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Abstract—This paper deals with an indoor positioning with
the aid of machine learning based on the received signal strength
indication (RSSI) fingerprints of beacon signals of both Wi-Fi and
Bluetooth low energy (BLE). In fingerprint positioning, a site-
survey is conducted in advance to build the radio map which
can be used to match radio signatures with specific locations.
Thus, it can take the impacts of empirical indoor environments
into consideration. However, even if the physical positional rela-
tionship in the indoor environment is static, the observed RSSI
values are dynamically fluctuated according to the probabilistic
wireless channels. Unfortunately, it is difficult to analytically
capture the stochastic behavior of RSSI in real-environments, and
the accuracy of position estimation is degraded due to the model
errors. To tackle this challenging problem, machine learning-
based logistic regression is applied to fingerprint positioning
with the RSSI data set (available as big data). Additionally, by
exploiting a unified fingerprint generated from both Wi-Fi and
BLE beacon signals, further performance improvement in the
estimation accuracy is possible, owing to the transmit diversity
effects. The experimental results show the validity of the proposed
positioning scheme with the unified Wi-Fi and BLE fingerprint.

I. INTRODUCTION

In recent years, mobile high-functional terminals, such as
smartphones and tablets, are in widespread use, and geoloca-
tion information services are essential for daily life using the
mobile terminals. For providing such services to outdoor ter-
minals, global navigation satellite system (GNSS) plays a vital
role. However, GNSS cannot show good results when detectors
are located in indoor environments, since GNSS requests non-
line-of-sight (NLOS) to artificial satellites [1]. In addition to
geolocation services on outdoor like map applications, there
is also demand on indoor use, for example, advertisement
display at the shop front, navigation inside a building, presence
confirmation in office, as well as medical and healthcare. Thus,
developments of indoor positioning system instead of GNSS
is urgent.

To this end, Wi-Fi received signal strength indicator (RSSI)-
aided positioning has been actively explored so far [2]–[6]. The
indoor positioning of Wi-Fi can be roughly classified into two
types: triangular positioning [7] and fingerprint positioning [8].
Unfortunately, the RSSI is not stable due to shadowing and
fading phenomena, which induce stochastic problems for the
indoor positioning. On the other hand, Bluetooth low energy
(BLE), which is often installed in the smartphone, is also
useful for positioning. BLE is designed for transmitting small-
volume sensing data and text data without sacrificing energy

consumption and is expected as a central role for supporting
wireless access of IoT (Internet of Things). Thanks to the
feature of low power consumption, the mobile terminals shall
simultaneously transmit beacon signals of Wi-Fi and BLE for
improving the accuracy of the position estimation with the aid
of transmit diversity effects.

In this paper, we consider unified fingerprints constituted by
both Wi-Fi and BLE beacon signals. Mobile terminals send
the beacons to large numbers of receivers settled under the
ceiling of a room. Note that the beacons are not radiated from
anchor nodes in the room, but done from the mobile terminals.
In BLE systems, the receiver suffers from interference in
2.4 GHz industry science medical (ISM) band and noise
due to low transmit power signals [9]. In order to avoid
the interference, three advertising channels (2402, 2426, and
2480 MHz) are allocated in Wi-Fi channel gaps. By using the
advertising channels, the negative impacts of the interference
are mitigated. For suppressing the impact of noise, multiple
RSSI signals are observed in the receiver. On the other hand,
the transmission power of Wi-Fi is much higher than that of
BLE, resulting in more accurate RSSI measurement. However,
authentication is required before communicating with access
point (AP). Without the authentication, service set ID (SSID)
beacon signal is available, but the time interval is much longer
than that of BLE. Consequently, the estimation accuracy based
only on the Wi-Fi beacons is significantly degraded due to lack
of the obtained RSSI samples.

The fingerprint approach has two phases: training phase
(offline) and testing phase (online). In the training phase, RSSI
vectors are captured as training data before the testing phase.
In the typical testing phase, maximum likelihood estimation
(MLE) is performed by comparing an observed RSSI vector
and the fingerprint training data. Unlike triangular positioning
on the basis of an optimistic propagation model, the fingerprint
positioning can take into account empirical indoor environ-
ments. The validity of the fingerprint positioning has been
reported in some literature [9]–[13]. They are based on the
assumption that the position of the receiver and the beacon
transmitter are static. However, even if the location relationship
is static, the measured RSSI fluctuates stochastically in indoor
wireless channels. Under such circumstance, the testing data
differs slightly from training data, resulting in performance
degradation in position estimation.

To deal with the above insufficient fingerprint problem, ma-
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Fig. 1. A structure of the indoor positioning system.

chine learning techniques are applied to the unified fingerprint
positioning. Main contributions of this paper are to demon-
strate the validity of the unified fingerprint by substantiative
experiments with the aid of commercially available Wi-Fi and
BLE dongles.

The remainder of this paper is organized as follows. Sect. II
presents an indoor positioning model using RSSI, and state a
problem to be addressed. In the context of the problem state-
ment, multi-layer perceptron as a machine learning approach
is explained in Sect. III. Sect. IV characterizes the validity
of the proposed method on the basis of experimental results.
Finally, Sect. V concludes the paper with a brief summary.

II. INDOOR LOCALIZATION USING RSSI

A. Indoor RSSI measurement

Fig. 1 shows a structure of the indoor wireless environments.
A transmitter (TX) on the floor sends beacon signals of both
Wi-Fi and BLE to the N receivers (RX) mounted under the
ceiling board. BLE assigns 37 ch, 38 ch, and 39 ch for
advertising events to send beacon signals. This paper utilizes
only 37 ch beacon signal for stabilizing frequency selective
fading behavior. On the other hand, Wi-Fi exploits 1 ch of
IEEE 802.11g. The floor is segmented into L square cells,
where the l-th cell is denoted by xl. For ease of the analysis,
we assume that the TX is placed at the center of each cell xl.
Time intervals of beacon transmission of Wi-Fi and BLE are
denoted by TW and TB [sec], respectively.

Each RX yields the RSSI vector y =
[yT

W,y
T
B ]

T at intervals of TR [sec], where yi =
[yW (1), yW (2), . . . , yW (N), yB(1), yB(2), . . . , yB(N)]T

resulting in 2N elements in y . Note that (·)T indicates the
transpose of the vector. yi(n)(i ∈W,B) is an averaged value
over raw RSSI obtained from the n-th RX during TR. Each
RX notifies yi(n)(i ∈ W,B) to a fusion center by using
Wi-Fi network for forming the RSSI vector y.

B. Fingerprint Positioning

In the training phase, the fusion center monitors RSSI vector
y while transmitting beacon from each cell xl. The training
vector tl is constructed by averaging the observed RSSI vector

in the time domain, where the average interval should be set
to longer than the transmission interval.

In the testing phase, as a typical approach, MLE finds
the most likely position xl of TX on the basis of Euclidean
distance, which is given by

x̂l = argmax
xl

|y − tl|. (1)

In the typical fingerprint positioning described above, the
accuracy can be higher than triangular positioning because
it is experimentally measuring RSSI. This method assumes
that RSSI is uniquely determined between arbitrary TX and
RX. However, the actual RSSI stochastically fluctuates even
if TX does not move. Under such circumstance, the testing
data slightly differs from training data even though the posi-
tions of TX and RX are the same, resulting in performance
degradation. To deal with this problem, neural-network aided
positioning is applied in the next section.

III. MULTI-LAYER PERCEPTION-AIDED
POSITIONING

A. Multi-class classification model

The simplest neural network model in machine learning
based on logistic regression is simple perceptron, which can
classify the test data into two classes. As an activation func-
tion, a step function is utilized. On the other hand, for indoor
positioning, it is necessary to classify the data into more
classes. Such a multiple class classification becomes possible
by replacing the step function with a softmax function for
yielding quasi-probability, something like belief.

For the input of the K-dimensional vector z =
[z1, . . . , zk, . . . , zK ]T the softmax function is expressed as

f(z) =
ez∑K

k=1 e
zk
. (2)

Using (2), multi-class classification for the unified finger-
print positioning is performed by

x̃ = f(Wy + b), (3)
where W represents a matrix of size L×2N , and the element
in the l-th row and k-th column is weight of RSSI observed
at input #k at candidate xl. The column vector b of size L
is a bias. This model is referred to as multinomial logistic
regression. Here, the appropriate weight matrix W and bias
vector b are computed (learned) from training data tl in
advance to construct the resultant neural network. Finally, the
index l corresponding to the highest value (quasi-probability)
in x̃ indicates the most likely position xl.

B. Multi-layer perceptron

In principle, positioning is a nonlinear regression problem.
Therefore, multi-layer perceptron (MLP) should be utilized
as the neural network for the multi-class classification, which
consists of input, hidden, and output layers. Here, the output
of the hidden layer is expressed as

h = g(Uy + c). (4)
where g(z) is an activation function for the hidden layer. U is
a J×2N weight matrix and c is a J×1 bias vector, where J
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is the number of neurons in the hidden layer. Eextensionally,
multiple (4) is serially concatenated to create 3 hidden layers
in this paper.

With the aid of the intermediate output h, the output of the
output layer is given by

x̃ = f(V h+ d) (5)
where weight V is a L × J weight matrix and d is a L × 1
bias vector.

In MLP, the vanishing gradient problem [14] is a difficult
found in gradient-based learning process, resulting in the insuf-
ficient model updates. To deal with the problem, we utilize the
rectified linear unit (ReLU) function as the activation function
in the input and hidden layer. ReLU function is also referred
to as the ramp function, and is expressed by

g(zk) = max(0, zk). (6)
Differentiating (6), we have

dg(zk)

dzk
=

{
1 (zk > 0)

0 (zk ≤ 0)
. (7)

From (7), ReLU function has no curve part and the derivative
returns 1 regardless of the value of z when z is non-negative.
By using this activation function during the learning, it is
possible to prevent the vanishing gradient problem and realize
fast model updates [14].

C. Mini-batch gradient decent

One of the most severe issues in the context of training
neural networks using gradient descent method is the time
cost for the learning process toward model convergence. As
the number of data D increases, the required memory and
computational cost for model updates rapidly increase. To
avoid the inconvenience, stochastic gradient descent (SGD)
is effective [15]. While the typical gradient descent method
updates the model parameters after taking the sum of all data,
SGD chooses data at random in a set of D data and updates the
parameters every instance. Consequently, the model parame-
ters can be updated D times at the same computational cost
required for updating the whole parameters once. However, if
the parameters are updated after processing every instance,
the model update would be too noisy and the process is
no longer computationally efficient. As an effective solution
taking into account the trade-off between fast model update
and memory efficiency, we utilize mini-batch gradient descent
method, where the data is divided into d(≤ D) chunks [16].

D. Dropout

Another challenging problem in MLP learning is over-
fitting. To avoid over-fitting, an ensemble of neural networks
with different models is effective, however, it requires the
additional computational cost for training [17]. As a com-
putationally cheap and effective alternative method, dropout
is well known, where the neurons in the neural network are
probabilistically dropped out during training. Consequently,
we can simulate having a large number of different network
architectures using a single model without any additional cost.

Fig. 2. A structure of the indoor positioning system.

TABLE I
EXPERIMENTAL PARAMETERS.

Number of cells L 18

Number of receivers 8

cell size 1 × 1 [m2]

Wi-Fi Beacon interval TW 3 [sec]

BLE Beacon interval TB 0.3 [sec]

Training phase 24 [hour]

Testing phase 4 [hour]

Number of hidden layers 3

IV. EXPERIMENTAL RESULTS

To confirm the validity of the proposed unified fingerprint
positioning, experiments have been conducted in the actual
environments. The cell structure is shown in Fig. 2. There
are 18 cells with a size of 1 ×1 m2 on the floor. Besides,
experimental parameters are summarized in Tab. I. BLE
beacon transmitter (BLE adapter: BSBT4D09BK) and Wi-Fi
beacon transmitter (Buffalo Wi-Fi adapter: WLI-UC-GNM2)
are mounted on LEGO Mindstorms EV3. EV3 linearly walks
at a speed of 10 [cm/sec] until reaching the edge of the area,
and when EV3 reaches the edge, it randomly turns in some
other direction. The Wi-Fi and BLE beacon intervals TW and
TB are 3 [sec] and 0.3 [sec], respectively. Note that Wi-Fi
beacon cannot send frequently and the receivers sometimes
fail to receive Wi-Fi beacon signal. There are eight receivers
under the ceiling board. Wi-Fi beacon receiver (Buffalo Wi-Fi
adapter: WLI-UC-GNM2) and BLE beacon receiver (Buffalo
BLE adapter: BSBT4D09BK) are mounted on Raspberry Pi
3. In the training phase, EV3 walks in 24 [hour], resulting in
38,000 RSSI observation samples for training data. The camera
equipped on the each Raspberry Pi 3 is utilized for capturing
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Fig. 3. Probability of PB, PW, and PU [%] according to Size of Batch.

Fig. 4. Probability of PB, PW, and PU [%] according to Dropout Rate.

the correct positions for training data. In the testing phase,
EV3 walks in 4 [hour], resulting in 6,500 RSSI observation
samples for testing data.

Figs. 3, 4, and 5 show the results of the correct detection
probability Pi, i ∈ {B,W,U}. PB is the probability of BLE,
PW is Wi-Fi, and PU is the probability of unified Wi-Fi and
BLE. Each probability is defined by

Pi =
Num. of correctly detected samples

Num. of all samples
. (8)

Note that Pi = 1/18 = 5.6% is the worst case. The default
parameters for MLP are as follows:

• Learning rate: η = 0.0008
• Num. of nodes of input and hidden layer: J = 550
• Learning weight in input layer: 0.06
• Learning weight in the first hidden layer: 0.006
• Learning weight in the second hidden layer: 0.00009
• Learning weight in the third hidden layer: 12

The above parameters are tuned to achieve better performance
through several positioning trials.

Fig. 3 shows the detection probability when the batch size

Fig. 5. Probability of sampling interval of PB, PW, and PU [%].

Fig. 6. Probability of detection PU [%] of unified fingerprint positioning in
each cell x1 − x18.

is changed from 10 to 60. The dropout rate is fixed at 50%.
In this case, the optimal size of batch is 20. Fig. 4 shows the
correct detection probability when the dropout rate is changed.
The batch size is fixed at 20. PW is not accurate in any
case. PB shows the best accuracy with a value of around 0.7.
However, it cannot exceed the best result of PU. Fig. 5 shows
the probability of each sampling interval. In this data, the batch
size is set to 20 and the dropout rate is 50%. For both PB and
PU, the estimation accuracy achieves the best performance
when the sampling interval is around 13 seconds. We can
also confirm that the accuracy is very low even if sampling
interval is longer or shorter. Unfortunately, PW is always bad
regardless of sampling interval.

Low detection accuracy of Wi-Fi-based estimation is caused
by the fact that Wi-Fi beacon signals cannot be obtained at
the receivers in a shorter transmission interval compared to
BLE beacons. As mentioned before, the authentication is not
conducted in this experiment. Thus, any data link from the
Wi-Fi AP is not connected to each receiver. Therefore, the
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receivers have to scan Wi-Fi beacons repeatedly for searching
the AP, and it takes a lot of time. The difference in the
transmission interval of BLE and Wi-Fi causes deviation in
observation data and affects the estimation accuracy.

As can be seen from the table results, PU shows better
results than PB or PW. Figs. 3, 4, and 5 explicitly demonstrate
the unification of BLE and Wi-Fi is effective.

In Fig. 6, the detection probability PU of unified fingerprint
positioning in each cell xl is characterized. As you can see
from this figure, the estimation accuracy tends to be lower
at the arbitrary candidate point in the middle of the room
because the feature extraction is difficult in the fingerprint-
based learning. Consequently, the detection errors to adjacent
candidate points frequently occur. Similarly, the candidate
points at the corner, for example x1, x6, x13, and x18,
have similar characteristics. However, the probability of x6
is extremely bad among them. As you can see from Fig. 2, x6
is close to furniture. There is a possibility that the disturbance
of the radio wave by the furniture is affecting.

V. CONCLUSION

In this paper, we proposed an indoor positioning with the aid
of machine learning based on MLP using unified RSSI finger-
prints generated from both Wi-Fi and BLE beacon signals. The
validity of the proposed positioning scheme was demonstrated
by experiments in the actual environment using commercially
available Wi-Fi and BLE dongles. In any batch size, dropout
rate, and sampling interval, the correct detection probability
based on the unified RSSI fingerprints PU achieves better
performances compared to PB and PW. More specifically,
PU is 5% better than PB owing to the transmit diversity
effects. However, there still remains room for improvement in
the position detection accuracy, for example, we have to take
into account the spatial correlation among the observed RSSI
vectors. Additionally, we are also considering a neural network
model and activation function more suitable for fingerprint-
based positioning. Furthermore, we are planning to utilize
different channels of Wi-Fi and BLE to improve the versatility
of RSSI data. These works are still left for the future work.
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