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Abstract—Speech enhancement based on generative adversar-
ial networks (GANs) can overcome the problems of many classical
speech enhancement methods, such as relying on the first-order
statistics of signals and ignoring the phase mismatch between the
noisy and the clean signals. However, GANs are hard to train
and have the vanishing gradients problem which may lead to
generate poor samples. In this paper, we propose a relativistic
average least squares loss function with a mixed penalty term for
speech enhancement generative adversarial network. The mixed
penalty term can minimize the distance between generated and
clean samples more effectively. Experimental results on Valentini
2016 and Valentini 2017 dataset show that the proposed loss
can make the training of GAN more stable, and achieves good
performance in both objective and subjective evaluation.

Index Terms—loss function, generative adversarial networks,
speech enhancement, convolutional neural networks

I. INTRODUCTION

Speech enhancement technology [1], [2] aims to improve

speech quality and intelligibility by removing background

noise from speech. It is an important research topic in the

field of signal processing and has been widely used in mobile

communication, smart home, human-computer interaction and

other fields.

Classical speech enhancement methods, e.g. Wiener filtering

[3], spectral subtraction [4], and statistical model-based meth-

ods [5] are all belongs to unsupervised methods. These meth-

ods are suitable for stationary noise environments, while in

non-stationary or low signal-to-noise ratios (SNR) conditions,

classical enhancement methods will produce much residual

noise which affects the perceived quality and intelligibility

of speech. Therefore, scholars develop many neural networks

based enhancement methods to learn the nonlinear relationship

between noisy and clean speeches in order to build a more

adaptable speech enhancement method which are suitable for

complicated noise environments. Lu et al. [6] proposed a

stacked denoising autoencoder to generate enhanced speeches,

which achieves better results on noise known conditions than

classic unsupervised methods. Xu Yong et al. [7] proposed

a deep neural network (DNN) speech enhancement method,

which uses DNN to learn the non-linear mapping relationship

between noisy and clean speeches. In paper [8], the author

∗Corresponding authors: Hong Yu and Xiaoxu Li.

applied some different strategies to improve the performance

of DNN based enhancement method in complex noise envi-

ronments. Besides DNN, some other neural network archi-

tectures such as RNN and LSTM are all applied on speech

enhancement tasks [9]. Recently, with the emergence of the

generative adversarial network (GAN) [10], the method of

speech enhancement has a new breakthrough. Daniel et al. [11]

proposed a speech enhancement method based on conditional

generative adversarial network (cGAN). The results show

that the performance is comparable to classical methods and

DNN. Due to the disadvantage of traditional Jensen-Shannon

divergence (JS Div), the Wasserstein distance [12] is proposed

to replace the JS distance, which improves the stability of

the GAN. Shan Qin [13] combined Wasserstein distance with

cGAN [14] to propose a new speech enhancement GAN.

In addition, some time domain based speech enhancement

methods have been proposed recently. Santiago et al. [15]

proposed an end-to-end speech enhancement system based on

least squares GAN. Deepak et al. [16] applied the relative

discriminator to cGAN and added a gradient penalty term

[17] to the discriminator, which improves the stability of

the speech enhancement GAN. However, most of the current

speech enhancement methods are still based on the short-time

Fourier analysis framework [18], these methods ignore the

effect of the short-time phase to speech enhancement. And

other time domain methods based on GANs have the vanishing

gradients problem and difficult to train, which lead to poor

quality of generated samples.

In this work, we apply relativistic average discriminator

to the least squares loss function [19] and add a mixed

penalty term in the generator (G) loss. The proposed method

is more stable for GAN training and can preserve a variety

of feature in speech data. We explored the performance of

the proposed method on noise unknown conditions and low

SNR conditions. Experimental results show that the proposed

method has better performance in both objective and subjective

evaluation compared with other baseline methods.

II. SPEECH ENHANCEMENT BASED ON RAGAN

A. Least Squares Generative Adversarial Networks

Comparing the standard GAN (SGAN) using cross entropy

(CE) as loss function, the least squares generative adversarial
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network (LSGAN) is more stable for network training and can

generate samples with better quality. In LSGAN, a novel least

squares loss function which minimizes the euclidean distance

between the distribution of generated samples and real samples

is proposed to replace the classical CE loss function. The

LSGAN loss functions are defined as follows:

L(D) =
1

2
Ex∼r(x)[(D(x)− 1)2]

+
1

2
Ez∼f(z)[(D(G(z)))2],

(1)

L(G) =
1

2
Ez∼f(z)[(D(G(z))− 1)2], (2)

where D and G are discriminator and generator respectively, x

is real sample, z is random noise vector and G(z) is generated

sample; 1 and 0 are the labels of the real and generated

samples.

B. Relativistic Average Generative Adversarial Network

In the SGAN, the probability of real samples being real

will not decrease as the probability of fake samples being

real increases, which may affect the validity of the JS Div

calculation and contradict the prior knowledge. To solve

this problem, the relativistic average generative adversarial

network (RaGAN) [20] is proposed. Instead of computing the

distance between discriminator/generator outputs to ground

truth labels, the objective function of RaGAN evaluate the

probability of the given real samples is more realistic than

fake samples, which significantly improve the stability of

GANs and the quality of generated samples. With the objective

functions are:

L(D) = Ex∼r(x)[f1(D(x)− Ez∼f(z)D(z)]+

Ez∼f(z)[f2(D(z)− Ex∼r(x)D(x))],
(3)

L(G) = Ex∼r(x)[g1(D(x)− Ez∼f(z)D(z)]+

Ez∼f(z)[g2(D(z)− Ex∼r(x)D(x))],
(4)

where f1, f2, g1, g2 are scalar-to-scalar functions.

C. The Proposed Loss

In this work, we design the speech enhancement GAN by

using the convolutional neural network [21] which is an end

to end system and can extract feature from time domain.

In order to make the training of the model be more stable

and improve the quality of generated samples, we apply the

relativistic average discriminator to the least squares loss

functions. Besides, some extra input x̃ are added to G and D

to perform mapping and classification. The objection functions

are:

L(D) =
1

2
Ex,x̃∼r(x,x̃)[(D(x, x̃)− E1 − 1)2]+

1

2
Ez∼f(z),x̃∼r(x̃)[(D(G(z, x̃), x̃)− E2)

2],
(5)

L(G) =
1

2
Ez∼f(z),x̃∼r(x̃)[(D(G(z, x̃), x̃)− E2 − 1)2]

+
1

2
Ex,x̃∼r(x,x̃)[(D(x, x̃)− E1)

2],
(6)

with

E1 = Ez∼f(z),x̃∼r(x)[D(G(z, x̃), x̃)], (7)

E2 = Ex,x̃∼r(x,x̃)[D(x, x̃)], (8)

where E1 and E2 are the average of real samples and fake

samples in a training batch, respectively.

In the loss function of G, we add a mixed penalty term

consisting of L1 norm and mean square error (MSE). In the

experiment, we found that the mixed penalty term can improve

the quality of generated speeches and be more effective than

only L1 norm added. The distance between generated and real

samples can be minimized by adjusting the hyper-parameters

of L1 norm and MSE.

L1 = ‖G(z, x̃)− x‖1. (9)

LMSE =
1

N

N∑
i=1

(G(i)(z, x̃)− x(i))2. (10)

Finally, the G loss becomes

Lour(G) = L(G) + aL1 + bLMSE , (11)

where a and b are hyper-parameters that control L1 norm and

LMSE .

III. EXPERIMENTAL SETUP

A. Datasets

To evaluate the performance of our method, we use the same

Valentini 2016 dataset [22] as the SEGAN [15]. The dataset

includes 30 speakers (11572 utterances) where 28 speakers

are used as train set and the utterances of the other 2 speakers

are used as testing. In order to generate the noisy training set,

we consider 40 different noise conditions with 10 types of

noise (two artificial noise and eight real noise collected from

the DEMAND [23]) and four different SNRs (15, 10, 5, and

0dB). Every training speaker has approximately 10 different

sentences in each condition. The noise conditions of the test

set are different from the training set. We consider 20 different

noise conditions with five types of noise from the DEMAND

and four different SNRs (17.5, 12.5, 7.5, and 2.5dB). Every

test speaker has approximately 20 different sentences in each

condition.

To evaluate the performance of our method at low SNR

conditions, we select two speakers from Valentini 2017 dataset

to make another test set. There are 20 different noise condi-

tions are considered where includes five types of noise from

the DEMAND and four different SNRs (15, 10, 5, and 0dB).

Each test speaker has approximately 20 different sentences in

each condition.
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Fig. 1. (a) The G network is an encoder-decoder architecture. C and Z are the thought vector and the latent vector respectively. The arrow lines denote skip
connections. (b) The D network has two input channels and we use VBN and LeakyReLU in it.
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Fig. 2. Training process of GAN. The model trains the D network and the
G network alternately until convergence and the parameters are updated by
back propagation algorithm.

B. Network Structure

In this work, we use the similar structure mentioned in

the SEGAN [15]. As shown in Fig. 1 (a), we use a fully

convolutional auto-encoder as the G network, which performs

the enhancement. The G network includes 22 one-dimensional

strided convolutional layers with parametric rectified linear

units (PReLU) as activation. The filter-width of each layer is

set as 31 and the stride is set as two. For GAN training, strided

convolution is more stable than other pooling methods. In

encoding stage, the dimensions of each layer (samples×feature

maps) are 16348×1, 8192×16, 4096×32, 2048×32, 1024×64,

512×64, 256×128, 128×128, 64×256, 32×256, 16×512 and

8×1024. The decoding stage is the mirroring process of the

encoding stage with the same number of filters and network

parameter configurations. Besides, skip connections are added

in G network to pass fine-grained information of speech to the

decoding stage.

The D network is typically a binary classifier which has the

similar one-dimensional strided convolution structure as the

G’s encoding stage (Fig. 2 (b)). However, D network has two

input channels and it uses Virtual Batch Normalization (VBN)

[24] in convolutional layer before Leaky ReLUs. In the last

activation layer there is an additional one-dimensional convo-

lution layer with one filter of width one, which can reduce the

amount of parameters required for the final classification of

neurons.

C. Experimental Parameter Settings

The model is trained for 100 epoch with RMSprop [25] and

the learning rate is set as 0.0002, using an effective batch size

of 100. Fig. 2 shows how GAN is trained. In the experiment,

all original speeches should be down-sampled to 16kHz, and

we use a sliding windows with 500 ms length (50% overlap)

to extract chunks of speech samples. Each chunk has about

16384 samples. We also apply a high frequency pre-emphasis

filter with a coefficient of 0.95 to all input speech samples. In

additions, we set a = 100 and b = 20 in equation (11).

IV. EXPERIMENTAL RESULTS

A. Objective Evaluation

To evaluate the performance of our method we compute

the following objective measures: Perceptual Evaluation of

Speech Quality (PESQ) [26]; MOS prediction of the signal

distortion attending only to the speech (CSIG) [27]; MOS

Prediction of the intrusiveness of background noise (CBAK)

[27]; MOS of prediction of the overall effect (COVL) [27];

Short-Time Objective Intelligibility (STOI) [28]. All metrics

will test on the entire dataset and the higher values mean the

better performance.

TABLE I
Objective evaluation results comparing the baseline methods and Our

method on Valentini 2016.

Metric Noisy Wiener SEGAN Ralsgan-L1 Ours
PESQ 1.97 2.22 2.16 2.2483 2.2646
CSIG 3.35 3.23 3.48 3.5361 3.5707
CBAK 2.44 2.68 2.94 2.9821 2.9475
COVL 2.63 2.67 2.80 2.8721 2.8313
STOI 0.9210 0.9144 0.9250 0.9270 0.9316

Table I shows the objective evaluation results of different

speech enhancement methods on Valentini 2016 dataset. We

can observe that our method has higher PESQ and STOI scores

than other baseline methods. Comparing with SEGAN and

Wiener, the PESQ of our method increases 4.8% and 2%
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Fig. 3. PESQ and STOI results on Valentini 2017 at different SNR conditions.

TABLE II
Objective evaluation results comparing the baseline methods and Our

method on Valentini 2017.

Metric Noisy Wiener SEGAN Ralsgan-L1 Ours
PESQ 1.3316 1.4797 1.4067 1.4603 1.4701
CSIG 2.1596 2.0579 2.5572 2.5396 2.5570
CBAK 1.8189 1.8604 2.1325 2.1711 2.2599
COVL 1.6650 1.6693 1.9253 1.9323 1.8955
STOI 0.7416 0.7345 0.7480 0.7427 0.7570
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Fig. 4. CMOS box plot. The red central marks are the median, and the edges
of the box are the 25th and 27th percentiles respectively. Positive values mean
that our method is preferred

respectively, and it also slightly higher than Ralsgan-L1 (Our

method without MSE term). Table II shows the performances

of different enhancement methods at low SNR conditions on

Valentini 2017 dataset. It can be observed that our method

performs slightly worse on PESQ than Wiener, but it has the

highest STOI scores. Comparing with SEGAN and Ralsgan-

L1, our method can get better PESQ and STOI scores. Overall,

our method performs better than other baseline methods at low

SNR conditions.

In order to evaluate the speech enhancement performances

of our method in different noise level, we select PESQ and

STOI as assessment criteria. The experimental results on

Valentini 2017 are shown in Fig.3. It can be observed that our

method has higher score on PESQ compared with other three

baseline methods when the SNR below 10dB. Especially, our

method has a 2.9% and 2.2% improvement at 0 dB compared

with Wiener and SEGAN on PESQ respectively, and it also

performs slightly better than Ralsgan-L1. In addition, our

method always has better performance on STOI at different

SNR conditions compared with other three baseline methods.

These two experiments show that our method can obtain good

performance at low SNR conditions.

TABLE III
Subjective evaluation results comparing the baseline methods and Our

method on Valentini 2017.

Metric Noisy Wiener SEGAN Ralsgan-L1 Ours
MOS 1.73 2.84 3.74 3.91 3.96

B. Subjective Evaluation

Subjective evaluation is a perceptual test which has a

total of 16 listeners with 20 different sentences from Valen-

tini 2017 dataset. We will give five forms (Noisy signal,

Wiener-enhanced signal, SEGAN-enhanced signal, Ralsgan-

L1-enhanced signal and Our method enhanced signal) of

speech files for each sentence randomly. The listeners use

a scale from 1 to 5 to evaluate the overall quality and we

calculate the average score as the final score for each method.

In Table III, we can observe that our method has better

perceived quality than other baseline methods.

Moreover, we calculate comparative MOS (CMOS) by

subtracting the MOS of the two compared methods, describing

which speech enhancement method the listener prefers to. Fig.

4 shows how the speech enhanced by our method are preferred.

More specifically, compared with SEGAN system, 65% of the

cases prefer our method, and 27.5% prefer SEGAN. Compared

with Ralsgan-L1, 42.5% of the cases prefer our method and

37.5% prefer Ralsgan-L1 (no preference in 20% of the case).
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V. CONCLUSIONS

In this work, we proposed a novel GAN based speech en-

hancement model which uses relativistic average discriminator

on least squares loss function and add a mixed penalty term

in the G loss. The experimental results on Valentini 2016

and Valentini 2017 dataset show that our method performs

better than other baseline methods and it can obtain good

performance at low SNR conditions. However, the noise types

in our experiment are limited and the G network still lost

part of fine-grained information. Therefore, in the future work

we will improve the generalization ability of the model for

unknown noise types and keep more fine-grained information.
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