaxation is employed to approximate the

categorical distribution for discrete vector p(zt) based on the

reparameterization

zt = onehot
(
argmax

i
{(log πtk + gtk)/τ}

)
(7)

where πtk � p(z
(k)
t = 1), {gtk}2k=1 are i.i.d Gumbel samples

gtk ∼ Gumbel(0, 1) with zero-mean and unit-variance, and τ
is the temperature for relaxation. We have pφ(zt|zt−1,ot) ∼
Categorical(πt) where a logit encoder is applied to encode the

categorical parameter

log(πtk) = (v(k))�σ(W[ht−1 xt] + b). (8)

A stochastic backpropagation is fulfilled by jointly estimating

CNN encoder θc, RNN decoder θr and combiner φ =
{v(k),W,b} by maximizing a differentiable objective via the

Monte Carlo method [19], [20], [21].

IV. EXPERIMENTS

A. Experimental Setup

UCF101 is a popular dataset for evaluation of human

action recognition, which consisted of 13,320 video clips

with diverse forms of camera motion and illustration from

101 action classes [10]. Each video clip has a frame rate of

25 (frames per second) with various lengths. The resolution

of 320 × 240 pixels was recorded. For simplicity, we only

used the first 28 frames of each video as the inputs, which

is the least consensus of all videos. The CNN encoder is

built up by a pretrained ResNet [22] from ImageNet with

final layer retrained for the encoding purpose and fixed across

all stream decoders. LSTMs [3] were used for multi-stream

RNN decoder. Neural network parameters {θc,θr,φ} were

jointly trained with Adam optimizer [23]. We compared three

methods consisting of the separate multi-stream RNN, the

single combined stream RNN with multiple states, and the

multi-stream RNN with stochastic fusion.

Fig. 4. Test accuracy versus learning epoch by using different methods.

B. Experimental Results

Figure 4 shows the comparison of learning curves in terms

of test accuracy for the first 20 epochs. The single combined

stream RNN and multi-stream RNN converge much better

than the separate multi-stream RNN. Table I shows the clas-

sification performance and the number of parameters used in

different methods. Essentially, the training batch size was fixed

at 40 and initial learning rate was set at 10−3. The multi-

stream fusion RNN performs better than single stream RNN

and separate multi-stream RNN. Although the multi-stream

RNN achieves comparable accuracy with single combined

stream RNN, the size of parameters using multi-stream RNN

has been greatly reduced. The overhead of the number of

parameters is moderate by using the proposed multi-stream
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RNN with stochastic fusion relative to the baseline system

based on separate multi-stream RNN.

# of params accuracy
single stream RNN 0.9M 74.1%

separate multi-stream RNN 1.9M 78.2%
single combined stream RNN 5.5M 85.5%

multi-stream RNN & stochastic fusion 2.4M 85.7%

TABLE I
PARAMETER SIZE AND CLASSIFICATION ACCURACY BY USING DIFFERENT

METHODS.

Table II shows the percentages of samples in different

streams after the training procedure of multi-stream RNN has

converged. Stochastic attention over time steps is displayed

to manifest the focus of certain stream at different frames.

We also had some interesting observations in certain actions.

For example, Figure 5 and 6 illustrate several examples of

video clips and the corresponding categorical distributions,

pφ(zt|zt−1,ot). In bench press or soccer juggling, since the

barbell and soccer move up and down more frequently, the

sampled categorical probability of optical flow in the y-axis

is higher than that in other actions. We also observed similar

case in jumping-related action such as jumping jack or jumping
rope. On the other hand, on gymnastics such as parallel bars
and still rings, the sampled categorical probabilities of optical

flow x and y are comparable. As we can see, our fusion model

combining multiple streams is capable of understanding the

utility and meaning of different streams.

stream spatial optical x optical y
percentage 71% 9% 20%

TABLE II
PERCENTAGES OF SAMPLES IN DIFFERENT STEAMS AMONG ALL

TRAINING VIDEO CLIPS.

V. CONCLUSIONS

In this work, we have presented a new framework on multi-

stream RNN for video classification. We explored the stochas-

tic fusion mechanism on the hidden states of multi-stream

data such that it provided a meaningful and interpretable

way for fusing information. We showed the effectiveness of

the proposed model on UCF101 dataset in terms of stream

visualization, stream occupation, learning curve and classifi-

cation accuracy. By taking the advantage of complementary

information, our method outperformed the previous works

with limited size of parameters. We also found interesting

interpretation about how streams were utilized by peeking

into the fusion weights. We deem this as a valuable direction

to visualize how the information from different sources is

integrated by the fusion mechanism. This method will be

generalized for other type of technical data.
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