
Non-structured Pruning for Deep-learning based
Steganalytic Frameworks

Qiushi Li∗, Zilong Shao∗, Shunquan Tan∗, Jishen Zeng†, and Bin Li†
∗ College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
† College of Electronics and Information Engineering, Shenzhen University, Shenzhen, China

∗† Shenzhen Key Laboratory of Media Security,
Guangdong Key Laboratory of Intelligent Information Processing,

National Engineering Laboratory for Big Data System Computing Technology,
Shenzhen Institute of Artificial Intelligence and Robotics for Society,

Shenzhen 518060, China.

Abstract—Image steganalysis aims to discriminate innocent
cover images and those suspected stego images embedded with
secret message. Recently, increasing advanced deep neural net-
works have been proposed and used in image steganalysis.
Though those deep learning models can gain superior perfor-
mance, they also result in redundancy of computational resource
and memory storage. In this paper, we apply a non-structured
pruning method to prune XuNet2 and SRNet — the two state-of-
the-art deep-learning framework in the field of JPEG image ste-
ganalysis. We obtain the priorities of the connections among neu-
rons according to a certain criterion, then keep those significant
weights and prune those nonsignificant ones in the meantime. We
have conducted extensive experiments on BOSSBase and BOWS
image dataset. The experimental results demonstrate that our
proposed non-structured pruning method can significantly reduce
the cost of computation and storage required by the original deep-
learning frameworks without affecting their detection accuracy.

I. INTRODUCTION

Image steganography is a popular convert communication
technology. The sender tries to transmit secret message to the
receiver by embedding it into some innocent cover images.
Due to the insensitivity of human eyes to noise in texture
regions, it is hard to discover embedded message from those
stego images. The most widely used steganographic algorithms
today are Hill [1], S-UNIWARD [2] in spatial domain and
UERD [3], J-UNIWARD [2] in JPEG domain.

As the rival to steganography, steganalysis has become
popular with the development of steganographic algorithms.
Steganalysis determines whether an image hides secret in-
formation by analyzing the statistical characteristics of a
suspicious image, and even extracts the secret information
if possible. Steganalysis is generally regarded as a two-
class classification task. Existing steganalytic schemes firstly
suppress image contents and therefore improve the signal-to-
noise ratio between the stego signal and the corresponding
host image, which is useful for extracting the characteristic of
stego modifications. The most famed traditional steganalytic
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scheme is the so-called “rich model” [4], [5]. With the
rapid development of deep learning in the field of pattern
recognition, quite a few researchers have proposed to apply
this technology to steganalysis. In 2014, Tan and Li [6]
proposed the first deep-learning steganalytic framework. Then
in [7], [8], [9], deep-learning based, especially CNN based
steganalytic models gradually surpassed spatial-domain rich
models. In JPEG domain, XuNet2 [10] is a deep and complex
steganalytic framework with very competitive performance.
The SRNet [11] proposed by Boroumand et al. is the first
completely end-to-end deep-learning steganalytic framework.
As far as we know, it is the best performing JPEG steganalyzer
at present.

However, since there is no universal guideline for the design
of the structure of deep-learning frameworks, it is highly
probable that a mass of parameters/weights in existing deep-
learning frameworks are redundant. They achieve superior
detection performance at the cost of heavy computational
resources and enormous memory storage. Therefore, the re-
search on compression algorithms of deep-learning models
attracts notable attention of researchers. Deep-learning ste-
ganalytic frameworks are no exception. The non-structured
weight pruning method is a major branch of deep-learning
model compression. In a very early stage of the evolution of
deep-learning frameworks, Lecun et al. [12] have proposed
the method of pruning weights inspired by brain science. In
2015, Han et al. [13] proposed a distinguished non-structured
pruning scheme which removes individual weights below a
given threshold. Han’s scheme can result in compact and
sparse weight matrices without affecting the performance of
the target deep-learning model.

In this paper, we apply Han’s non-structured pruning
scheme to XuNet2 and SRNet—the two most advanced deep-
learning models in the field of JPEG steganalysis, and use
the pruned models to detect JPEG stego images generated
by UERD and J-UNIWARD, the two popular JPEG stegano-
graphic algorithms. Experimental results demonstrate that our
approach can effectively sparse weight matrices of the target
model as well as maintain their detection performance.

The remainder of this paper is organized as follows. In
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Fig. 1. The architecture of the two target deep-learning steganalytic models. The sizes of the output features maps (height, width, number of channels) are
displayed besides the network diagram. (a) The architecture of XuNet2. The detailed structure of the “Conv Block” is shown on the right. (b) The architecture
of SRNet. The detailed structures of four types of blocks are shown on the right, surrounded by dotted-line box.

Sect. II, we firstly give a brief introduction to Han’s non-
structured pruning method, and the architecture of the two
target models: XuNet2 and SRNet. Then we present our
approach of using Han’s scheme to prune XuNet2 and SRNet.
The experimental results are detailed in Sect. III. Finally, the
concluding remarks are summarized in Sect. IV.

II. NON-STRUCTURED PRUNING METHOD FOR XUNET2
AND SRNET

A. Preliminaries

1) Han’s non-structured weight pruning method [13]: The
object of non-structured pruning method is individual weights
as well as corresponding connections between neurons. Han et
al. claimed that in a given layer, the smaller the absolute value
of the weight is, the less significant the weight becomes. It is
owing to the fact that the weights with small absolute values
have less impact on the input.

When Han’s method is used to prune a given convolutional
layer Li, a pre-defined threshold Ti is set up for it. Then every
filter Fi,j in Li is assigned a corresponding mask Mi,j , where
i is the layer index while j is the filter index in Li. Given a
pruning rate γi, the process of pruning Li is as follows:

1) Sort the absolute values of the weights of all the filters
{Fi,j , 1 ≤ j ≤ m} in Li from small to large to get the
ordered sequence {Sk}, where k ∈ {1, 2, · · · , n}, m is
the number of the filters in Li, and n is the length of
the sequence;

2) Compute the threshold Ti = Sdn×γie of the ith layer
Li;

3) Set the corresponding values of Mi,j to 0, where the
absolute values of weights are less than Ti. Otherwise
set the corresponding values of Mi,j to 1.

2) The architectures of XuNet2 and SRNet: The architecture
of XuNet2 [10] is shown in Fig. 1(a). It is a 20-layer deep
steganalytic network with five “Conv Blocks” which in turns
equipped with residual shortcuts [14]. The residual shortcuts
can accelerate the process of convergence and prevent gradient
vanishing. Each “Conv Block” is accordingly contains five
convolutional layers with shortcut connections. There is a
pre-processing layer at the bottom of the architecture, which
contains sixteen 4 × 4 discrete cosine transformation basis
kernels to improve the signal-to-noise ratio before the inputs
are fed to the deep-learning model itself. The sizes of all the
convolutional kernels in XuNet2 are set to 3× 3.

The architecture of SRNet [11] is shown in Fig. 1(b).
The whole network consists of twelve blocks with four dif-
ferent block types. Among them, block type 2 and type 3
have residual shortcuts [14]. Functionally, the network can
be divided into three parts. The first part (from Block 1
to Block 7) is used for the extraction of noise residuals,
which prevents the suppression of stego signals since there is
no pooling/down-sampling operations. The second part (from
Block 8 to Block 12) is devoted to features extraction and
dimensionality reduction. The third part is the top single-layer
linear classifier.

B. Our proposed pruning approach

In our proposed pruning approach, we apply Han’s non-
structured pruning method to prune XuNet2 and SRNet. We
follow the well-established three-step deep-learning model
pruning pipeline:

1) obtain a converged, over-parameterized steganalytic
model after the whole train-validation procedure;

2) prune the over-parameterized steganalytic model with
Han’s pruning method;
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3) fine-tune the pruned steganalytic model with further
training epochs.

Majority of the parameters of XuNet2 and SRNet are
contained in the convolutional layers. Therefore we only prune
the weights in those convolutional filters. For XuNet2, we
decide to neglect the bottom pre-processing layer since it only
contains fixed hand-crafted filters. For SRNet, we decide to
neglect the bottom two blocks (namely Block #1 and Block
#2), since our experimental result shows that the weights
in them are ultra sensitive to pruning, and non-structured
pruning results in severe decline in detection performance of
the corresponding steganalytic framework.

For both XuNet2 and SRNet, we regard the convolutional
layers belonging to an identical block as a whole. We adap-
tively set a united pruning rate for all the convolutional layers
come from the same block. With a converged steganalytic
model, we adopt a trial-and-error strategy. In XuNet2, all of
the “Conv Blocks” are involved, while in SRNet, the blocks
from #3 to #12 are involved. Every block of the target model
is individually pruned with the pruning rate from 0% to
100% with a step of 10%. After every pruning procedure,
the resulting model is tested with standalone testing set, and
the corresponding detection performance is recorded. The
most appropriate pruning rate for every block is determined
according to the criterion of “sensitivity” defined as follows:

1) If the detection accuracy steadily decreases along with
increasing pruning rate, then we adopt a conservative
pruning tactic. The largest pruning rate with the decline
of detection accuracy on standalone testing set lower
than 5% is selected as the target pruning rate.

2) With increasing pruning rate, if we witness a bluff-type
slump (≥ 5%) of the detection accuracy, then the last
pruning rate before the slump is selected as the target
pruning rate.

After the pruning rates of all of the blocks for a given
steganalytic model are determined, we apply the pruning
procedure to the original converged model. From bottom to
top, we prune the blocks one by one. Then the pruned model
undergoes a fine-tune procedure. It is retrained for several
epochs to regain the once lost detection performance.

During the pruning procedure, we reject the filter weights
whose absolute value is lower than Ti from training and infer-
ence, by setting Fi,j = Fi,j ·Mi,j and ∇Fi,j = ∇Fi,j ·Mi,j

for every filter in Li, where · denotes dot product and ∇Fi,j
denotes the corresponding gradient of Fi,j . One demonstration
is shown in Fig. 2.

1 6 2

3 4 2

1 7 3

0 1 0

1 1 0

0 1 1

0 6 0

3 4 0

0 7 3

Fig. 2. One example of the filter weights rejection procedure. The cross signal
denotes dot product operation.

TABLE I
PRUNING RATE FOR EVERY BLOCK IN XUNET2.

Steganography J-UNIWARD UERD
bpnzAC 0.4 0.2 0.4 0.2

Block #1 0.6 0.3 0.5 0.5
Block #2 0.7 0.8 0.7 0.6
Block #3 0.6 0.5 0.7 0.6
Block #4 0.9 0.7 0.8 0.8
Block #5 0.9 0.9 0.9 0.9

TABLE II
PRUNING RATE FOR EVERY BLOCK IN SRNET.

Steganography J-UNIWARD UERD
bpnzAC 0.4 0.2 0.4 0.2

Block #1 0 0 0 0
Block #2 0 0 0 0
Block #3 0.4 0.4 0.4 0.5
Block #4 0.6 0.5 0.6 0.6
Block #5 0.4 0.7 0.6 0.8
Block #6 0.5 0.5 0.5 0.8
Block #7 0.5 0.4 0.6 0.6
Block #8 0.3 0.4 0.5 0.4
Block #9 0.8 0.7 0.5 0.7

Block #10 0.9 0.9 0.9 0.9
Block #11 0.9 0.9 0.9 0.9
Block #12 0.9 0.9 0.9 0.9

III. EXPERIMENTS

All experiments in this paper were conducted on the union
of BOSSBase 1.01 [15] and BOWS2 [16]. Each dataset
contains 10,000 grayscale images with the size 512 × 512.
We resized all of the images in the dataset from the original
size to 256 × 256 by using MATLAB function “imresize”,
and then compressed them to JPEG format with quality factor
75. The images are divided into three subsets: the training
set contains 4,000 images randomly selected from BOSSBase
and the entire BOWS2 dataset, a total of 14,000 images; the
validation set contains another 1,000 randomly selected images
from BOSSBase; the remaining 5,000 images from BOSSBase
constitute the testing set. We have four steganographic data
embedding configurations used in the experiments: UERD at
0.2 bpnzAC of embedding rate, UERD at 0.4 bpnzAC, J-
UNIWARD at 0.2 bpnzAC, and J-UNIWARD at 0.4 bpnzAC.

The XuNet2 was trained with the “Momentum” optimizer
with batch size of 100 images (50 cover/stego pairs), and
no data augmentation. The filter weights in all convolutional
layers were initialized with a zero mean Guassian with stan-
dard deviation 0.01 and no bias. The weights and biases
in fully connected classifier layer were initialized with zero
mean Guassian with standard deviation 0.01. The learning rate
started from 0.001 and was decreased by 10% after every 5,000
training iterations. The SRNet was trained with the “Adamax”
optimizer with batch size of 16 images (8 cover/stego pairs).
The training set was randomly shuffled before every training
epoch, and we use data augmentation during the training
procedure with two kinds of input processing methods: random
mirror and random rotation by 90◦ degrees. For the initializa-
tion of other training parameters please refers to [11].

The implementation of our proposed non-structured network
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Fig. 3. Accuracy changes along with the pruning and the following three-
epoch fine-tuning procedure of every block of XuNet2. “JU-04”, “JU-02”,
“UE-04”, and “UE-02” refers to J-UNIWARD of 0.4 bpnzAC embedding rate,
J-UNIWARD of 0.2 bpnzAC, UERD of 0.4 bpnzAC, UERD of 0.2 bpnzAC,
respectively.

pruning method was based on Tensorflow™ [17]. We applied
Han’s method to XuNet2 and SRNet as shown in Sect. II-A1.
The pruning rates for all the blocks in the two models
were adaptively determined with the criterion of “sensitivity”
proposed in Sect. II-B. In Tab. I and Tab. II, we show the
finally determined pruning rate for every block of XuNet2 and
SRNet in the experiments, respectively. It can be seen that for
both XuNet2 and SRNet, the original models have quite a
few unnecessary filter weights, and the redundancy becomes
higher as the blocks become deeper. For instance, in the last
two blocks of XuNet2 and the last three blocks of SRNet, the
pruning rates reach 0.9, which means that most filter weights
of those top blocks are unnecessary and can be rejected from
training and inference.

For XuNet2, every time after a block was pruned, we
fine-tuned the intermediate model for three epochs. Fig. 3
shows accuracy changes along with the pruning and fine-
tuning procedure of every block of XuNet2. We can see in
Fig. 3 that the non-structured pruning procedure has huge
impact on the detection performance of the resulting model.
The detection performance usually decreases dramatically.
However, after one or two epochs of retraining/fine-tuning
procedure, the detection performance can be regained, and
even is approaching to the original model. Tab. III gives
a comparison of the detection accuracy of the pruned and
retrained model with the original XuNet2 model. We can see
that after pruning and retraining, the detection accuracy of the
resulting model is almost identical to the original one.

Please note that for SRNet, we only fine-tuned/retrained
the model after all of the involved blocks in it were pruned.
Tab. IV gives a comparison of the detection accuracy of the

TABLE III
ACCURACY COMPARISON OF XUNET2 BEFORE AND AFTER PRUNING.

“Orig” MEANS THE ACCURACY OF ORIGINAL MODEL. “Pruned/Retrained”
MEANS THE ACCURACY AFTER RETRAINING THE PRUNED MODEL, AND

“Decline” MEANS DESCENT IN DETECTION ACCURACY FROM THE
ORIGINAL MODEL TO THE CORRESPONDING PRUNED AND RETRAINED

MODEL.

Steganography bpnzAC Orig Pruned/
Retrained Decline

J-UNIWARD 0.4 0.855 0.845 -0.0117
0.2 0.698 0.691 -0.0100

UERD 0.4 0.930 0.924 -0.0064
0.2 0.824 0.817 -0.0085

TABLE IV
ACCURACY COMPARISON OF SRNET BEFORE AND AFTER PRUNING.

“Orig” MEANS THE ACCURACY OF ORIGINAL MODEL. “Pruned” MEANS
THE ACCURACY OF THE MODEL JUST AFTER PRUNING. “Retrained” MEANS
THE ACCURACY AFTER RETRAINING THE PRUNED MODEL, AND “Decline”
MEANS DESCENT IN DETECTION ACCURACY FROM THE ORIGINAL MODEL

TO THE CORRESPONDING PRUNED AND RETRAINED MODEL.

Steganography bpnzAC Orig Pruned Retrained Decline

J-UNIWARD 0.4 0.9224 0.5979 0.9215 -0.00097
0.2 0.7769 0.6084 0.7777 0.00102

UERD 0.4 0.9685 0.6609 0.9676 -0.00092
0.2 0.8808 0.5040 0.8802 -0.00068

TABLE V
MODEL COMPRESSION RESULT. “Params” MEANS THE NUMBER OF THE

NON-ZERO WEIGHTS IN THE CONVOLUTIONAL KERNELS OF THE MODEL.
THE COMPRESSION RATE IS EQUAL TO THE AMOUNT OF PARAMETERS IN
THE ORIGINAL MODEL DIVIDED BY THE AMOUNT OF PARAMETERS IN THE

PRUNED MODEL.

Model Steganography bpnzAC Params Compression Rate

SRNet
J-UNIWARD 0.4 73022 65.305

0.2 74949 63.625

UERD 0.4 82149 58.049
0.2 71493 66.701

XuNet2
J-UNIWARD 0.4 1447384 3.970

0.2 1649920 3.483

UERD 0.4 1156072 4.970
0.2 1546600 3.715

pruned and retrained model with the original SRNet model.
From Tab. IV we can see that without retraining, the detection
performance of the pruned model declines severely compared
with that of the original one. However, after retraining, the
detection accuracy of the resulting model recovers and remains
competitive even though a majority of its weights have become
zero. Please compare the Decline column of Tab. IV with that
of Tab. III, the readers can notice that the gap between the
performance of the pruned-and-then-retrained SRNet model
and the original one is even narrower, which may indicate
that our proposed non-structured pruning approach is more
efficient for those more advanced and complicated models,
like SRNet.

This pruning method realizes the model compression by
sparsing weight matrix of the model. The number of weights
in convolutional layers of original SRNet and XuNet2 are
4,768,704 and 5,746,720, respectively. As is shown in Tab. V,
for Xunet2, pruning reduces the number of weights in con-
volutional layers by 3×, and for SRNet, pruning reduces the
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number of weights in convolutional layers by 60×. Theoreti-
cally, the pruned model can decrease the computation cost, but
to achieve such an effect the support of specialized hardware
or algorithms library is required. With the support of poten-
tial specialized hardware/ algorithms library, the compression
scheme proposed in this paper can greatly reduce the number
of floating-point calculations of the target model and improve
the calculation speed.

IV. CONCLUSION

In this paper, we apply a non-structured pruning method
to prune XuNet2 and SRNet — the two state-of-the-art deep-
learning framework in the field of JPEG image steganalysis.
We combine Han’s non-structured weight pruning method with
our proposed block based trial-and-error pruning rate decision
strategy. Our experimental results show that the proposed prun-
ing method can efficiently reject the nonsignificant weights
and hence reduce those redundant connections. After the
pruning and retraining procedure, the detection performance
of the pruned version of both XuNet2 and SRNet can still be
regained. Therefore, our work indicate that the parameters of
both XuNet2 and SRNet are with great redundancy. Our future
work will focus on exploring more effective specific pruning
methods for deep-learning steganalytic frameworks.
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