Proceedings of APSIPA Annual Summit and Conference 2019

18-21 November 2019, Lanzhou, China

Nonuniform fast linear canonical transform

Yannan Sun* and Bingzhao Lif
* Jiangsu University, Zhenjiang, China
E-mail: yuanansun@126.com
t Beijing Institude of Techonlogy, Beijing, China
E-mail: li_bingzhao @bit.edu.cn

Abstract—The linear canonical transform (LCT) is a general-
ized form of the Fourier transformation. It has been shown to
be one of the most powerful tools in applied mathematics, signal
processing and optics fields. The aim of this paper is to present
a nonuniform fast linear canonical transform (NFLCT), which
emerges in many areas of physics and engineering. The proposed
algorithm generalizes the fast linear canonical transform to
the case of non-integer frequencies on the interval [—br,br].
The algorithm requires O(Nlog N + Nlog(1/e)) arithmetic
operations where ¢ is the precision of computations and N is the
number of nodes. The efficiency of the approach is illustrated by
simulations.

I. INTRODUCTION

Linear canonical transform (LCT) is a four-parameter class
of linear integral transform [1], [2], which includes many spe-
cial cases, such as, the Fourier transform (FT), the fractional
Fourier transform (FRFT), the Fresnel transform, the Lorentz
transform and scaling operations. It has been become a popular
analytical tool in the study of optic and signal processing.

The numerical approximation of the LCT is importent in
many signal processing applications. After the continuous LCT
has been introduced, the definition and implementation of the
discrete linear canonical transform (DLCT) have been widely
considered by many researchers [3]-[10]. The existing discrete
algorithms are required that both input and output data are
uniform sampling [7]-[12]. In some applications, however,
such as, radar signal processing, SAR imaging system, the data
are often non-uniform. Therefore, it is necessary to research
the nonuniform fast linear canonical transform. In this paper,
we present a algorithm for computing nonuniform DLCT
based on interpolation approximation.

The rest of the paper is organized as follows: In Section II,
the related preliminaries are presented which are used in the
design of the algorithm. In Section III, we give the relevant
facts from approximation theory which are the principal tool in
this paper. Some numerical examples are presented in Section
IV to illustrate the performance of the schemes. Finally,
conclusions are drawn in Section V.

II. PRELIMINARIES

A. Linear canonical transform

The linear canonical transform (LCT) with matrix A =
[a,b;c,d] € SL(2, R) of a square-integrable signal or function
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where a, b, ¢, d are real and independent of ¢ and u, SL(2, R)
is a special linear group of two-dimensional real space. The
b = 0 corresponds to a simple chirp multiplication operation.
Therefore, we only focus on the LCT for b # 0 and assume
without loss of generality that b > 0. The inverse LCT is
obtained by the LCT with matrix A~ = [d, —c¢; —b, a], i.e.
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Note that a = d = 0, b = 1,¢c = —1, the LCT reduces to FT,
and converts into the FRFT when ¢ = d = cos, b = sin 6,
¢ = —sin#. One can refer to [2] for a detailed description of
the relations between the LCT and its special cases.

x(t)

B. Linear canonical series

The linear canonical series (LCS) is a generalized form
of Fourier series (FS), which can reveal the mixed time and
frequency components of signals. The basis signal of LCS is
defined as [13]
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The sequence {---,pa —1(t),pa0(t),pa1(t), -~} con-

structs an orthonormal basis. The LCS expansion of signal
2(t) with time width T can be written as
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where ¢t € [-T/2,T/2] and Cy, are called LCS expansion
coefficients with the parameter matrix A. The relationship
between LCS and LCT is that the LCS expansion coefficients
are the sampled values of LCT, as
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III. MAIN RESULTS
A. Statement of the problem

In this section, we will consider the nonuniform discrete
linear canonical transform (NDLCT), which is defined as
following

N/2-1

g; = Z Bre BT S ()
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where fj is input data which can be uniform or nonuniform,
g; is output data. For the efficient application of the trans-
formation described by Eq. (6) , the following two steps are
necessary:
« to approximate each e~/ (20)t* Fiumt/b=id/2b(um)” jn ter-
m of a g-term linear canonical series;
« to approximate the value of a linear canonical series at
each t¢,, in terms of values at the nearest ¢ uniformly-
spaced nodes.

In the following, we present the derivation of nonuniform fast
linear canonical transform.

B. Derivation of the nonuniform fast linear canonical trans-
form

The principal tool of this paper is that detailed analysis of
linear canonical series of functions ¢ : [—bm, br] — C given
by the formula
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o(t) = e

where @ > 1/2 and (8 are real numbers. We present this
analysis in theorems of this subsection.
Theorem 1: Let o > 1/2, (3 are real numbers, then, for any
€ (—brm,br), we can obtain
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Proof: The kth linear canonical series coefficient for ¢(t)
is denoted by o 4k, so that for ¢t € (—bm, brr),
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Rearranging Eq.(10), we obtain
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and integrating by parts, we have
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After rearranging the terms in Eq.(15) and integrating by parts
again, we obtain
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Therefore, we can obtain the following inequalities
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Due to Eq.(14) and (17), we have the inequalities
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for any ¢ € (—bm,br), combination of Egs.(10), (18), and
(19), we have
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Some elementary analysis yields
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and substituting Eq.(21) into Eq.(20), we have
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Then, we make use of the triangle inequality and Eq.(22) to
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Thus, the proof of the Theorem 1 is completed ]
According to Theorem 1, functions e —at? iy t® il —i gy 5
can be approximated by linear canonical series whose coeffi-
cients are given analytically, and the error of the approximation
decreases exponentially as « increases.

The coefficients p 4 in Eq.(9) have a peak at k = 5] ([x] is
the nearest integer to ), and decay exponentially as k — +o0.
We keep only the ¢ + 1 largest coefficients, where the integer
q is chosen such as

q > 4ab’n (24)

Thus we obtain
e(—q/2)2/4b20¢ S e—(,vb27T2 (25)

The following theorem provides a method for approximating
functions ¢(t) defined by a ¢+ 1 term series, and presents the
truncation error under the conditions Eq.(24).

Theorem 2: Let ¢ be an even integer and ¢ > 4ab’m,
a,b,c,d, « > 1/2 and (B be any real. Then, for any t €
(—bm, brr), the following inequality is obtained
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are defined by Eq.(9).
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Proof: For any t € (—bm,brr), Substituting Eq.(31) into Eqs.(28) and (29), we have
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(28)  Finally, Theorem 3 makes use of a simple linear scaling
to generalize the inequality Eq.(26) from [—br/m, br/m] to
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for j = 0,1,---,N — 1 and n € [-N/2, N/2],where ¢ is
defined by

e =e ™ (=52 (50 + 28/3) (39)

For a given set of complex numbers {3,,}, we will denote by

{B.,} is defined as following
ﬁ’:b = [jne_i%'n,2+o¢(27m/m]v)2 o)

for n = —N/2,--- ,N/2 — 1, and by U; a set of complex
numbers defined by the formula

N/2-1
U, = Z 5;Zei27rnl/mN @1
n=—N/2
for | = —mN/2,--- ,mN/2. Furthermore, taking account of

the periodicity of [, we will denote by {g;} another set of
complex numbers defined by the formula

a/2
~ _ia )2
g = e~z () Z Qj1Uy; 11
l=—q/2

(42)

for j=0,1,--- ,N — 1.
Combining Eqgs.(38)-(42) with the triangle inequality, we
see that

N—-1
9, —gil <€ |Bal 43)
n=0

for j = 0,1,---,N — 1, where {g,} are defined by Eq.(6).
Thus, the implements of NFLCT is given in Table I.

In the following section, we will give a numerical example
to support our theoretical analysis in the above section which
show the high efficiency of NFLCT in this paper.

IV. SIMULATIONS

In this part, two measures of precision are selected for the
NFLCT algorithm.

N-—1
Boo = max ‘fj - fj‘ / ;0 || (44)
N-1 5 N-1
By = S |5= 5 73160 (5)
j=0 =0

where « is the input data, f is the result of a direct computa-
tion, and f; is the result of computation by proposed methods.

Example Here we consider the transformation G : C —
CH as defined by the formula

N/2—1
d

Kt ;
— - E: —ig il —i L k?
gj = G(g)j = Bre "2t b 26
k=—N/2

(46)

for j = 0,---,N — 1. In this example, tg,--- ,ty_1 were
randomly distributed on the interval [—bm,bx|, and B =
e~ 2R HidmL | — _N/2 ... N/2 —1, my, were distributed
randomly on the interval [-N/2, N/2 — 1].

We take the parameters a = 2,b = 1,¢ = 7,d = 4, the
interpolate factors m = 2, the terms of LCS ¢ = 10, o =
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0.646. For N = 64, we loop our algorithm 20 times, the results
are presented in Figure 1. The error of amplitude between the
directly NDLCT and the proposed algorithm plots in Figure
2. It shows that the proposed algorithm has almost the same
effective as the direct method. For different N, the results
of E and E, are showed in Table II. It suggested that the
precision of Algorithm?2 is independent V.
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Fig. 1. Twenty independent experiments. Amplitude (a) obtained by directly
summation Eq.46; (b) obtained by NFLCT.

V. CONCLUSIONS

In this paper, we have described a algorithm for computing
DLCT for nonequispaced data, which based on the interpola-
tion formulae to transform function values from equispace to
nonequispaced points. The simulation shows that the derived
approach is effevtive for computing nonuniform DLCT. The
proposed algorithm can be viewed as generalizations of dis-
crete linear canonical transform, and will have a broad range
of applications in many branches of mathematics, science and
engineering.

REFERENCES

[11 M. Moshinsky, “Linear canonical transformations and their unitary
representations,” Journal of Mathematical Physics, vol. 12, no. 8, pp.
1772-1780, January 1971.

[2] H. M. Ozaktas, M. A. Kutay, and Z. Zalevsky, The Fractional Fourier
Transform with Applications in Optics and Signal Processing. John
Wiley and Sons, 1995.

[3] S. C. Pei and J. J. Ding, “Closed-form discrete fractional and affine
Fourier transforms,” IEEE Transactions on Signal Processing, vol. 48,
no. 5, pp. 1338-1353, May 2000.

[4] A. Koc, H. M. Ozaktas, C. Candan, and M. A. Kutay, “Digital com-
putation of linear canonical transforms,” IEEE Transactions on Signal
Processing, vol. 56, no. 6, pp. 2383-2394, June 2008.

763



Proceedings of APSIPA Annual Summit and Conference 2019

[5]

[6]

[7]

[8]

[9]

[10]

TABLE I
ALGORITHM FOR FAST COMPUTATION OF EQ.(6)

18-21 November 2019, Lanzhou, China

Algorithm 2 NFLCT for fast computation of Eq.(6)

Input parameter A = [a, b; ¢, d], the {—N/2,--- ,N/2 — 1}, {B_pn/a. -

Choose precision € a and q = [47b%a]
forj=0:N—-1
Compute v;, the nearest integer to t;mN/(27)

: 7/81V/2—1}a {t07"’ 7tN—1}-

Calculate B;'—N/z = Bj_N/ze_id/zb(j_N/2)2+°‘[(2’T(j_N/2))/(mN)]2 according to Eq.(40)

for k = —;1/2 1q/2

Calculate Q; ) according to Eq.(37).
end

end

Comment: Evaluate Fourier series at uniform sampling in [—bm, b using inverse FFT of size mN
Caleulate Uy = S0/ . 81,e27n/mN for | = —mN/2, -, mN/2 — 1
Comment: Calculate approximate values at desired points in terms of the values at equispaced points [—brr, brr]

forj=0: N—-1
forl =—q/2:q/2
95 =G5 + Qj1Uu;+1
end

Output :Approximate values g; = e‘i“/(zb)(bti)zg},j =—-N/2,--- ,N/2 — 1.

The total complexity is Ng + mN/2logy N + 3N

-6
6 x10

Times

(a)

-6
5 <10
4.5
4l
3.5
a g
w3
2.5
oL
151
1
0 5 10 15 20
Times
(®)

Fig. 2. Twenty independent experiments. Error of amplitude between the directly NDLCT and NFLCT (a) E; (b) E2

TABLE II
ERROR COMPARISON IN CASE OF DIFFERENCE N .

N 64 128 256 512 1024
Fs 21569 x 1076 2.0019 x 1076 2.1367 x 10~¢  2.0761 x 10~  2.0611 x 10~
Es 21113 x 1076  2.2353 x 10~%  2.2271 x 10~%  2.0740 x 10~%  2.4019 x 10—6

S. C. Pei and S. G. Huang, “Fast discrete linear canonical transform
based on CM-CC-CM decomposition and FFT,” IEEE Transactions on
Signal Processing, vol. 64, no. 4, pp. 855-866, February 2016.

B. M. Hennelly and J. T. Sheridan, “Fast numerical algorithm for the
linear canonical transform,” Journal of the Optical Society of America A
Optics Image Science & Vision, vol. 22, no. 5, pp. 928-937, May 2005.
J. J. Healy and J. T. Sheridan, “Sampling and discretization of the linear
canonical transform,” Signal Processing, vol. 89, no. 4, pp. 641-648,
April 2009.

Y. N. Sun and B. Z. Li, “Sliding discrete linear canonical transform,”
IEEE Transactions on Signal Processing, vol. 66, no. 17, pp. 4553-4563,
September 2018.

, “Segmented fast linear canonical transform,” Journal of the
Optical Society of America A Optics Image Science & Vision, vol. 35,
no. 8, pp. 1346-1355, August 2018.

——, “Digital computation of linear canonical transform for local spec-

[11]

[12]

[13]

764

tra with flexible resolution ability,” Sciece China. Information Sciences,
vol. 62, no. 4, p. 49301, 2019.

F. Zhang, R. Tao, and Y. Wang, “Discrete linear canonical transform
computation by adaptive method,” Optics Express, vol. 21, no. 15, pp.
18 138-18 151, July 2013.

A. Koc, B. Bartan, and H. M. Ozaktas, “Discrete linear canonical
transform based on hyperdifferential operators,” IEEE Transactions on
Signal Processing, vol. 67, no. 9, pp. 2237-2248, 2019.

C. P. Li, B. Z. Li, and T. Z. Xu, “Approximating bandlimited signals
associated with the LCT domain from nonuniform samples at unknown
locations,” Signal Processing, vol. 92, pp. 1658-1664, 2012.





