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Abstract—l1-norm penalty and noise-free approach are con-
sidered in this paper to contribute to a maximum correntropy
criterion (MCC) based algorithm. The introduced l1-norm con-
strained noise-free MCC (L1-NFMCC) algorithm inherits the
good behavior of MCC in non-Gaussian environments. The cost
function of the L1-NFMCC algorithm is created by introducing
l1-norm penalty into the traditional cost function of MCC. In
this regard, the L1-NFMCC algorithm can fully use the sparse
characteristics which exist in many real systems. In addition,
the noise-free method is used in the L1-NFMCC algorithm to
provide a variable convergence step (VCS). The VCS is obtained
by minimizing the noise-free (NF) a posteriori error signal with
respect to the convergence step. As a consequence, the proposed
L1-NFMCC algorithm holds an excellent mean square deviation
(MSD) behavior. Meanwhile, it shows particularly good property
in sparse system. Numerical simulations are utilized to investigate
the superiority of the L1-NFMCC algorithm in non-Gaussian
noises.

I. INTRODUCTION

It is no doubt that in adaptive filter (AF) algorithms, select-
ing a proper cost function is of vital importance [1], [2]. It has
previously been observed that the mean square error (MSE)
criterion is a feasible choice which performs well in Gaussian
environment. The MSE criterion attributes to the developing
of least mean square (LMS) algorithm, after which plenty
variants of LMS algorithm have been proposed [1], [3], [4],
[5], [6], [7]. However, the LMS based AF algorithms cannot
deal with non-Gaussian problems well and their behaviors will
deteriorate in non-Gaussian environment.

Recent work has been established to use correntropy which
is referred as a robust similarity measurement to provide
a good choice for constructing a cost function under non-
Gaussian environment. Then, the well known maximum cor-
rentropy criterion (MCC) algorithm has been established based
on correntropy theory [8]. The MCC algorithm has advantages
similar with that of the LMS algorithm, meanwhile, it shows
superiority in computing impulsive noises [8]. Hence, many
scholars focus on the MCC algorithm and lots of variants of
MCC have been proposed [8], [9], [10], [11], [12], [13], [14],
[15].

The aim of this essay is to explore the sparse MCC based
AF algorithm in non-Gaussian environment. It is believed that
the non-Gaussian environment can be studied by employing

a Gaussian mixture model [16], [17], using which the well
known MCC based algorithms have been evaluated [10], [11].
In this regard, the mixture Gaussian environment is employed
in this paper to implement an impulsive noise environment.

Recently, a MCC based algorithm using noise-free (NF)
approach, namely the NFMCC, has been proposed and inves-
tigated in mixture Gaussian environment [18]. The NFMCC
algorithm can provide a pretty good behavior in non-Gaussian
systems. However, the NFMCC algorithm shows potential to
be improved since it didn’t consider the a priori information
like sparse characteristics.

In this paper, an l1-norm constrained NF maximum cor-
rentropy criterion (L1-NFMCC) algorithm is proposed, which
uses the l1-norm penalty to take advantage of the sparse
nature [19]. Consequently, the L1-NFMCC algorithm aims to
provide a good performance in non-Gaussian environment,
where the cost function of the L1-NFMCC algorithm is
obtained by considering the norm penalty and the normalized
Gaussian kernel. Besides, based on the NF method, a variable
convergence step (VCS) is achieved which can make the con-
vergence procedure more fleetly [20], [21]. Several examples
are carried out in mixture Gaussian environment to evaluate
the L1-NFMCC algorithm. After comparing the L1-NFMCC
algorithm with the MCC, LMS and their variants [18], [22],
[23], one can draw a conclusion that the L1-NFMCC algorithm
has a much better performance in non-Gaussian environment.

II. THE L1-MCC ALGORITHM

A. Fundamentals

In Fig. 1, the block diagram of an adaptive filtering system
is presented. Generally, the objective of an adaptive filtering
algorithm is to get an output signal referred to as yk iteratively
which is the closer the better to the ideal output signal y,
where k is time index. wk is known as the coefficient vector,
which is updated iteratively based on the designed adaptive
filtering algorithm. In this way, one can get yk = wT

k xk, where
the input signal is written as xk = [x(k), x(k − 1), · · ·x(k −
N −1)], with N representing the the length of the system. dk
and ek denote, respectively, the desired output signal and the
estimation error, while nk is the noise with zero mean.
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Particularly, in this paper, the desired output signal dk is
decomposed as

dk = dNF (k) + nk = wT
o xk + nk, (1)

where dNF (k) is referred as the noise-free desired signal and
wo stands for the optimal coefficient vector.

Similarly, one can have the following expression for the a
priori error signal

ek = dk−wT
k xk=dNF (k)−wT

k xk+nk=eNF (k)+nk, (2)

where in (2), eNF (k) is the noise-free a priori error signal.

B. The noise-free method

In this paper the noise-free technique, which is also known
as a shrinkage method, is utilized [20], [21]. The denoising
method performs perfectly in the AF algorithms [24], [25],
which focuses on recovering original signal from the observed
one using the model below

ym=x+ n, (3)

where n denotes a zero-mean independent noisy vector.
The noise-free method is implemented considering the max-

imum a posteriori probability (MAP) estimation developed
in [26], then according to (3) one can obtain

f(z) = 0.5||ym −Az||22 + γ||z||1, (4)

where in (4), z stands for a sparse vector, A acts as the
dictionary and β is a parameter that adjusts the representation
error and sparsity. In this regard, the following relationship is
acquired

x = Az. (5)

In this way, the signal x is estimated optimally as

x̂= Aẑ. (6)

with

ẑ = argmin
z

f(z). (7)
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Fig. 1. Block diagram of an adaptive filtering system model

C. The L1-MCC algorithm

Referring to [10], the cost function of the MCC algorithm
is implemented by employing a normalized Gaussian kernel
function and is give as

Jk =
1√
2πσ

· 1
N

k∑
n=k−N+1

exp(
−e2n
2σ2

). (8)

In (8), σ is known as kernel width.
Considering the l1-norm penalty which can take advantage

of the sparse characteristics, the cost function for L1-MCC
algorithm is available

Jl1(k) =
1√
2πσ

· 1
N

k∑
n=k−N+1

exp(
−e2n
2σ2

) + λl1||wk||1. (9)

Herein, referring to the gradient descent algorithm, the
update function for the L1-MCC algorithm can be derived
from (9)

wk+1 = wk + µ∇Jl1(k), (10)

where ∇ represents the gradient operator and µ stands for the
convergence step. Finally, after computing and simplicity, the
update function for the L1-MCC algorithm is

wk+1 = wk+
µ√
2πσ3

·exp(− e2k
2σ2

)ekxk−λl1sgn(wk), (11)

with sgn(·) acting as the sign function.

III. THE PROPOSED L1-NFMCC ALGORITHM

The proposed L1-NFMCC algorithm is derived based on the
denoising approach which has been reviewed in section II-B.

Based on (3) and (4), the main idea is to get the noise-free a
priori error signal which can be recovered from the estimation
error ek using the relationship in (2)

êNF (k) = arg min
eNF (k)

0.5|ek − eNF (k)|2 + β|eNF (k)|, (12)

which yields

êNF (k) = sign[ek] max(|ek| − β, 0). (13)

In (13), β is chosen according to

β =
√
qσ2

n, (14)

where q is selected within (1,4) and σ2
n denotes the noise

variance.
Till now, the noise-free a priori error signal has already

obtained based on (13). Consequently, the remaining problem
is to find out the noise-free a posteriori error signal which is
defined as

εNF (k) = dNF (k)− xkwk+1. (15)

As the a priori error signal is available, a reasonable solution
is to consider the straightforward relationship between the
noise-free a priori error signal and the noise-free a posteriori
error signal, which is given by

εNF (k)− eNF (k) = xT
k (wk−wk+1). (16)
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Using the update equation of L1-MCC algorithm
in (11), (16) becomes

εNF (k)− eNF (k) =

xT
k [−

µk√
2πσ3

· exp(− e2k
2σ2

)ekxk + λl1sgn(wk)],
(17)

where µk acts as the convergence step which is alterable in
this algorithm.

According to (2), (16) can be further written as

εNF (k) = eNF (k)−µks[eNF (k)+nk]x
T
k xk+λl1x

T
k sgn(wk),

(18)
with

s =
1√
2πσ3

· exp(− e2k
2σ2

). (19)

Subsequently, based on (18), E[ε2NF (k)] can be obtained.
µk is available by minimizing E[ε2NF (k)]

µk =
E[s]

E[s2]
·

E[e2NF (k)]E[xT
k xk] + λrl1E[eNF (k)]E[xT

k xkx
T
k sgn(wk)]

E[(xT
k xk)2] {E[e2NF (k)] + E[n2k]}

.

(20)
The first order Taylor series is utilized to simplify (20), which
yields

µk =
√
2πσ3·

E[e2NF (k)]E[xT
k xk] + λrl1E[eNF (k)]E[xT

k xkx
T
k sgn(wk)]

E[(xT
k xk)2] {E[e2NF (k)] + E[n2k]}

.

(21)
In the proposed L1-NFMCC algorithm, E[e2NF (k)] is esti-

mated by the time average

σ2
NF (k)=ασ

2
NF (k − 1) + (1− α)e2NF (k), (22)

with α representing the forgetting factor.
Finally, the update function of the L1-NFMCC algorithm is

wk+1 = wk+
µkδL1NFMCC√

2πσ3
·exp(− e2k

2σ2
)ekxk−λl1sgn(wk).

(23)

IV. SIMULATION RESULTS

In this section, several simulation results are illustrated
aiming to show the superiority of the L1-NFMCC algorithm.
The mixture Gaussian environment is used in the experiments,
which is generated by

0.95N(0, 10−4) + 0.05N(0, 10), (24)

where in (24), N(u, v) represents the Gaussian distribution
with mean u and variance v. In all simulations, the kernel
width is 2.

First, the L1-NFMCC algorithm is studied in the case of
system identification with a white Gaussian input signal. The
sparse channel has totally 16 coefficients, where 1 of them is
non-zero. The input signal SNR is 30 dB. Simulation parame-
ters are given in detail, they are µLMS = 0.037, µMCC = 0.04,
µNMCC = 0.37, µZAMCC = 0.037, µNLMS = 0.4, µPNMCC =

0.24, δPNMCC = 0.01, ρPNMCC = 0.3, µPNLMS = 0.02,
δPNLMS = 0.01, ρPNLMS = 0.01, αL1−NFMCC = 0.94,
qL1−NFMCC = 2.4, δL1−NFMCC = 0.95, βL1−NFMCC =
4×10−6, αNFMCC = 0.93, qNFMCC = 3.4, δNFMCC = 0.89.
From the result presented in Fig. 2, the L1-NFMCC algorithm
realizes the lowest MSD level, which is about -48dB.

For the second case, the tracking behavior of the L1-
NFMCC algorithm is studied at 30dB with a colored noise
input signal which is created by using the first order au-
toregressive (AR1) xk= 0.8xk−1+nk. The parameters are,
µMCC = 7.2 × 10−4, µLMS = 7 × 10−4, µNMCC = 0.21,
µZAMCC = 8 × 10−4, µNLMS = 0.2, µPNMCC = 0.16,
δPNMCC = 0.01, ρPNMCC = 0.01, µPNLMS = 0.15,
δPNLMS = 0.01, ρPNLMS = 0.01, αNFMCC = 0.999,
δNFMCC = 0.99, qNFMCC = 1, αL1−NFMCC = 0.97,
qL1−NFMCC = 1.3, δL1−NFMCC = 0.96, βL1−NFMCC =
6× 10−8.

As demonstrated in Fig. 3, the L1-NFMCC algorithm
provides the best behavior. Under the colored input signal
and mixture Gaussian environment, the proposed algorithm
performs better by considering the MSD level.

At last, real-life data is utilized to test the proposed L1-
NFMCC algorithm. The data is given in [27] which is a
measured underwater channel obtained in the South Chi-
na Sea. The input signal SNR is set to be 10 dB, while
other parameters are µMCC = 0.0031, µLMS = 0.0035,
µNMCC = 0.5, µNLMS = 0.6, µPNMCC = 0.4, δPNMCC =
0.01, ρPNMCC = 0.3, µPNLMS = 0.002, δPNLMS = 0.01,
ρPNLMS = 0.01, αNFMCC = 0.975, qNFMCC = 1, δNFMCC =
0.99, αL1−NFMCC = 0.96, qL1−NFMCC = 1.2, δL1−NFMCC =
0.99, βL1−NFMCC = 1× 10−6, respectively. As demonstrated
in Fig. 4, the proposed algorithm works effectively in real-
life application and performs better than the newly proposed
NFMCC algorithm [18].

V. CONCLUSIONS

In this paper, an l1-norm penalized noise-free maximum
correntropy criterion (L1-NFMCC) is proposed. Based on
the L1-MCC algorithm, an alterable step size is obtained
by considering a denoising method. In fact, the L1-NFMCC
algorithm is a general case of the newly developed NFMCC
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Fig. 2. Simulation results in Gaussian mixture environment
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Fig. 4. Performance in real-data

algorithm which has been verified to perform well in non-
Gaussian environment. The proposed L1-NFMCC algorithm
uses an l1-norm penalty meanly to take advantage of the sparse
characteristics in sparse system to accelerate the convergence
procedure. Investigated in different conditions, for instance, in
different input signals and in real-life data, the L1-NFMCC
algorithm shows good capacity and works successfully. It is
reasonable to predict that if a penalty which is better than the
l1-norm is employed, the new algorithm can reach a much
better performance.
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