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Abstract—In this paper, we propose a conceptually simple,
flexible, and general framework for the semantic stereo task on
incidental satellite images. Our method efficiently detects the
objects in an incidental satellite image for generating a high-
quality segmentation map, and more accurately match the left-
right incidental satellite images for obtaining a more accurate
disparity map at the same time. The method, called semantic and
disparity bidirectional fusion network (SDBF-Net), consists of
three main modules: the Semantic Segmentation Module (SSM),
the Stereo Matching Module (SMM), and the Fusion Module
(FM). The semantic segmentation module takes advantage of
the capacity of global context information by extending the
receptive field to produce the initial segmentation map. The
stereo matching module applies the 3D convolutional operation
to regularize the feature map of left-right images to generate the
initial disparity map. The fusion module fuses the initial segmen-
tation and disparity map to obtain the refined segmentation and
disparity map. Extensive quantitative and qualitative evaluations
on the US3D dataset demonstrate the superiority of our proposed
SDBF-Net approach, which outperforms state-of-the-art semantic
stereo approaches significantly.

I. INTRODUCTION

Semantic segmentation and pairwise stereo is the most
promising and latest research directions in the computer
vision field, which has a significant impact on the other
applications such as autonomous driving for vehicles [1]–[3],
object detection and recognition in remote sensing images
[4], [5], and 3D model reconstruction and understanding [6]–
[8]. However, many researchers viewed this question as two
tasks in isolation, namely semantic segmentation, and stereo
matching. In this work, we consider the semantic segmentation
and the pairwise stereo match as one integrated problem, with
focus on the fusion of the two tasks and aim to train the fusion
network for state-of-the-art performance.

Convolutional neural networks (CNNs) have exhibited im-
pressive power in computer vision, especially semantic seg-
mentation and stereo matching. Many researchers have de-
signed straightforward and advanced networks for the two
challenging tasks [9]–[14].

For semantic segmentation, J. Long et al. applied the fully
convolutional networks (FCN) without any fully connected
layers to solve the problem caused by different resolution, and
achieved much higher accuracy which largely better than other
competitors [9]. The FCN followers used dilated convolutions

(a) left image (b) CLS [10] (c) DSP [23]

(e) right image (c) our CLS (d) our DSP

Fig. 1: Results on the US3D dataset. Different from the traditional
matching task, seasonal appearance differences pose challenges for
stereo matching on the incidental satellite images. We highlight
the advantage of our bidirectional fusion strategy. Note that the
completeness of segmentation map is better than the non-fusion
segmentation method [10] for the semantic segmentation task, and the
clarity of object structure outperforms the non-fusion stereo method
[23] for the stereo matching task.

[10], [15], spatial pyramid pooling (SPP) [16], [17], or feature
pyramid structure [18]–[20] to extend the receptive field of
networks for improving the performance. Follow those works,
R. Girshick et al. proposed the region-based CNN (R-CNN)
which adopted a manageable number of candidate object
regions to search region of interest (RoI) and evaluated the
convolutional networks on each RoI [21]. The followers of
R-CNN exploit the attention [22] or mask mechanism [11]
to boost the speed or increase the accuracy of the instance.
On the other hand, C. Hazirbas et al. utilized the depth
map to combine with RGB image for promoting the scene
understanding [14].

For stereo matching, A. Kendall et al. introduced cost
volume to list all possible disparity, then used a 3D CNN
to regularize the cost volume; it obtained the top performance
in the benchmarks [12]. The followers of GC-Net took ad-
vantages of semantic [24] or edge information [25], multi-
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Fig. 2: Our Semantic and Disparity Bidirectional Fusion Network, SDBF-Net. The network consists of three modules:
SSM (semantic segmentation module), SMM (stereo matching module), and FM (fusion module).

scales structure [26], and refinement process [27] to improve
the performance in the occlusion area. On this base, the
traditional stereo methods such as the warping or structural
similarity (SSIM) function were used as loss function to drive
the training process for achieving self-supervision [28], [29].

Albeit the above success in the field of semantic segmenta-
tion and stereo matching, the methods based on deep learning
still exist some limitations. First, these methods more concen-
trate on the two tasks alone rather than fusion information; the
two results could promote each other via fusing the different
dimension information. Second, the seasonal appearance and
differences pose are great challenges for the stereo matching
task on the incidental satellite images; the semantic informa-
tion could promote the scene understanding for the matching
task. The precise disparity and fine segmentation result should
be produced in one network, and they could promote the
performance of each other.

In this work, we tackle the above challenges and propose
a more elegant network architecture, called Semantic and
Disparity Bidirectional Fusion Network (SDBF-Net).

II. OUR METHOD

In this section, we present the semantic and disparity
bidirectional fusion network (SDBF-Net). The network ar-
chitecture is illustrated in Fig. 2. Our SDBF-Net consists of
three modules: semantic segmentation module, stereo match-
ing module, and fusion module (noting that the fusion module
contains two fusion sub-modules). First, the semantic seg-
mentation module is applied to extract semantic information
from the left incidental satellite image for getting the initial
segmentation map as shown in Sec. II-A. Next, the stereo
matching module is adopted to match the left-right incidental
satellite image to obtain the initial disparity map as shown in
Sec. II-B. Then, the fusion module fuses the initial disparity
and segmentation map to further improve the accuracy as
shown in Sec. II-C. Finally, we introduce the loss function
as shown in Sec. II-D. The implementation detail is described
in the following sub-sections respectively.

A. Semantic Segmentation Module

In this module, we apply a series of 2D convolutional
operations to produce the initial segmentation map, and each
convolutional operations is followed by a BN layer and a
ReLU layer except for the last layer. The semantic segmen-
tation module (SSM) consists of two parts: ResNet-101 part
and multi-scale feature learning part, as shown in Fig. 3.

(1) ResNet-101 Part
The first step of SSM is to extract the local context from

the left incidental satellite image I . The deep feature maps are
more robust to photometric differences (e.g., lighting effects
and perspective effects). We adopt the standard ResNet-101 as
the backbone. Because ResNet architecture is not the critical
point in this paper, we suggest interested readers read ResNet
paper [30] to get detail information. As shown in [30], we
could get the deep feature maps with the size (H/8) · (W/8) ·
·1024.

(2) Multi-Scale Feature Learning Part
The next step of SSM is to extract the multi-scale features

from the deep feature maps. To further extract hierarchical
contextual information using an atrous spatial pyramid pooling
(ASPP) block with 3×3 filters and dilated rate of 3, 6, 12 and
18 respectively. The exploitation of dilated convolution can en-
large the receptive field with less computational memory cost
and less spatial resolution decrease. We concatenate the deep
feature maps and hierarchical contextual information, and then
fuse them via passing one 1024-channel and one 512-channel
convolutional layers. Then, we utilize one 256-channel, one
128-channel, and one C-channel 2D deconvolutional layer
(both the stride is 2) to recover the size of feature maps for
producing the high-quality score map, where C denotes the
number of categories. After this part, we could obtain the
initial segmentation map with the size H ·W · C.

B. Stereo Matching Module

In this module, we apply a series of 2D or 3D convolutional
operations to obtain the initial disparity map, and each con-
volutional operations is followed by a BN layer and a ReLU
layer except for the last layer. The stereo matching module
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Fig. 3: The semantic segmentation module. The module contains two main parts: ResNet-101 and multi-scale feature learning.

(SMM) contains four parts: deep feature extraction part, cost
volume construction part, feature matching part, and disparity
regression part, as shown in Fig. 4.

(1) Deep Feature Extraction Part
The first step of SMM is to extract the deep unary feature

maps {Fi}N=2
i=1 of the left-right images {Ii}N=2

i=1 for building
the cost volume. We first pass the left-right incidental satellite
images through four 32-channel 2D convolutional layers (the
stride is 1, except for the first layer which is 2), three 32-
channel residual blocks, one 32-channel 2D convolutional
layers (the stride is 2), and fifteen 64-channel residual blocks
(both 3 × 3 filters) to encode them. Moreover, we extract
hierarchical contextual information from these feature maps
using the spatial pyramid pooling (SPP) block. Finally, we
concatenate hierarchical contextual information and previous
feature maps, and fuse them via one 128-channel 2D convolu-
tional layers and 32-channel 2D convolutional layers (the last
layer does not contain the BN layer and ReLU layer). We pass
the left-right incidental satellite images through this part with
the same weights. Therefore, we could obtain the left-right
unary feature maps with the size (H/4) · (W/4) · 32.

(2) Cost Volume Construction Part
The second step of SMM is to build a 3D cost volume by

listing all possible positions. Follow our previous work [31],
we adopt the unary feature maps of the left-right incidental
satellite to form the cost volume by concatenating the unary
feature maps with the traversed right unary feature maps.
Denote fL, fR of the {Fi}N=2

i=1 extracted from {Ii}N=2
i=1 by the

deep feature extraction part, the left-to-right feature volume at
the pixel position (u, v) with the potential disparity d in the
disparity range D could be expressed as:

V (d, u, v, f) = stack{fL (u, v) ||fR (u− d, v)} (1)

where || denotes the concatenation operation, f denotes the
feature dimension of the unary feature maps, V denotes the
cost volume, and stack{·} denotes the stack operation. In this
way, we construct the cost volume V with the size (D/4) ·
(H/4) · (W/4) · 64.

(3) Feature Matching Part
The third step of SMM is to regularize the cost volume by

a series of 3D convolutional operations. In this step, we use
the multi-scale 3D CNN to aggregate the feature information
alone the disparity dimension as well as spatial dimensions.
The multi-scale 3D CNN is very similar to a 3D version U-
Net, which consists of four level 3D CNN for aggregating the
neighboring information. We adopt the down-sampling process

(32-channel, 64-channel, 96-channel, 128-channel 3D convo-
lutional layers with the stride 2) to encode the cost volume
V and the up-sampling process (96-channel, 64-channel, 32-
channel, 32-channel 3D deconvolutional layers with the stride
2) to decode the encoded feature maps. Moreover, we link the
same level to build the residual structure promising the critical
information is not lost. Then, we utilize one 16-channel 3D
deconvolutional layer and one 1-channel 3D deconvolutional
layer (the stride both is 2) to recover the size of cost volume V .
After the feature matching part, we could get the regularized
cost volume with the size D ·H ·W .

(4) Disparity Regression Part
The final step of SMM is to regress the initial disparity

d̂init by the ArgMin operation. First, we convert the cost
volume V to the probability volume P via softmax operation.
Then, we calculate the sum of each disparity d weighted with
the probability volume P . The regression process could be
expressed as:

d̂init =

dmax∑
d=dmin

d× P (d) =

dmax∑
d=dmin

d× softmax (d) (2)

where P (d) is the probability estimation for all pixels at
disparity d. As shown in [12], the above disparity regres-
sion is more robust the classification-based methods, and the
regression-based method could produce the sub-pixel estima-
tion. After the disparity regression part, we could obtain the
initial disparity map d̂init with the size H ·W .

C. Fusion Module

In this module, we will apply a series of 2D convolutional
operations to fuse the segmentation and disparity maps for
further improving the accuracy, and each convolutional oper-
ations is followed by a BN layer and a ReLU layer except for
the last layer. The fusion module (FM) consists of semantic
fusion part and disparity fusion part, as shown in Fig. 5.

(1) Semantic Fusion Part
In the semantic fusion part, we apply a residual learning

network at the end of SDBF-Net. The initial segmentation
map, the left input image, and the initial disparity map are
concatenated as a 10-channel input, which is then passed
through one 32-channel 2D convolutional layers, three 32-
channel residual blocks and one 6-channel convolutional layer
(both 3 × 3 filters) to learn the segmentation residual. The
initial segmentation map is added back to obtain the refined
segmentation map. Note that, the last layer does not contain the
BN layer and ReLU layer for learning the negative residual.
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Fig. 5: The fusion module. The module contains two parts:
semantic fusion and disparity fusion. Note that semantic fusion
and disparity fusion are only different in the last layer.

(2) Disparity Fusion Part
In the disparity fusion part, the network structure is very

similar to the semantic fusion part except for the last layer.
The last layer in this part is one 1-channel convolutional layer.

After the fusion module, we could obtain the refined seg-
mentation and the refined disparity map with the same size as
the input incidental satellite images.

D. Loss Function

In the above sections, the stereo matching is a regression
problem, but the semantic segmentation is a classification
problem. We design the different loss function for the two
problems.

(1) Loss Function in Semantic Segmentation
For semantic segmentation is a classical classification prob-

lem, we train the semantic segmentation module and its fusion
module with cross-entropy loss. First, we convert the output
to the probability volume P via the softmax operation. Then,
we use the cross-entropy function to calculate the loss. The
process could be represented as:

Lossi =
∑
Pi

(
C∑
i=1

−Pi (i, p) · logQ (i, p)

)

Lossr =
∑
Pr

(
C∑
i=1

−Pr (i, p) · logQ (i, p)

) (3)

where p denotes the spatial image coordinate, Pi or Pr denotes
the probability volume before or after fusion module, Pi (i, p)
or Pr (i, p) denotes a voxel in the probability volume Pi or
Pr, Q denotes the ground truth binary occupancy volume,
which is generated by the one-hot encoding of the ground

truth with the number of categories C, and Q (i, p) denotes
corresponding voxel to Pi (i, p) or Pr (i, p).

(2) Loss Function in Stereo Matching
For stereo matching is a regression problem in this paper, we

train the stereo matching module and its fusion module with
L1 loss. Because the labels of the many datasets is sparse, we
average our loss over the labeled pixels. The process could be
represented as:

Lossi =
1

N

N∑
n=1

||d (p)− d̂i (p) ||1

Lossr =
1

N

N∑
n=1

||d (p)− d̂r (p) ||1

(4)

where N denotes the number of the valid labels, p denotes
the spatial image coordinate, and d (p) denotes the value of
ground truth at the pixel p.

III. EXPERIMENTS

In this section, we will evaluate the performance of our
method on an emerging semantic stereo dataset: the urban se-
mantic 3D (US3D) [32]. First, we present our implementation
details about the training process and testing process as shown
in Sec. III-A. Then, we compare the contribution of the differ-
ent component in SDBF-Net as shown in Sec. III-B. Finally,
we quantize the performance of our method and compare with
the state-of-art methods on the data fusion contest pairwise
semantic stereo challenge benchmark as shown in Sec. III-C.

A. Implementation Details

(1) Dataset
The US3D dataset [32] includes 100 square kilometer

coverage for the United States cities of Jacksonville, Florida
and Omaha, Nebraska. The training set contains 4292 pairs
of epipolar rectified images and the corresponding labels
of the semantic segmentation and disparities with the size
1024× 1024. The testing set includes 50 testing pairs without
ground truth of semantic labels and disparity maps.

For semantic segmentation task, the classification labels are
based on the LSA specification, and the pixels are classified
each pixel into the following six categories: ground, high
vegetation/trees, building roof, elevated road/bridge, water and
unlabeled.
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left image initial segmentation map fusion segmentation map initial disparity map fusion disparity map

Fig. 6: The Results of our SDBF-Net on the US3D dataset. We highlight the result of before and after fusion. The completeness of the
fusion segmentation map is obviously better than the initial segmentation map. The clarity of the fusion disparity map exceeded outperforms
the initial disparity map.

For disparity prediction task, the disparity label is a 32-
bit floating point image, where each pixel value represents
disparity in pixel.

(2) Training and Testing
At training time, we implement SDBF-Net in Tensorflow,

and train the model with the ADAM optimizer (β1 = 0.9, β2 =
0.999) on the US3D dataset [32]. For all iterations, we set
a batch size of 2, the learning rate 1 × 10−3, the disparity
D = 128, and the number of category C = 6. Moreover, we
normalize input image with pixel intensities level ranging from
0 to 1, and randomly crop them into 448× 448. The training
procedure is performed on four NVIDIA 1080Ti GPUs, and
which contains three stages: semantic segmentation module
training stage, stereo matching module training stage, and
fusion module training stage for 1000, 200, and 200 epochs
respectively.

At testing time, we link the three modules and push the
full size left-right incidental satellite images into the network.
Then, we apply the fusion results as the final results and
upload the final results to the CodaLab benchmark website
for evaluating our model.

(3) Evaluation Metric

The evaluation metrics are following previous works [32].
For semantic segmentation task, the mean intersection over
union (mIoU) is applied for assessing the performance. For
stereo matching task, the average end-point error (EPE) and
the fraction of erroneous pixels (D1) are adopted for evaluating
the consistency. For a better evaluation, the US3D dataset pro-
vides a new evaluation criterion called mIoU-3, the concrete
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calculating methods are as follows:

mIoUt =
1

C

∑
c

TPt

TP + FP + FN (5)

where t denotes threshold of correct disparity, TP denotes
matched pairs of segments, FP denotes unmatched predicted
segments, FN denotes unmatched ground truth segments, and
C denotes the number of categories. mIoU-3 means FP must
have both the correct semantic label and disparity error less
than a given threshold 3 pixels.

B. Ablations

To verify the effectiveness of our design, we conducted
experiments with different settings to evaluate SDBF-Net,
including the use of fusion module, the backbone network
of semantic segmentation module, etc. The results are shown
in Tab. I and Tab. II.

TABLE I: Evaluation of the semantic segmentation module
with different settings. Computed mIoU on the US3D test set.

Model Setting mIoU Time (s)
backbone ASPP

SSM ResNet-50 - 0.646 0.151
SSM ResNet-50

√
0.723 0.156

SSM ResNet-101 - 0.739 0.234
SSM ResNet-101

√
0.759 0.239

SSM + Fusion ResNet-101
√

0.767 0.245

TABLE II: Evaluation of the stereo matching module
with different settings. Computed the end-point-error and
percentage of three-pixel-error on the US3D test set.

Model Setting
D1 (%) EPE Time (s)

SPP 3D CNN

SMM - - 40.32 8.77 0.143
SMM

√
- 40.40 8.63 0.147

SMM -
√

10.77 1.55 0.696
SMM

√ √
10.55 1.50 0.701

SMM + Fusion
√ √

8.02 1.31 0.713

As shown in Tab. I and Tab. II, it qualitatively demonstrates
the advanced nature of using the SDBF-Net we proposed.
First, the fusion module has a significant performance im-
provement for semantic segmentation task and stereo matching
task in mIoU and EPE respectively. Second, SPP, ASPP, and
3D CNN enhance the scene understanding ability of the model
effectively. The results prove the rationality of our designed
model.

C. US3D

To evaluate the performance of our model, we use our best
model trained in the ablation experiments to calculate the
segmentation and disparity map and submit the results to the
CodaLab evaluation server. Because the US3D is an emerging
dataset, many researchers submit their results without the

related papers. Thus, we use the baseline result provided in
[32] as a reference to assess our model as shown in Tab. III
and present our high-quality results in Fig. 6.

TABLE III: Performance comparison with other state-of-
the-art methods. We computed the end-point-error, mIoU,
and percentage of three-pixel-error on the US3D test set.

Model mIoU D1 (%) EPE Time (s)

CU-PSM [33] 0.772 - - -
ICNet [34] + SGM [35] 0.700 43.00 10.34 -

DeepLab v3 [10] + SGM [35] 0.750 43.00 10.34 -
ICNet [34] + iResNet-i2 [23] 0.700 33.00 3.05 -

DeepLab v3 [10] + iResNet-i2 [23] 0.750 33.00 3.05 -
ICNet [34] + DenseMapNet [36] 0.700 35.00 3.51 -

DeepLab v3 [10] + DenseMapNet [36] 0.750 35.00 3.51 -
MRFCNet [37] 0.790 9.06 1.39 -

SDBF-Net 0.767 8.02 1.31 1.08

As shown in Tab. III and Fig. 6, our method achieve superi-
ority performance compared to the baseline, which proves the
effectiveness of our method. Moreover, The D1 and EPE of
our method rank first in the CodaLab evaluation server 1 (id:
raoxi36, the screenshot of our comprehensive score mIoU-3 as
shown in Fig. 7) before August 27, 2019. The estimated results
clearly demonstrate that SDBF-Net significantly improves for
the semantic stereo task. Our approach takes full advantage
of fusion technology to largely promote the result of D1
compared with other state-of-the-art methods.

Fig. 7: The screenshot of our comprehensive score in the
codalab server. The comprehensive score mIoU-3 contains
two parts: mIoU and D1.

IV. CONCLUSIONS

In this paper, we have presented a novel network framework
SDBF-Net for the semantic stereo task on incidental satellite
images. The method utilizes the semantic segmentation and
stereo matching modules to predict the dense-pixel initial
segmentation and disparity map. Moreover, the fusion module
fuses the initial segmentation and disparity map for generating
the refined segmentation and disparity map. Extensive exper-
iments demonstrate the simple fusion strategy could obtain a
great improvement for disparity prediction task and a small
promotion for semantic segmentation.
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