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Abstract—Deep neural networks (DNN) have been applied to
the problem of noise reduction and promising results have been
reported widely, leading to the impression that the traditional
techniques based on blind noise estimation may no longer
be needed. However, there lacks comprehensive and rigorous
evaluation and comparison between DNN based and traditional
noise-reduction algorithms for their pros and cons. In this work,
we attempt to evaluate some widely used DNN based noise-
reduction algorithms and compare them to a traditional noise-
reduction method. We also evaluate a method that straight-
forwardly combines a DNN based regression method with the
optimal filtering technique. Through experiments, it is observed
that: 1) DNN based methods have advantages over the traditional
methods in scenarios with non-stationary noise and low signal-
to-noise ratios (SNRs); 2) generalization remains a challenging
issue with DNN based methods; for noise types unseen in the
training data, which happen often in practical environments,
DNN based methods do not show any advantage over the
traditional technique; 3) combining DNN-based regression and
the optimal filtering technique shows some potential in improving
the noise-reduction performance as well as system generalization.

I. INTRODUCTION

Single-channel noise reduction aims to recover a clean
speech signal of interest from its microphone observation that
is corrupted by additive noise [1]. Generally, the goal of noise
reduction is to improve perceptual quality or/and intelligibility
of the noisy speech signal. Extensive efforts have been made
to address this problem and a large number of methods have
been proposed, including the optimal filtering methods [2],
[3], the spectral subtraction type of techniques [4], [5], [6],
the statistical approaches [7], the subspace method [8], [9],
and various recently developed DNN based algorithms.

Traditional methods are based on noise estimation with
an assumption on the aggregate statistical behavior or model
of the noise, while DNN based algorithms rely on paired
speech signals (both noisy and clean speech, with the former
containing a precise copy of the latter) to train the networks.
As they obtain signal statistics and perform noise reduction
quite distinctly, these two types of methods have their their
own pros and cons. Many noise estimators have been devel-
oped to meet the need in the traditional approach, includ-
ing algorithms based on the use of voice activity detection
[10], minimum statistics based algorithms [11], [12], [13],
the subspace methods [14], and the minimum-mean-square-
error (MMSE) [15], nonnegative-matrix-factorization [16], and
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codebook-driven methods [17], etc. However, over- and under-
estimation of noise with those methods is not uncommon in
practical environments, leading to either insufficient noise re-
duction (noise still audible in the processed result) or excessive
noise reduction so as to distort the speech part.

In comparison, DNN based methods use synthetic paired
data or carefully recorded paired data to train the network
parameters. Tremendous efforts have been devoted to training
targets [18], [19], [20], feature extraction [21], DNN models
[22], or different types of noises [23], [24]. The interested
reader is referred to [25] for an overview. Most DNN-based
speech enhancement methods use the time-frequency spectrum
of the clean speech as the training targets [18], either mapping-
based [19] or masking-based [18]. It is widely reported that
DNN methods outperform all traditional noise reduction meth-
ods in terms of perceptual evaluation of the speech quality
(PESQ) [32] and short-time objective intelligibility (STOI)
[33], leading to the impression that collecting a big database
and training DNN would become the dominant way to go
for noise reduction. However, a recent study on subjective
evaluations of DNN based methods [26] shows that evaluation
reported in the literature may not be comprehensive enough
for a solid conclusion.

This work is therefore organized to perform a comprehen-
sive evaluation of DNN based noise-reduction algorithms and
compare them with traditional noise-reduction techniques. Due
to the space limit, we report in this paper the initial results
on PESQ and STOI for three DNN based methods: ideal ratio
mask (IRM) [18], concatenation of speech and noise amplitude
spectrum (AMP), and concatenation of smoothed speech and
noise power spectrum (POW), and a traditional method: the
optimally-modified-log-spectral-amplitude (OMLSA) algorith-
m [27], which uses the improved-minima-controlled recursive-
averaging (IMCRA) method for blind noise estimation. Also
evaluated is a new method that combines DNN based re-
gression method and the optimal filtering technique. More
comprehensive results including both objective and subjective
evaluation will be reported once all the experiments are
completed.

II. DNN-BASED NOISE REDUCTION ALGORITHMS

In this section, we introduce DNN-based noise-reduction
algorithms for three different estimation targets in the training
stage and the corresponding post-processing in the test stage.
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A. Signal model

Consider the single-channel noise-reduction problem where
the time-domain noisy observation signal is in the following
form:

z(n) +v(n), ey

with z(n) and v(n) being, respectively, the clean speech
signal of interest and the additive noise, and n denoting
the discrete-time index. x(n) and v(n) are assumed to be
uncorrelated. Transforming y(n) into the short-time-Fourier-
transform (STFT) domain gives

Y(k,1) = X(k, 1)+ V(k,1), 2)

y(n) =

where k is the frequency index, [ denotes the frame index, and
Y (k,1), X(k,l) and V (k,1) are, respectively, the STFTs of the
noisy speech, clean speech and noise signals. The objective of
noise reduction is then to recover the clean speech X (k,[)
given Y (k,1).

B. Training stage

A critical decision to be made before training a DNN is the
representation vectors that serve as the input and the output of
the networks, respectively. In this work, we use the logarithmic
amplitude (log-amplitude) spectra of the noisy speech as the
input of DNN. Mathematically, the [th frame log-amplitude
spectrum of Y (k,1) is defined as

Yipe = [Yiog(0,1), .., Yiog(k, 1), ..., Yieg(N/2,D)]",  (3)

where N is the FFT length and Yio, (k, 1) = log(|Y (k,1)|+¢)
with ¢ belng set to 10710, The input of DNN, denoted as
YllogT HT, is a concatenation of 27 + 1 frames centered at

l .
Yl ie.

Yl ‘rl+'r_ (Yl 'r) o

log log

(Yl+'r) ]T ’ 4)

log

) (Yllog)Tv .

where the superscript [ — 7 :[+4 7 denotes a set of frame
indices {{—7,l—7+1,...,{+7}. In the traditional terminol-
ogy, this represents a block-based (as opposed to frame-based)
processing.

In this paper, we focus on the evaluation of three different
training targets as output of the DNN, namely, the ideal ratio
mask (IRM), the signal amplitude spectrum (AMP), and the
signal power spectrum (POW).

e The IRM is defined as

X (k, 1)[2
X (k, D2+ [V(k D}

GIRM k l (5)
The corresponding [th frame of IRM is the target of DNN.

o The AMP is a concatenation of the /th frame of X{Og and
V{Og, which are defined the same way as Ylog in (3) and
).

o The speech power spectrum is computed in a recursive
way

X (k1) = ag™ (k,1— 1)+

where « is the smoothing parameter, which is set to
0.95 in this work. The noise power spectrum ¢" (k1)

(1 - o)Xk DP (6
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is defined the same way. The Ith frame speech log-power
spectrum is defined as

bt = [0 (0,1), .. divg (R, 1), ..

where ¢f§g(k, 1) = log(¢X(k,1) +
power spectrum (bl‘ggl is defined analogously to ¢1)§gl The

, bing (N/2,D)]"

¢). (The noise log-

third target, POW, is a concatenation of the /th frame ¢1og
V.l
and ¢1og

C. Test stage

In the test stage, we need to obtain the enhanced speech
based on the use of the noisy speech and the aforementioned
three different DNN targets.

o To recover the clean speech using IRM, we have
Xirm(k, 1) =

where Grra(k, 1) is the estimation of IRM from DNN.

o To recover the clean speech using AMP, two different
ways could be applied. The first one is to directly recover
speech signal from output of DNN:

Grrm (k, )Y (K, 1), 7

XAMp(k, ) = exp [)A(log(k, l)} . (8)

The other way is to combine DNN output with optimal
filtering technique. The speech and noise power spectra
can be estimated from (8) as (6), which are denoted
as ¢Xyp(k,1) and (bAMP(k: l) respectively. Then the
traditional Wiener filter is computed as

gZB)A(MP(kv l)

Gw amp (k1) = = - )
¢§MP(k’ l) + ¢XMP(k’ l)
We then have
Xanp,w (k1) = Gwoamp (k, )Y (k,1).  (10)

Besides the classic Wiener filter, many different filters
could be applied [2].

o To recover the clean speech using POW, we first compute
the speech and noise power spectra from the DNN outputs
as

qf;l})(OW(ka l) = exXp {élﬁg(lﬁ l)} )
bow (k,1) = exp |3l (k,1)]

Then, the Wiener filter defined in (9) can be computed

1D

as
. (k,1)
Gw.pow (k,1) = = Pow .12
¥ow (B, 1) + d¥ow (k. 1)
Applying this filter to Y (k, 1) gives
Xpoww(k,1) = GwrpowY (k,1). (13)

Then the time-domain enhanced signal is obtained using the
overlap-add technique.
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III. EXPERIMENTAL SETUP
A. Training Data

We construct the noisy training data by artificially adding
noises to clean speech signals at a specified SNR Ievel.
The noise data set was collected from various sound packs
published on https://www.freesound.org, which consists of 432
noise signals recorded in different acoustic environments and
the total duration is approximately 18 hours. The packs we
use are the same as those in [21]. This data set varies in
amount, diversity and duration in comparison with the Hu
noise database [29] and it is an extended version of [30].
As for the clean speech data set, 4620 clean utterances from
the TIMIT database [28] were used, which were spoken by
462 female and male speakers. Each sentence was used 50
times, which gives us 4620 x 50 clean sentences in total. The
time-domain energy level of the clean sentences, including the
reused ones, was scaled to be between —22 dB and —3 dB
in order to make DNN generalize to different energy levels.
Noise was then added to the clean speech sentences, where
noise was randomly selected from the constructed freesound
noise dataset at a SNR level randomly chosen between —10
dB and 15 dB at a step of 1 dB. In total, more than 100 hours
noisy training data were constructed. The generated training
data were split into training and validation sets at a proportion
of 9: 1.

B. Test data
We constructed three different test sets.

1) 15 different noise signals were randomly picked up from
the training noise set, each of which is mixed with 100
sentences extracted from the TIMIT test set (with 50 from
male speakers and the other 50 from female speakers) at
five input SNR levels ranging from —5 dB to 15 dB at a
step of 5 dB. Similar to the training set, the time-domain
energy level is normalized to be between —22 dB and
—3 dB.

2) Different from the first test set, 15 types of noise from
the NOISEX-92 database are used, which is considered
to be unseen noise types.

3) The third test set is recorded in an anechoic chamber.
There are two loud speakers set up in the chamber, with
one louder speaker playing pink noise and the other
playing back a clip of clean speech in English read by
a female speaker, which is not included in the TIMIT
database. A single microphone is used to record the mixed
speech.

C. Configurations

The frame length and frame shift are set to 32 milliseconds
and 16 milliseconds respectively. The sampling rate is 16 kHz.
STFT has 512 frequency bins, which corresponds to a 257-
dimensional output for IRM, and 514-dimensional output for
AMP and POW. The input frames 7 is set to 2, leading to
5 x 257-dimensional input. The DNN has 4 hidden layers, each
with 1024 hidden units. The learning rate is set to 0.0008 at the
first epoch, and for the subsequent epoches, adjusted according
to exponential decay as LR = max(0.008 - 0.95%~1,0.0001),
where E is the epoch. The batch size is set to 512. The dropout
rate is set to 0.2. In the hidden layers, all nodes use a rectified
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TABLE I
THE AVERAGE PESQ AND STOI SCORES OVER 15 TYPES OF NOISE FROM
THE TRAINING NOISE SET.

SNR (dB) [ -5 0 5 10 15
Noisy 1.48 1.80 2.14 2.49 2.83
IRM 208 249 282 311 3.34
AMP 1.76 2.09 2.42 2.72 3.03
PESQ | AMP-Wiener | 2.04 2.41 2.71 2.97 3.23
POW-Wiener 1.75 2.08 2.41 2.72 3.02
OMLSA 1.46 1.92 2.34 2.71 3.05
Noisy 0.63 0.73 0.83 0.90 0.95
IRM 073 083 090 094 0.97
AMP 0.69 0.78 0.83 0.87 0.90
STOI AMP-Wiener | 0.73  0.83 0.89 0.93 0.96
POW-Wiener 0.64 0.74 0.83 0.90 0.95
OMLSA 0.63 0.73 0.83 0.90 0.95

linear activation function. In the output layer, all nodes are
linear for AMP and POW, and sigmoid for IRM. The hyper
parameter « in (6) is chosen to be 0.2 for AMP-Wiener in the
test stage.

IV. EXPERIMENTAL RESULTS

We evaluated the performance using two metrics: PESQ
and STOI. The PESQ is a metric for speech quality. Its score
ranges from —0.5 to 4.5. The higher the PESQ score, the better
the speech quality. The STOI is computed from the correlation
of the temporal envelopes of the degraded speech signal and
its clean reference. It has been shown empirically that STOI
scores are strongly correlated with human speech intelligibility
scores.

The aforementioned DNN based noise-reduction algorithms
are compared to the OMLSA algorithm [27], which is a widely
used traditional algorithm for noise reduction. In OMLSA,
noise statistics are estimated with the IMCRA algorithm.

Table I lists the average PESQ and STOI scores of four
DNN based algorithms, i.e., IRM, AMP, AMP-Wiener, POW
and the traditional OMLSA algorithm on 15 types of noise
taken from the training set. One can see that DNN based al-
gorithms show great advantages in comparison with OMLSA.
We can also observe that instead of estimating the speech
spectrum directly with DNN (AMP), it is better to estimate
speech power spectrum and apply speech enhancement filters
to the noisy speech (AMP-Wiener), which give us relatively
competitive PESQ and STOI scores to IRM.

Table II presents the average PESQ and STOI scores of
DNN based algorithms and the traditional OMLSA algorithm
on 15 types of noises from the NOISEX-92 data set, which is
not included in the training set. Overall, the OMLSA algorithm
outperformed DNN based algorithms in PESQ, while IRM and
AMP-Wiener performs better on STOI. Compared with results
in table I, the performances of DNN based algorithms degrade
significantly in this scenario, which indicates the problem of
DNN with generalization.

To gain more insights into the results in table II, we present
in Fig. 1 the PESQ scores of noisy and enhanced speech
signals for IRM and OMLSA for all types of noise from the
NOISEX-92 data set with SNR set at 10 dB. Performances of
both DNN based and traditional algorithms varied over noise
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TABLE 1T
THE AVERAGE PESQ AND STOI SCORES OVER 15 NOISES FROM
NOISEX-92 DATA SET.

SNR (dB) [ -5 0 5 10 15
Noisy 1.47 1.80 2.17 2.53 2.87
IRM 1.69 2.09 2.50 2.87 3.19
AMP 1.30 1.62 2.02 2.32 2.60
PESQ | AMP-Wicner 1.67 2.06 2.46 2.80 3.11
POW-Wiener 1.60 1.98 2.36 2.70 3.03
OMLSA 1.68 2.15 2.59 2.95 3.28
Noisy 0.62 0.72 0.82 0.89 0.95
IRM 0.63 0.75 0.85 0.92 0.96
AMP 0.59 0.60 0.78 0.85 0.89
STOI AMP-Wicner | 0.64  0.75 0.84 0.91 0.96
POW-Wiener 0.63 0.74 0.83 0.90 0.95
OMLSA 0.60 0.71 0.82 0.89 0.95
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Fig. 1. PESQ scores of mixtures, IRM and OMLSA enhanced speeches
corrupted by noises from NOISEX-92 database at an SNR of 10 dB.

types. From Fig. 1, one can see that DNN works better on non-
stationary types of noise, like babble, factory, and machine-gun
noise. However, it failed to generalize to white noise, which
is not included in the training set. The traditional algorithm,
OMLSA, works better on stationary noises such as white, pink,
and hfchannel noise.

Figure 2 plots noisy and enhanced speech signals by the
DNN based algorithm, IRM, and the traditional OMLSA
method as well as their spectrograms on the third test set,
i.e., signals recorded in an anechoic chamber. One can see
that IRM removed almost all noise during speech silence. It
also degrades speech, particularly at high frequencies, which
are highlighted in red boxes. Besides IRM, the other three
DNN based algorithms also have the tendency to remove
high frequency speech components, which is plotted to same
space. In comparison, OMLSA preserves more high frequency
components, but produces less noise reduction in silence parts.
It also seems to have more speech distortion at low frequencies
as shown in blue boxes. This is mainly due to the low SNR
of the recording, which results in over estimation of noise,
thereby causing distortion to enhanced speech.

V. SUMMARY

This work presented a comparative study of widely used
DNN based noise-reduction algorithms (IRM, AMP and POW)
and the traditional OMSLA noise-reduction method. We al-
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Fig. 2. A visualized comparison between OMLSA and IRM dealing with a
recording corrupted by pink noise. (a) Clean speech in time domain. (b) The
spectrogram of the clean speech. (c¢) Noisy speech (corrupted by pink noise)
recorded in anechoic chamber. (d) The spectrogram of the noisy speech. (e)
The enhanced speech by IRM. (f) The estimated speech spectrogram by IRM.
(g) The enhanced speech by OMLSA. (h) The estimated speech spectrogram
by OMLSA.

so presented an algorithm that combines DNN results with
Wiener filter, denoted as AMP-Wiener. The following conclu-
sions are made through experimental results.

1) DNN based algorithms performs better in low-SNR and
non-stationary noise cases than the traditional OMSLA
method.

2) DNN based methods achieves more noise reduction in
silence periods; however, they have tendency to add more
speech distortion at high frequencies where the subband
SNR is low.

3) Generalization is indeed a big issue for DNN based
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4)

algorithms. In the NOISEX-92 data set where different
types of noise are not included in the training set, DNNs
methods did not show superiority over the OMSLA
method.

The AMP-Wiener method performes better than AMP in
terms of quality, intelligibility and generalization, which
gives us a hint that combining DNN and traditional
methods could be promising.

Work is in progress to conduct more comprehensive evaluation
for traditional and DNN based noise-reduction algorithms,
including subjective tests.
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