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Abstract—Image classification is a fundamental and important
task in the field of computer vision and artificial intelligence.
In recent years, image classification has made breakthrough
progress based on deep learning on large-scale datasets. However,
it still exits big challenges on small-sample image data. The
main difficulty is that the deep neural network easily overfit
small-sample data and has big variance. Ensemble learning is
a good way to overcome overfitting and reduce the variance of
the model; however, the existing ensemble methods based on
deep neural network still could overfit on small-sample image
data due to the big randomness of deep neural network. In
this paper, we propose a new ensemble method for small-sample
image classification tasks. The proposed method based on VGG16
network, we modified the structure of the VGG16 network to
two branches, one branch is a classifier based on prototype
learning, and the other is a classifier based on margin learning.
The experimental results on two small-sample image datasets,
the LabelMe dataset and the Caltech101 dataset, show that the
proposed method has better performance and higher stability
than other referred methods.

Index Terms—Small-sample, ensemble method, prototype and
margin learning

I. INTRODUCTION

In recent years, with the development of deep learning,

convolutional neural networks (CNNs) are increasingly used

in computer vision field, such as image classification [1], [2],

object recognition [3], [4], character recognition [5], video

tracking [6], etc. In the past few years, due to the rapid

development of the deep learning and the various complex

algorithms, the tasks of image recognition and scene classifi-

cation have reached a high level on large-scale data samples.

However, over-fitting problems will inevitably occur under

small-sample conditions when the depth of the model is large.

In addition, many kinds of data are following the long tail

distribution in real life, obtaining a large number of samples

are time-consuming and infeasible. Therefore, how to solve

the problem under the small-sample datasets is a hot topic.

Among the relation work of small-sample classification,

regularization techniques and ensemble learning are commonly

used methods. Regularization techniques are effective ap-

proaches to relieve the overfit neural network. Commonly used

regularization techniques include Parameter Norm Penalties

[7], Dropout [8], Noise robustness [9], Early termination [10],

etc. The Dropout method prevents the severe joint adaptation

of neurons by randomly deleting neurons and their connections

in the neural network during training. DropConnect [11] is an

extension of Dropout, it is proposed by L.Wan. Different from

Dropout, DropConnect randomly selects a subset of weights

from the network and sets it to zero. In 2016, Tong Xiao et

al. proposed a Domain Guided Dropout [12]. Different from

the standard dropout, all neurons are treated equally. Domain

Guided Dropout assigns a specific dropout rate for each do-

main according to the validity of each neuron on that domain.

Most of these works achieved good performance. However,

these regularization techniques can not well relieve overfitting

problems in small-sample image classification tasks.

Ensemble learning is a good way to overcome overfitting

and reduce the variance of the model. The ensembling method

[13], [14] is based on the neural network can be roughly

divided into two categories. One category is the classical

ensembling classification method, including Bagging and its

variants [15], [16], Boosting and its variants, and Mixture

of Experts (MoE) [17]. This category of ensembling has a

significant effect on the large-scale dataset. However, each

base classifier has a large generalization error when the sample

size of the training dataset is relatively small, which will also

reduce the generalization performance when ensembling all

base classifiers.

Another category is the new ensembling method which takes

advantage of the characteristics of neural network. Most of

them focus on how to obtain multiple base classifiers without

increasing training time. For example, Alan Mosca[18] pro-

posed a new method, Boosted Residual Networks, which takes

advantage of the development of deep learning and previous

white-box ensembling to achieve improved results for bench-

mark datasets. Gao Huang et al. [19] proposed Snapshot En-

sembling, which ensembling multiple neural networks without

increasing training costs by training a single neural network, it

converges along its optimized path to multiple local minima,

and preserves model parameters. Temporal Ensembling is

proposed by Samuli Laine et al [20]. Temporal Ensembling

trains on a single network by self-ensembling, combines the

Dropout regularization under different conditions, different

regularizations and input enhancement conditions to generate
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multiple sub-networks, and obtains the final prediction.
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Fig. 1. The ensembling method of combining prototype and margin learning.
The left branch is a classifier based on prototype learning, and the right branch
is a classifier based on margin learning.

The above ensembling classification methods have achieved

good results under large-scale samples. However, due to the

big randomness of deep neural network, the existing ensemble

methods still overfit on small-sample image data. And these

methods are also difficult to ensure base classifiers have

better performance and larger diversity. In this paper, we

propose a new ensembling classification method. The propose

ensembling method conclude two branches, one branch is

a classifier based on prototype learning, and the other is a

classifier based on margin learning. The two branches learn

separately in training, and they are used together in the testing

process.

To investigate the effectiveness of this method, we con-

ducted experiments on the LableMe [21] dataset and the

Caltech101 [22] dataset. The experimental results show that

the propose method has a good generalization performance on

these two datasets. In addition, compared with other methods,

the propose method obtains more stable results.

II. THEORETICAL BASIS

The proposed ensembling method of combining prototype

and margin learning is shown in Figure 1. Our method based

on the original VGG16 network, we modified the structure of

the VGG16 network to two branches.

As shown in Figure 1, the left branch of the network is the

same as the original VGG16 classifier. Considering we use

small-sample datasets, the right branch of the network only

uses two randomly initialized fully connected layers. Different

from the original VGG16, the feature layer and the left branch

of the network are pre-trained on the Imagenet dataset. After

that, the parameters of the feature layer and the left branch

are frozen during the network training. We use the output of

the fully connected layers to calculate the class center of each

class when the training is over, and each class center is saved.

For the right branch of the network, we use cross-entropy loss

for model optimization and use a lower learning rate to fine-

tuning it. Hence, we can regard the left branch of the network

as a prototype learning, and the right branch of the network

is seen as a margin learning. Next, we introduce the process

of the proposed method in detail.

Suppose xi is the i-th sample under the training set, con-

sidering a K class classification task in which the softmax

loss is used. For an input sample with f(x) as its extracted

deep feature vector of the left branch, its probability can be

expressed by Eq. 1, in which i ∈ M , M is the number of

training samples.

Xi = Softmax(f(xi)) . (1)

Because of the parameters of feature layer and the left

branch of the network are frozen during the network training,

we only need to optimize the right branch of the network.

Therefore, we use cross-entropy loss and a lower learning rate

to fine-tuning it.

After the model optimization is over, we can use the output

of the left branch of the network to calculate the class center of

each class, it can be expressed as Eq. 2, in which j ∈ [1, ...,K],
Cj represents a set of samples in the j-th class.

Xj =
1

M

∑
Xi∈Cj

Xi . (2)

In the testing process, on the left branch of the network, we

calculate the probability value of each test sample belonging to

each class, it can be expressed Xt. Then, the distance between

the t-th test sample and the j-th class center is calculated by

KL divergence, it can be expressed by Eq. 3, in which DKL

represents the KL divergence. After that, the KL divergence

is converted into the corresponding probability value Pt by

Equation 4, in which Lt = [Lt1, ..., Ltk].

Ltj = DKL(Xj ||Xt) . (3)

Pt = Softmax(Lt) (4)

Similarly, the right branch of the network can also get the

probability values P̃t of testing samples, it can be reflected in

Eq. 5, in which xt indicates the t-th sample of testing dataset;

g(x) indicates the extracted deep feature vector of the right

branch. Finally, we combine the probabilities of the left branch

Pt and the right branch P̃t to classify the test samples, as

shown in Eq. 6, in which a is hyperparameter.

P̃t = Softmax(g(xt)) . (5)

P = aPt + P̃t . (6)
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TABLE I
Comparison of the classification accuracies and standard deviation of four

methods on the LabelMe dataset and the Caltech101 dataset.

Dataset Snapshot Dropout VGG16 Ours

LabelMe

Mean 0.9088 0.9077 0.9112 0.9201

Std. 0.0044 0.0036 0.0054 0.0036

Caltech101
Mean 0.9188 0.9206 0.9238 0.9289

Std. 0.0025 0.0026 0.0027 0.0024

Fig. 2. Box plot comparison of the accuracies obtained by Snapshot, Dropout,
VGG16, Ours on the LabelMe dataset and the Caltech101 dataset. The central
mark is the median, and the edges of the boxes are the 25th and 75th
percentiles. The outliers are marked individually. Each method is run 30 times
to produce the box plots.

III. EXPERIMENTAL RESULTS AND ANALYSIS

We focus on experimental results and data analysis on the

LabelMe dataset and the Caltech101 dataset in this section.

The preprocessing of experimental data and network structure

are introduced on the first part. The specific network parameter

settings and the specific experimental results are introduced on

the second and third part.

A. Datasets

1) LabelMe Dataset: The LabelMe is a natural scene im-

ages class dataset, it contains 8 classes: coast, mountain, forest,

open country, street, inside city, tall buildings and highways.

We randomly select 210 images for each class, of which 100

images, 100 images and 10 images where are used for the

training dataset, test dataset and validation set, respectively.

The total number of images is 1680.

2) Caltech101 Dataset: The Caltech101 is a digital images

dataset, it was created in 2003 by the California Institute of

Technology, Li Fei Fei and Marco Andreetto. The dataset

contains 9,146 images and 101 classes, it including ”human

face”, ”animal”, ”mechanical”, ”landscape” and so on. Each

category has 40 to 800 images, most of which have about 50

images, and each image is approximately 300× 200 pixels.

B. Network Structure And Parameter Settings

We use a single-input, multi-output network architecture

on the LableMe and the Caltech101 datasets. One branch is

the classifier of the VGG16 network, we freeze the network

parameters. The other is the classifier of fully connected layers,

and the number of hidden layers is set to 32. After training,

we used the validation set to select the hyperparameter. Thus,

our hyperparameter a is set to 0.45 on the LabelMe dataset,

and it is set to 1 on the Caltech101 dataset.

To fine-tune the right branch of the network, we use the

RMSprop optimization algorithm with a momentum of 0.9

and set the batch size to 32, the initial learning rate is set to

0.0001; the loss function uses the cross-entropy loss; and the

number of epochs to 200. The L2 parameter is set to 0.005

when the dataset is LableMe, and it is 0.0005 when the dataset

is Caltech101. And we select the weight of the minimum loss

on the train set as the final weight after iteration 200 epochs.

C. Classification Accuracies

We compare four methods, Snapshot, Dropout, VGG16 and

Ours on the LabelMe and the Caltech101 dataset, each method

is run 30 times. VGG16 is the network that we remove the

the left branch and leave the right branch. The results of

accuracy(acc) and standard deviation (std.) are shown on Table

I.

As shown in Table I, on the LableMe dataset, the ac-

curacy and standard deviations are 0.9201 and 0.0036 for

Ours, 0.9112 and 0.0054 for VGG16, 0.9077 and 0.0036

for Dropout, and 0.9088 and 0.0044 for Snapshot. On the

Caltech101 dataset, the accuracy and standard deviations are

0.9289 and 0.0024 for Ours, 0.9238 and 0.0027 for VGG16,

0.9206 and 0.0026 for Dropout, and 0.9188 and 0.0025 for

Snapshot. Our method has improved about 1% to 2% com-

pared with another methods. The values of standard deviation

are also lower. The experimental results show that the proposed

method achieves competitive performance on the LabelMe

and the Caltech101 datasets. To further investigate the effect

of the proposed method on the robustness and stability, we

present box plots of the accuracies obtained by Snapshot,

Dropout, VGG16 and Ours in Figure 2. In Figure 2, we can

observe that on the LabelMe dataset, the box plot of Ours is

more compact than that of VGG16, Snapshot and Dropout.

Meanwhile, the maximum, median and minimum accuracies

of Ours are higher than others. Therefore, compared with other

methods, the proposed method have better stability.

D. Effect On The Different L2 Norm And Learning Rate

We also change the learning rate and the L2 norm to further

compare the performance of each method. Where the L2 norm

is a method of regularization. We first fix the learning rate of

the network, and change the L2 parameters (0.0005, 0.005,

0.05, 0.5) by a factor of ten. Similarly, we change the learning

rate (0.0001, 0.001, 0.01, 0.1) by a factor of ten after fix the

L2 (0.0005) parameter. The results are shown in Table II and

Table III.
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TABLE II
Comparison of the accuracies obtained by VGG16, Ours on the LabelMe

dataset and the Caltech101 dataset at different L2 norm values. The learning
rate(Lr) is 0.0001.

Dataset Lr L2 VGG16 Ours

LabelMe

0.0001

0.0005 0.9112 0.9185

0.005 0.9100 0.9201

0.05 0.9108 0.9169

0.5 0.9087 0.9097

Caltech101

0.0005 0.9238 0.9289

0.005 0.9232 0.9279

0.05 0.9069 0.9172

0.5 0.5626 0.8323

TABLE III
Comparison of the accuracies obtained by VGG16, Ours on the LabelMe
dataset and the Caltech101 dataset at different learning rate(Lr). The L2

norm value is 0.0005.

Dataset L2 Lr VGG16 Ours

LabelMe

0.0005

0.0001 0.9112 0.9185

0.001 0.9048 0.9134

0.01 0.9006 0.9019

0.1 0.3167 0.8362

Caltech101

0.0001 0.9238 0.9289

0.001 0.8806 0.9048

0.01 0.4353 0.7760

0.1 0.0956 0.7442

As shown in Table II and Table III, we can observe that

when the learning rate is 0.0001 and L2 changes from 0.0005

to 0.5, the accuracy of the VGG16 and Ours varies little on La-

belMe dataset. While on the Caltech101 dataset, the accuracy

of the VGG16 has a distinct changed. More specifically, when

the L2 is 0.5, the accuracy of the VGG16 is 0.5626, and the

accuracy of Ours is 0.9097. Similarly, when the L2 is 0.0005

and the learning rate changes from 0.0001 to 0.1, the accuracy

of the VGG16 has a distinct changed, but the accuracy of

Ours changes slightly. Especially when the learning rate is

0.1, the accuracy of the VGG16 is 0.3167 and Ours is 0.8362

on the LabelMe dataset. While on the Caltech101 dataset, The

accuracy of Ours is 0.7442, the VGG16 is 0.0956.

From the above analysis, our method has better stability in

the network than VGG16. The reason may be that the branch

based on prototype learning of the network has a certain

corrective effect on the learning of its branch based on margin

learning in our method. When the learning effect of the branch

based on margin learning is worse, the more influence of the

branch based on prototype learning. Therefore, the accuracy

of the network can be improved.

E. Ablation Study

To show more experimental details, we show the accuracy

and standard deviation values of the branch based on prototype

learning, the branch based on margin learning, and Ours. The

details are shown in Table IV.

TABLE IV
Accuracy and standard deviation of the two branches. Ours-Left: the branch
based on prototype learning of the network. Ours-Right: the branch based

on margin learning of the network. Ours: combine of the prototype learning
and margin learning.

Dataset Ours-Left Ours-Right Ours

LabelMe Mean 0.8238 0.9113 0.9200

Std. 0.008 0.0056 0.0034

Caltech101
Mean 0.7451 0.9212 0.9279

Std. 0.0042 0.0021 0.0024

As shown in Table IV, on the LabelMe dataset, the accuracy

of the Ours-Left is 0.8238, the accuracy of the Ours-Right is

0.9113, and the accuracy of Ours is 0.9200. The standard devi-

ation of Ours has decreased about 0.0022. On the Caltech101

dataset, the accuracy of the VGG16-Left prediction is 0.7541,

the prediction accuracy of the Ours-Right is 0.9212, and the

accuracy of Ours is 0.9279. Our method does not decrease

the variance. In summary, the proposed method improves the

accuracy and stability of the entire network model on the

small-sample datasets.

F. Discussion

From the experimental results on the LabelMe dataset and

the Caltech101 dataset, the proposed method has a better

performance compared with other methods. First, our method

works better on small-sample datasets. Second, a compari-

son of the standard deviations and box plots indicates that

our method has more stable performance compared to other

methods.

The proposed method possesses these advantages for the

following reasons, we constructed an ensembling network with

two branches, one branch is based on prototype learning,

another branch is based on margin learning. The two branches

have large variance, and each branch has a high accuracy.

So when combining the two branches, the model can achieve

better classification performance.

IV. CONCLUSIONS

This paper proposes a new ensembling method with two

branches, in which one branch is a classifier based on pro-

totype learning, and the other is a classifier based on margin

learning. The two branches have larger diversity, and each

branch has a high accuracy. The experimental results show that

compared with Snapshot, Dropout and VGG16, our method

(1) has a better performance on the small-sample dataset of

the LableMe and the Caltech101; (2) the model has a better

stability.
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