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Abstract—Acoustic scene classification is a task of predicting
the acoustic environment of an audio recording. Because the
training and test conditions in most real world acoustic scene
classification problems do not match, it is strongly necessary to
develop domain adaptation methods to solve the cross-domain
problem. In this paper, we propose a domain adaptation neu-
ral network (DANN) based acoustic scene classification (ASC)
method. Specifically, we first extract an acoustic feature, i.e.
log-Mel spectrogram, which has been proven to be effective
in previous studies. Then, we train a DANN to project the
training and test domains into one common space where the
acoustic scenes are categorized jointly. To boost the overall per-
formance of the proposed method, we further train an ensemble
of convolutional neural network (CNN) models with different
parameter settings respectively. Finally, we fuse the DANN and
CNN models by averaging the outputs of the models. We have
evaluated the proposed method on the subtask B of task 1 of the
DCASE 2019 ASC challenge, which is a closed-set classification
problem whose audio recordings were recorded by mismatched
devices. Experimental results demonstrate the effectiveness of the
proposed method on the acoustic scene classification problem in
mismatched conditions.

I. INTRODUCTION

Acoustic scenes carry a large amount of information about
surrounding circumstances and physical events [1]. Acoustic
scene classification (ASC) [2], which aims to classify audio
recordings into predefined acoustic scene classes, is important
to many applications, such as robotic navigation [3], context-
aware services [4], surveillance [5], etc. It has received much
attention in recent years. For example, detection and classifi-
cation of acoustic scenes and events (DCASE) hosted by IEEE
audio and acoustic signal processing is a series of recent chal-
lenges, and also one of the first large-scale challenges of ASC
research [6]. It is known that the audio recordings collected by
different devices usually have some mismatches, since many
channel distortions, such as the differences of microphone
arrays, sampling rates, and circuit designs between the devices,
introduce interruptions to the recordings. Therefore, how to
improve the classification performance when training and test
data are recorded in mismatched conditions is one of the most
challenging problems of ASC.
Domain adaptation is a good choice to reduce the negative

effect caused by the domain mismatch. It usually partitions the

entire data space into a source domain and a target domain,
where the mismatch problem exists between the two domains.
Most often, the target domain consists of the test data and
sometimes part of the training data. The main purpose of
domain adaptation is to transfer the knowledge of the source
domain to the target domain, so as to improve the classification
accuracy on the target domain. Domain adaptation techniques
can be generally categorized into two groups: supervised
methods or unsupervised methods, based on whether the target
domain has manually labeled data.
Supervised domain adaptation assumes that labeled data are

available in the target domain. The labeled data in the target
domain are used to modify the classifier trained on the source
domain. Traditional classifiers include support vector machine
(SVM) [7], [8] and boosted decision tree [9]. Recently, deep
neural networks have also been applied successfully [10], [11],
which use the labeled data in the target domain to fune-
tune the neural networks. Because the labeled data from the
target domain are not always available, unsupervised domain
adaptation has been largely investigated.
Unsupervised domain adaptation works for the scenarios

where no labeled data is available in the target domain. It
can be divided into the following four classes. The first class
first estimates the labels of the target data by some clustering
methods [12]–[14], and then uses the estimated data as part of
the source data to train the classifiers. The second class trains
compensation models with both the unlabeled target data and
the labeled source data to compensate the domain mismatch
[15]–[17]. The third class learns a mapping function to project
the target data to the source domain, so that the models trained
on the source domain can be applied to classify the target
data directly without suffering much performance drop [18].
The fourth class first learns a common subspace shared by
both the source and target domains, and then conducts model
training and test in the subspace [19]. Empirically, the fourth
class usually yields good performance with an expense of more
complicated algorithm designs than the other approaches.
In this paper, we propose a supervised domain adaptation

neural network (DANN) approach for ASC. It first uses DANN
to learn a common subspace shared by both the source and
target domains with the knowledge of some labeled data

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China 

1501978-988-14768-7-6©2019 APSIPA APSIPA ASC 2019



Fig. 1. Diagram of the proposed DANN-based ASC method.

available in the target domain, then it combines the decision
scores produced by DANN with the scores produced by
an ensemble of convolutional neural network (CNN) models
trained on both domains for the final prediction. The approach
has two novelties. First, we introduce DANN to learn a
common subspace for the ASC problem. Second, although the
approach is supervised, it does not fall into existing supervised
domain adaption framework of ASC. It is a combination
of the advantages of supervised domain adaptation and the
fourth class of unsupervised domain adaptation. We evaluated
the effectiveness of the DANN-based ASC on the subtask
B of task 1 of the DCASE 2019 ASC challenge, where the
subtask is a closed-set classification problem with its training
and test audio recordings recorded by mismatched devices.
Kong et al. [20] has proposed a generic CNN-based cross-
task baseline system, from which we were inspired to adopt
such an ensemble of CNN-based models.
This paper is organized as follows. Section II presents

the framework of the proposed method. Section III presents
experiments. Section IV concludes this paper.

II. PROPOSED METHOD

In this section, we first overview the proposed method in
Section II-A, and then present its components in detail in
Sections II-B, II-C, and II-D, respectively.

A. System Overview
Figure 1 shows the diagram of the proposed method. Specif-

ically, we first extract 64-dimensional or 128-dimensional
log-Mel energies from the original audio recordings. Then,
we use the acoustic feature as the input of DANN and 6
CNNs. The 6 CNNs are named CNN5-Avgpooling, CNN7-
Avgpooling, CNN9-Avgpooling, CNN9-Maxpooling, CNN11-
Avgpooling, CNN13-Avgpooling, where the number after the
term “CNN” means the number of the hidden layers of CNN,

Fig. 2. Domain adaptation neural networks.

and “Avgpooling” and “Maxpooling” are two kinds of pooling
layers of CNN. Finally, we average the outputs of the DANN
and the CNN ensemble for the final prediction.

B. Feature Extraction
The log-Mel energies have been proven to be one of

the most suitable acoustic features for ASC [21]. They are
extracted as follows. First, we extract a spectrogram from
an audio recording by the Hamming window reweighted
short-time Fourier transforms, where the frame lengths of the
spectrograms are set to 32 or 64 milliseconds respectively
with the frame shifts both set to 15 milliseconds. Then,
we use 64 or 128 Mel-filter banks respectively to transform
the spectrogram to their corresponding Mel-energies. Finally,
the log-Mel energy features are obtained by applying the
logarithm operator to the Mel-energies.

C. Domain Adaptation Neural Networks
As shown in Fig. 2, DANN projects different domains into

one common subsapce for mitigating the domain mismatch
problem. It contains three parts: a feature extractor, a scene
predictor, and a domain predictor. The feature extractor aims to
project acoustic features from different domains into one sub-
space where the features are scene-discriminative and domain-
invariant. The scene predictor aims to classify the segment-
level features into predefined scenes. The domain predictor
aims to discriminate whether the input audio recording is col-
lected from the source domain or not. Although the structure
of DANN, whose output layer contains two separate parts,
is similar to that of multitask neural networks, their training
processes are fundamentally different. Its principle is to learn a
feature representation that is both discriminative and domain-
invariant by adversarial training. To achieve this goal, DANN
should try to improve the performance of the scene predictor
and meanwhile fool the domain predictor. Here we present the
training process of DANN in detail as follows.
Suppose a training corpus consists of a source domain

and a target domain. A training audio recording from the
corpus consists of n frames [{xi}

n
i=1,y,d] where xi is the

input feature of the i-th frame, y is the ground-truth label
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of the audio recording, and d indicates the domain of the
audio recording. y is a one-hot code whose activated position
denotes the acoustic scene of the audio recording. If the
recording is from the source domain, then d = [0, 1]T ;
otherwise, d = [1, 0]T .
First, the feature extractor learns a mapping function from

{xi}
n
i=1 to an F -dimensional vector f , which transforms the

audio recording to a new representation [f ,y,d]. Then, the
scene predictor learns a mapping function from f to y. The
domain predictor learns a mapping function from f to d. The
feed-forward process are summarized as follows:

f = Gθf ({x}) (1)

y = Gθy (f) (2)

d = Gθd(d) (3)

where θu with u ∈ {f ,y,d} are the parameters of the three
components of DANN respectively.
We train the three components jointly and take the output of

Gθf (·) as the final output of DANN. The training objective of
DANN minimizes the scene classification loss and meanwhile
maximizes the domain classification loss. To maximize the
domain classification loss, a gradient reversal layer is inserted
between the feature extractor and the domain predictor, which
passes negative gradients from the domain predictor to the
feature extractor. It helps find a saddle point between the
two components [19]. If we view the domain predictor as
a regularizer, then a common way of balancing the scene
predictor and the domain predictor is to introduce a positive
hyperparameter λ > 0 to the domain predictor. Formally, we
define the loss function of DANN as:

E(θf , θy, θd) = Ly(Gθy(Gθf ({xi})),y)−

λLd(Gθd(Gθf ({xi})),d)
(4)

where La(â, a) with a ∈ {y,d} evaluates the loss between
the ground-truth a and its prediction â. In this paper, we set
Ly(ŷ,y) to the cross-entropy loss, and set Ld(d̂,d) to the
mean squared error loss. It is easy to see that minimizing
(4) equals to an optimization problem of minimizing Ly and
maximizing Ld jointly. We use the adaptive moment estima-
tion approach [22] to optimize the network. After training, the
feature representation produced by Gθf (·) yields a high scene
classification accuracy and meanwhile is domain-insensitive.

D. Convolutional Neural Networks
We follow the parameter setting of [20] to build our

CNN models. The parameter setting is illustrated in Table I.
Specifically, each CNN consists of multiple convolution blocks
and a fully connected softmax output layer except CNN5-
Avgpooling. Each convolution block contains two cascaded
convolution layers, each of which consists of a 3×3 kernel, a
batch normalization operator, and rectified linear units succes-
sively. Average pooling or max-pooling with a size of 2×2 or
1×1 is adopted after the convolution operation. Different with
other CNN, CNN5-Avgpooling has four convolution layers,
each of which consists of a 5×5 kernel, a batch normalization

TABLE I
THE STRUCTURE AND PARAMETER SETTING OF CNN9-AVGPOOLING.

Input Acoustic features

Convolution block
3x3 Convolution 64-BN-ReLU
3x3 Convolution 64-BN-ReLU

2x2 Average pooling

Convolution block
3x3 Convolution 128-BN-ReLU
3x3 Convolution 128-BN-ReLU

2x2 Average pooling

Convolution block
3x3 Convolution 256-BN-ReLU
3x3 Convolution 256-BN-ReLU

2x2 Average pooling

Convolution block
3x3 Convolution 512-BN-ReLU
3x3 Convolution 512-BN-ReLU

1x1 Average pooling
Output layer Dense-10-softmax

operator, and rectified linear units successively. We train the
CNN models on the source data. We use cross-entropy loss as
the training criterion.

III. EXPERIMENTS

In this section, we first present the experimental settings in
Section III-A, then present the main results in Section III-B,
and finally show the effects of the hyperparameters of DANN
on performance in Section III-C.

A. Experimental Settings

1) Datasets: We evaluate the effectiveness of our method
on the subtask B of task 1 of DCASE 2019. The task adopts
the TAU Urban Acoustic Scenes 2019 Mobile dataset [1].
It contains 10 acoustic scenes, including airport, shopping
mall, metro station, pedestrian street, public square, street with
traffic, tram, bus, metro and urban park. Its audio recordings
were recorded by four devices, denoted as devices A, B, C,
and D, where the data from device D only appears in the
final evaluation and is not public at the time of this paper.
The public data consists of a predefined development dataset
and an open leaderboard dataset, both of which were recorded
by devices A, B, and C. We regard the data from device A
as the source data and the data from devices B and C as the
target data. The development set, which was collected from 10
European cities, contains 16560 audio segments with a total
time of 46 hours, of which 14400 segments with a time of 40
hours were recorded by device A, 1080 segments with a time
of 3 hours recorded by device B, and 1080 segments with a
time of 3 hours recorded by device C. The leaderboard set
were collected from 12 cities.
For the development set, we selected 70% data from device

A and 50% data from devices B and C as a training subset,
and set the remaining data as a validation subset except 1030
segments unused. We first trained the models of all comparison
methods on the training set and picked the best parameter
settings of the models on the validation subset. Finally, we
retrain all models with the best parameter settings on the entire
development set and evaluated the models on the leaderboard
dataset.

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China 

1503



TABLE II
THE STRUCTURE AND PARAMETER SETTING OF DANN

Feature extractor

3x3 Convolution 64-BN-ReLU
3x3 Convolution 64-BN-ReLU

2x2 Average pooling
3x3 Convolution 128-BN-ReLU
3x3 Convolution 128-BN-ReLU

2x2 Average pooling
3x3 Convolution 256-BN-ReLU
3x3 Convolution 256-BN-ReLU

1x1 Average pooling

Scene predictor
Fully connected (dim-256)-BN-ReLU
Fully connected (dim-100)-BN-ReLU

10-way softmax

Domain predictor Fully connected (dim-256)-BN-ReLU
1-way softmax

2) Parameter Settings: As shown in Fig. 1. The proposed
method trained 2 DANN and 12 CNN models, of which 1
DANN and 6 CNN models take the 64-dimensional log-Mel
energies as their input feature, and the others take the 128-
dimensional log-Mel energies as the input. The two groups of
models have the same parameter setting. Here we present the
parameter setting of one group only as follows. Table II lists
the parameter setting of DANN. The feature extractor contains
three convolutional blocks. The scene predictor contains fully
connected hidden layers with the number of hidden units set
to 256 and 100 respectively. The domain predictor contains a
fully connected hidden layer with the number of hidden units
set to 256. Table I shows the parameter setting of a CNN with
four convolutional blocks and average pooling layer. The other
5 CNN models in this group have a similar structure with that
in Table I, but different number of convolutional layers and
different kinds of pooling layers from the latter which has been
described in Fig. 1
We take the official CNN-based baseline as our comparison

method [1]. The evaluation criterion is classification accuracy
(ACC), which is obtained by averaging the class-wise accura-
cies of all acoustic scene classes.

B. Main Results

Table III shows the ACC comparison of the comparison
methods and their components on the validation and leader-
board sets, where the ACC of the baseline was provided by
the DACSE 2019 ASC Challenge [1]. From the table, we
see that a single DANN achieves 0.153 and 0.132 absolute
ACC improvements over the CNN-based baseline on the
validation and leaderboard sets respectively; we also see that
the performance of a single DANN is only slightly worse than
a CNN ensemble, which proves the effectiveness of DANN
in mismatched conditions. We also observe that, if the CNN
ensemble and DANN use the same input acoustic feature, then
the aggregation of the CNN ensemble and DANN always
improve the performance over the CNN ensemble alone on
the validation set, which manifests that the CNN ensemble
and DANN complement each other.

TABLE III
CLASSIFICATION ACCURACIES (ACC) ON THE VALIDATION AND

LEADERBOARD SETS. THE TERMS “64MEL” AND “128MEL” DENOTE THE
64- AND 128-DIMENSIONAL LOG-MEL ENERGIES RESPECTIVELY.

Methods Validation set Leaderboard set
Baseline 0.414 0.480
64Mel+CNN ensemble 0.563 0.665
64Mel+DANN 0.544 0.593
64Mel+CNN ensemble+DANN 0.583 0.675
128Mel+CNN ensemble 0.598 0.715
128Mel+DANN 0.567 0.612
128Mel+CNN ensemble+DANN 0.606 0.707

Fig. 3. Classification accuracy of the DANN with different λ on the validation
set.

C. Effect of Hyperparameter λ of DANN
Hyperparameter λ balances the training accuracy and do-

main invariance. To investigate the effect of λ, we took the
128-dimensional log-mel energies as the input feature, and
searched λ in grid from 0.1 to 1.0 with an interval of 0.1, as
well as two other values—10 and 100. The experimental result
on the validation set is shown in Fig. 3. From the figure, we
see that the proposed method achieves the highest ACC when
λ = 0.5, and the robust working region of λ is also around
0.5.

IV. CONCLUSION

In this paper, we have proposed the supervised domain
adaptation neural network for the acoustic scene classifica-
tion problem in mismatched conditions. DANN minimizes
the classification error and meanwhile reduces the network
capacity on discriminating the source data from the target
data by adversarial training. The proposed DANN-based ASC
contains two components. The first component is DANN. The
second component is the CNN ensemble trained without do-
main adaptation. The two components complement each other.
The approach has two novelties. First, DANN is introduced
to the ASC problem. Second, the approach brings the idea
of the fourth class of the unsupervised domain adaptation
techniques to the supervised domain adaptation. We have
evaluated the effectiveness of the DANN-based ASC on the
subtask B of task 1 of DCASE 2019. Experimental results
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demonstrate that DANN is able to learn a domain-invariant
feature representation. It is not only much powerful than the
CNN model without domain adaptation when used alone, but
also complementary to the CNN ensemble when used together
with the CNN ensemble. The DANN-based ASC achieves over
20% higher ACC than the comparison baseline.
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