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Abstract—Blind sound source separation (BSS) is effective to
improve the performance of various applications such as speech
recognition. The condition of BSS can be divided into underde-
termined conditions (number of microphones < number of sound
sources) and overdetermined conditions (number of microphones
≥ number of sound sources). Here, we focus on Synchronized
Joint Diagonalization (SJD) [6], which is a newly proposed BSS
method and utilizes non-stationarity of a sound source signal.
The advantage of SJD is faster separation and smaller number
of parameters to be estimated. However, the application of SJD
is limited to overdetermined conditions, and the performance
of SJD is degraded in underdetermined conditions. In this
paper, to solve these performance degradations, we propose an
activation driven SJD, which uses a pre-estimated activation
matrix. It is practical because activation estimation is easier than
source separation. The effectiveness of the proposed method was
validated by conducting BSS experiments. We confirmed that
the performance of SJD can be improved in underdetermined
conditions.

I. INTRODUCTION

In recent years, devices equipped with various speech recog-
nition systems such as AI speakers and smartphones are widely
used. However, many problems exist with the response delay
and recognition performance in speech recognition systems.
One of these problems is misrecognition in a noisy environ-
ment. One of the solutions is the sound source separation
technology.

Currently, various blind sound source separation (BSS)
methods have been proposed, such as Independent Component
Analysis (ICA) [1], Independent Vector Analysis (IVA) [2],
non-negative matrix factorization (NMF) [3], Multichannel
Non-negative Matrix Factorization (MNMF) [4], and Indepen-
dent Low-Rank Matrix Analysis (ILRMA) [5]. ICA performs
separation by assuming that each sound source is indepen-
dent from each other. IVA uses the non-Gaussian nature of
sound source signals. NMF decompose a spectrogram of an
acoustic signal into bases an activation. MNMF, which is
a multi-channel extension of NMF, performs high separa-
tion performance by using spatial information in addition to
frequency information. ILRMA combines IVA and MNMF.
The condition of operation of these sound source separa-
tion methods can be divided into underdetermined conditions

(number of microphones < number of sound sources) and
overdetermined conditions (number of microphones ≥ number
of sound sources). NMF is a method for application in under-
determined conditions, ICA, IVA, and ILRMA are suitable
for overdetermined conditions, and MNMF can be used under
either condition.

In this study, we focused on Synchronized Joint Diagonal-
ization (SJD) [6], which is a newly proposed sound source
separation method. The advantage of SJD is faster separation
and smaller number of parameters to be estimated. However,
the original form of SJD is limited to overdetermined condi-
tions, and the performance of SJD is significantly degraded in
underdetermined conditions.

In this paper, to apply SJD to underdetermined conditions,
we propose an activation driven SJD. Activation driven SJD
uses initial activation matrix obtained by other methods, which
gives appropriate initialization of activation matrix of SJD. It
is practical because activation estimation is easier than source
separation and it can be solved by various methods such as
NMF, voice activity detection, and binary masking etc. The
effectiveness of the proposed method was evaluated by sound
source separation experiments using music data.

II. BLIND SOURCE SEPARATION (BSS) BY SJD

A. Overview

Joint Diagonalization (JD) [7] of a correlation matrix among
several time frames has been proposed as a BSS method utiliz-
ing non-stationarity of signals. SJD synchronizes temporally
the diagonal components corresponding to the same signal
source while JD solves multiple simultaneous diagonalization
problems. Fig. 1 shows the BSS algorithm by SJD.

B. Formulation of SJD

A time-frequency spectrum xijm = [xij]m can be obtained
from the observed signals from each microphone channel m =
1, ...,M by short-time Fourier transform, where i = 1, ..., I
represents a frequency bin and j = 1, ..., J represents a time
frame. Assuming that the observed signal is a linear mixture of
independent sound source signals sijn = [sij ]n,n = 1, ..., N ,
where Ai is an M×N mixing matrix. The observed spectrum
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Fig. 1. BSS algorithm by SJD.

can be related to the source spectrum s by the following
equation.

xij = Aisij . (1)

The purpose of BSS is to obtain an N×M separation matrix
Wi for each frequency bin i only from the observed signal and
to estimate the separated signal yijn = [yij ]n by the following
equation.

yij =Wixij . (2)

C. Joint Diagonalization (JD)

The simultaneous diagonalization of the correlation matrix
is performed for each frequency bin i. J time frames are di-
vided into P time sections Jp(p = 1, ..., P ) and the correlation
matrix Xip of the observed signal and the correlation matrix
Yip of the separated signal are obtained by the following Eq.
(3) and Eq. (4) in each time section p.

Xip =
1

P

∑
j∈Jp

xijx
H
ij , (3)

Yip =
1

P

∑
j∈Jp

yijy
H
ij =WiXipW

H
i , (4)

where H is the Hermitian transpose. Then, a separation
matrix Wi is obtained by simultaneously diagonalizing the
P correlation matrices Yip of the separated signal. In the case
of P = 2, these can be strictly diagonalized, but when P ≥ 3,
it is generally impossible to obtain an exact solution.

D. Synchronized Joint Diagonalization (SJD)

To model the non-stationarity of the signal source, the
diagonal matrix Ŷip is defined by the following equation.

[Ŷip]nn, =

{
vpn if n = n,

0 if n ̸= n,.
(5)

SJD minimizes multichannel Itakura-Saito divergence be-
tween Yip and Ŷip.

dIS(Yip, Ŷip) = tr(YipŶ
−1
ip )− log

[
detYipŶ

−1
ip

]
−N, (6)

Fig. 2. Flow of activation driven SJD

where the right hand side depends only on the time section p
and the source ID n, and does not depend on the frequency bin
i. SJD minimizes a cost function C summed over all frequency
bins.

C =
I∑

i=1

P∑
p=1

[
N∑

n=1

(
[Yip]nn
vpn

+ log vpn

)
− 2 log |detWi|

]
.

(7)

E. BSS Algorithm

By differentiating Eq. (7) with respect to vpn and setting it
to zero, the following update rule, Eq. (8) is derived.

vpn =
1

I

I∑
i=1

[Yip]nn , (8)

where vpn is an element of an activatino matrix V .

V =

 v11 · · · v1N
...

. . .
...

vP1 · · · vPN

 (9)

The separation matrix Wi for each frequency bin is up-
dated by the following procedure. First, correlation matrices
averaged over all time sections are obtained.

Uin =
1

P

P∑
p=1

1

vpn
Xip. (10)

Second, from Eq. (10), Wi can be updated by hybrid simul-
taneous diagonalization of N matrices Uin as

win = (WiUin)
−1
en, (11)

where en is an N dimensional vector in which only the
nth row is unity. Then, normalization is performed using the
following equation.

win ←
win√

wH
inUinwin

. (12)
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III. ACTIVATION DRIVEN SJD FOR UNDERDETERMINED
CONDITION

A. Extension of SJD for Underdetermined Condition

The original form of SJD is limited to overdetermined
conditions. It is necessary to extend Eq. (11) because a
matrix inversion of (WiUin) cannot be calculated. Therefore,
(WiUin)

† is substituted by (WiUin)
−1 in Eq. (11). w is

updated as

win = (WiUin)
†
en, (13)

where † is the Moore Penrose pseudo inverse matrix.

B. Activation Driven SJD

Previous study [8] has confirmed that the performance of
SJD depends on the estimation performance of the activation
matrix V . If it is possible to give an apprppriate initial value to
an activation matrix of SJD, its performance can be improved
even in underdetermined conditions.

We propose an activation driven , which uses a pre-estimated
activation matrix. Fig. 2 shows the flow of the activation
driven SJD. Various types of methods can be used to esti-
mate activation before SJD. For example, Ideal Binary Mask
(IBM), Direction based Binary Mask (BM) [9], Voice Activity
Detection (VAD) [10] and NMF can be applied. NMF directly
obtains activations and VAD estimates speech activation. BM
estimates sound source activation based on direction of arrival.

C. Activation Estimation by Binary Mask

In this paper, we estimate activation by IBM to confirm
whether activation estimation is effective. IBM gives an oracle
activation whether the target sound at each time-frequency bin
is active using the source signal based on sparsity.

vpn =
1

I · P
∑
i

∑
j∈Jp

M2
ijnXij (14)

Fig. 3 shows the flow of activation estimation by IBM. Fig. 4
shows examples of masks to each sound source estimated by
IBM. Colored part indicates active parts where power of the
sound source is greater than the threshold.

Mijn =

{
1 if sijn · s̄ijn > θ,

0 otherwise,

where θ represents a threshold and ¯ represents a complex
coujugate. We apply these masks to the mixed signal and
calculate the activation matrix V as (14). Fig. 5 shows
estimated activations. These can be estimated easier than time-
frequency masks, because these activations have one parameter
per frame.

Fig. 3. Flow of activation estimation by IBM

Fig. 4. Examples of masks, Mijn

Fig. 5. Examples of estimated activation matrix V from the masks in Fig. 4.

IV. SOUND SOURCE SEPARATION EXPERIMENT

A. Experimental Conditions

The mixed signals were composed of three sound sources
(N = 3), as shown in TABLE I. These signals were observed
by two microphones (M = 2). The data were borrowed from
the database [12]. In Fig. 6, the microphones are sequentially
numbered from 1 to 14 from the right. The microphone
numbers used in this experiment are 6 and 8. The parameters
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Fig. 6. Sound source and microphone settings.

of SJD are listed in TABLE II. The number of time sections P
was set to the maximum P = 404. A previous study [6] reports
that the separation performance increases as the number of
time sections P approaches the maximum value. High perfor-
mance separation cannot be obtained if P is too small. The
length of each music piece listed in TABLE I was 6.4 seconds
in order to align with the maximum value of P . The number
of updates was set to 100 to ensure sufficient performance
by preliminary experiments. The separation performance was
evaluated in terms of the signal-to-distortion ratio (SDR) [13].

SDR = 10 log10

∑
t s

img(t)2∑
t y

spat(t)2 + yint(t)2 + yartif(t)2

where simg is correct signal of target sound source, yspat

is filtered distortion, yint is sound source signal other than
the target sound source and yartif is signal distortion due to
separation processing.

B. Results

The performance of SJD is significantly degraded in under-
determined conditions. Fig. 7 shows the experimental result
of sound source separation by applying SJD to each musical
piece. The average SDR is less than 3dB for all and it can be
confirmed that sufficient performance cannot be obtained.

The proposed method is compared with the conventional
method and MNMF. MNMF is the state-of-the-art BSS method
in underdetermined conditions. It is confirmed in previous
study [14] that MNMF has a large dependency on the ini-
tial value. Therefore, 10 random initial value patterns were
prepared and sound source separation was performed. The
results show the average SDR of 10 patterns. Fig. 7 also shows
the performance comparisons. We confirm that the SDR is
significantly improved by the proposed method. The separation

TABLE I
MUSICAL PIECES USED FOR EXPERIMENT.

ID Author/Song Part

Bearlin
piano

1
Roads

ambient

vocals

Another Dreamer
drums

2
The Ones We Love

vocals

guitar

Fort Minor
drums

3
Remember The Name

vocals

violin+synth

Anonymous
　 drums

4
Ultimate Nz Tour

guitar

synth

TABLE II
PARAMETERS OF SJD.

Reverberation time 300ms
Sampling rate 16kHz

Frame size 1024
Shift size 256

Number of sources 3
Number of microphones 2

Number of iterations 100
Number of time sections P 404

Fig. 7. Average SDR of the conventional and proposed method and MNMF.

performance of the proposed method exceeds that MNMF for
two musical pieces (ID3 and ID4). Therefore, it is effective
to give an appropriate initial value to an activation matrix V .
Activation estimation can be used to improve the separation
performance of SJD in underdetermined conditions. These
results, confirmed that the proposed method is effective.

V. CONCLUSION

In this study, we propose activation driven SJD to apply
SJD to underdetermined conditions. The performance can be
improved by activation estimation. Sound source separation
experiment confirmed that the proposed method was effective
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to improve SJD performance in underdetermined conditions.
SJD can be used in underdetermined conditions if we can
initialize appropriate activation matrix V for each sound
source. From the viewpoint of execution time, the proposed
activation driven SJD is much faster than MNMF, which is the
state-of the-art for underdetermined conditions. In the future,
activation estimation without prior information such as BM
based on direction of arrival will be validated.
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