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Abstract—Disparity prediction from stereo images is essential
to computer vision applications such as autonomous driving, 3D
model reconstruction, and object detection. To more accurately
predict disparity map, a novel deep learning architecture (called
MSDC-Net) for detecting the disparity map from a rectified
pair of stereo images is proposed. Our MSDC-Net contains
two modules: the multi-scale fusion 2D convolution module and
the multi-scale residual 3D convolution module. The multi-scale
fusion 2D convolution module exploits the potential multi-scale
features, which extracts and fuses the different scale features
by Dense-Net. The multi-scale residual 3D convolution module
learns the different scale geometry context from the cost volume
which aggregated by the multi-scale fusion 2D convolution
module. Experimental results on Scene Flow and KITTI datasets
demonstrate that our MSDC-Net significantly outperforms other
approaches in the non-occluded region.

I. INTRODUCTION

Disparity estimation aims at predicting the disparity d from
a pair of stereo images, which is an essential intermediate com-
ponent toward 3D scene reconstruction and understanding. For
example, the disparity map information can benefit tasks such
as autonomous driving for vehicles [1], [2], object detection
and recognition [3], [4], and 3D model reconstruction [5]–[7].

In general, traditional stereo matching methods care more
about how to accurately compute the matching cost and how
to apply local or global information to refine the disparity
map [8]–[10]. C. Rhemann et al. replaced the cost volume by
considering cost aggregation methods as joint filtering. Their
method proved that simple linear image filters such as a box or
gaussian filter could even be used for cost aggregation [11]. K.
Zhang et al. took advantage of cross-scale cost aggregation to
optimize the cost volume. It showed cross-scale framework is
useful and leads to significant improvements [12]. K. Zhang et
al. employed an area-based local stereo matching algorithm for
all image regions to evaluate disparity map, efficient approach
that finding the matching points of given points within a
predefined support window [13]. H. Simon et al. proposed
a semi-global matching approach based on the coarse-to-
fine (CTF) strategy to accelerate convergence and to avoid
unexpected local minima [14]. The traditional methods tend
to be highly explanatory and adaptable.

Recently, deep learning has made considerable achieve-
ments in understanding semantics from the raw data in match-
ing corresponding points. Compared with the conventional
methods, deep learning based methods are capable of making

significant improvements in both precision and speed [15]–
[18]. GC-Net employed the hierarchical 3D convolutions
architecture to learn context from the cost volume which
concatenated by each unary features [17]. SsSM-Net proposed
a novel training loss to exploit the loop constraint in im-
age warping and to handle the texture-less areas, leaving it
can self-improve by adapting itself to new imageries [19].
SGM-Net utilized the penalties estimation method to control
the smoothness and discontinuity of the disparity map [20].
PSM-Net [18] exploited global context information by spatial
pyramid pooling (SPP) [21], [22] and dilated convolution
architectures [23]. Mayer et al. introduced two end-to-end
net-works for disparity estimation (Disp-Net) and optical flow
(Flow-Net). They also created a large synthetic dataset called
scene flow to improve the state-of-the-art [24]. S. Zagoruyko
et al. trained a non-learned cost aggregation and regularization
combined deep network to match 55 image patches. It shows
that multiple neural network architectures specifically adapt to
the stereo matching task [25]. The main idea of these methods
is how to learn the context information from left-right images.

In this work, we propose a novel multi-scale dense and
contextual networks (MSDC-Net) to exploit global context
information in stereo matching effectively. We design a multi-
scale fusion 2D convolution module to improve the global
context understanding ability by extracting the cross-scale
feature. Moreover, we redesign the 3D convolution module
from the GC-Net and introduce the multi-scale residual 3D
convolution, which improves the utilization of global context
information. The experimental results prove that the proposed
architecture outperforms GC-Net in learning global context.

Our main contributions can be summarized as:
• We propose an end-to-end learning framework for stereo

matching without any post-processing.
• We design a multi-scale fusion 2D convolution module

for incorporating global context information from images.
• We redesign a multi-scale residual 3D convolution to

learn the regional support of context information.

II. OUR METHOD

In this section, we present multi-scale dense and contextual
network (MSDC-Net) in detail. The network architecture is
illustrated in Fig. 1. Our model consists of four steps: multi-
scale features extraction and fusion, cost volume construction,
feature matching, and disparity map regression. First, the
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Fig. 1: Our end-to-end deep stereo regression architecture, MSDC-Net (Multi-Scale Dense and Context architecture).

multi-scale fusion 2D convolution module is applied to extract
and fuse the multi-scale features as shown in Sec. II-A. Then,
feature pairs are alternated to aggregate cost volume as shown
in Sec. II-B. After that, the matching features are learned and
the size of features volume is recovered by the multi-scale
residual 3D convolution module as shown in Sec. II-C, and
the disparity map is obtained by features volume regression as
shown in Sec. II-D. Finally, we introduce the loss function of
MSDC-Net as shown in Sec. II-E. The implementation detail
is described in the following subsections, respectively.

A. Feature Extraction and Fusion

To get a robust descriptor which could represent the ambi-
guities in the photometric region and can incorporate local
context, it is common to use a feature representation to
capture local context [26]. We could use the deep feature
representation to incorporate hierarchical context information
by the Dense-Net [26]. In our model, we design a multi-
scale fusion 2D convolution module through a series of 2D
convolutional operations as shown in Fig. 3. The basic feature
number is 32, and each convolutional layer is followed by
a BN layer and a ReLU layer. The multi-scale fusion 2D
convolution module contains two parts: different scale feature
extraction and multi-scale features fusion.

Different scale feature extraction part is applied to extract
the features with different size from image pairs. This part
owns the 51 convolution layers with the different convolution
filters. To reduce the calculation, we adopt the 5 × 5 convo-
lutional filter with the stride of two to subsample the image
pairs. Following this layer, we apply the dense block consisting
of 16 convolutional layers with 3× 3 convolutional filters and
direct connections between four convolutional layers. Thus, we
could obtain the feature size about 1/2H×1/2W . In the same
way, we could get the feature size about 1/4H × 1/4W and
1/8H×1/8W , and padding the feature size to 1/2H×1/2W .
Then we concatenate the different size features to obtain the
aggregating features volume.

Multi-scale feature fusion part fuses the aggregated features
volume to form a cost volume. It has 18 convolution layers
with the different filters. To avoid losing the critical informa-
tion and fusing the aggregating features volume, we adopt 128
convolutional filters with the size 5× 5 and the stride of two
to subsample the aggregating features volume. Then the dense
block fuses these features. We obtain the unary features by

passing stereo images with the same parameter.

B. Cost Volume Construction

Similar to the conventional stereo matching algorithms, we
construct a four-dimensional cost volume (H ×W ×D × F )
by concatenating the fusion features at each disparity level
as shown in Fig. 2. Specifically, the stereo matching cost is
computed using the deep unary features of stereo image pairs
to preserve prior knowledge of stereo vision.

Left feature map

Traversed right 
feature maps

Cost Volume

Fig. 2: Cost Volume Construction. The cost volume is
constructed via concatenating the fusion features. The blue
rectangle represents a fusion feature map of the left image.
the orange cube represents the set of traversed fusion feature
maps of the right image from 0 to the disparity range D/4.

C. Feature Matching

Given the fusion feature assembled cost volume, we learn
the matching cost at each candidate disparity from the different
size unary feature and the regularization from the local context.
The encoder-decoder networks often cost a vast amount of
calculation and very difficult to train. Thus, we redesign the
3D convolution module which could better learn the context
of tiny objects and improve the efficiency of the learning
process. To exploit the relationship between disparity, height,
and width of image pairs, we present the multi-scale residual
3D convolution module, which contains two parts: multi-scale
residual feature matching and scale recovery as shown in
Fig. 4. In the module, the basic feature number is 32.

The multi-scale feature matching part is applied to match the
geometry features from cost volume. This part has four levels,
and there are residual 3D convolution layers between each
subsampling. When subsampling, the features number will
become double. When up-sampling, the features number will
decrease one time. Moreover, we pass the features information
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Fig. 3: The multi-scale fusion 2D convolution module. Different scale feature extraction part uses the dense block to extract
the features with different size. Multi-scale features fusion part fuses the multi-scale features to form a cost volume.

Left feature map

Traversed right 
feature maps

Cost Volume

3D Conv, 
stride 2

3D Conv

3D Deconv, 
stride 2

L1L2L3L4

Scale recovery

Cost volume Reconstruction Feature Matching

Fig. 4: The multi-scale residual 3D convolution module. The module consists of two main parts. Feature matching part uses
the hierarchical 3D convolution architecture as a basic frame, then adopts residual mode as shown by green arrows to pass the
features toward the same level 3D convolution layer. Scale recovery uses two deconvolution operations to recover scale.

between the same level 3D convolution layer to avoid losing
the critical information. After this part, we obtain the matching
feature but in a low resolution 1/4H × 1/4W × 1/4D.

The scale recovery part is applied to recover the size of
the input image. In this part, we adopt two deconvolution
operations to recovery scale. The output of the scale recovery
part is a final feature volume with size H ×W ×D.

D. Disparity Map Regression

Compared with the classification-based matching method,
the regression is more robust and effective. First, we get the
probability of each disparity value d which can be calculated
from a final feature volume c via the softmax operation σ (·).
Second, we obtain the predicted disparity d̂ which can be
calculated as the sum of each disparity d weighted, as:

d̂ =

Dmax∑
d=0

d× σ (−cd) (1)

where c represents the final cost volume with size H×W×D,
and σ (·) represents the softmax operation.

E. Loss Function
The overall consideration based on the stereo matching

research, we think the absolute error value of predicted result
and ground-truth should be used in the different Loss function.
Compared to L2 loss function, the L1 loss is widely used in
object detection because of its robustness and low sensitivity
to outliers. To fit in with the stereo matching task, the L1 loss
function is redefined as:

L
(
d, d̂
)
=

1

N

N∑
i=1

SmoothL1

(
di − d̂i

)
(2)

in which

SmoothL1 (x ) =

{
1
3x

2, if |x| < 3.
|x| , otherwise.

(3)

where N is the total number of labeled pixels where the value
is not 0, d is the ground-true disparity, and d̂i is the predicted
disparity. In the loss function, we set three as the critical point.
Because we hope when the predicted pixels value less than
three, the influence of the points more less impact on the
network, and three as the critical point is the error which could
be accepted.
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TABLE I: The compared experiment of different model variants on the synthetic Scene Flow dataset [24].

Error Rate (%) Error
Model Type > 1 px > 3 px > 5 px MAE (px) RMS (px) Param. Time (ms)

Single scale 2D and 3D conv (replace conv layers 1-97) 28.7 18.2 16.4 7.34 24.8 4.6M 0.76
Single scale 2D conv (replace 2D conv layers 1-68) w Multi-Scale Residual 3D conv 14.9 9.5 8.1 3.6 17.9 4.6M 0.62
Single scale 3D conv (replace 3D conv layers 69-97) w Multi-Scale Fusion 2D conv 15.8 9.2 7.4 3.8 16.2 4.6M 0.74

MSDC-Net 11.6 8.7 6.4 1.6 11.3 4.6M 0.75

Fig. 5: Sceneflow test data qualitative results. From left: left stereo input image, ground-truth, disparity prediction.

III. EXPERIMENTS

In this section, the performance of the proposed method is
evaluated on two widely used stereo datasets: Scene Flow [24]
and KITTI [27]. We firstly show our experiment details on the
training process. After that, we discuss the different parameters
of our model and justify a series of our design models in the
various parameters. Finally, we compare the performance of
our method with the state-of-art on the KITTI stereo dataset.

A. Experimental parameters

The proposed MSDC-Net is implemented using Tensorflow.
All models were end-to-end trained by Adam Optimizer with
a constant learning rate of 1× 10−3 and β1 = 0.9, β2 = 0.99.
Color normalization is performed on each image to ensure the
pixel intensities ranged from 0 to 1. To increase the sample,
the input images are randomly cropped to size 256×512 from
a pair of normalized stereo images. The maximum disparity is
set to D = 192. We trained our model on four Nvidia 1080Ti
GPUs with the batch size of 8. The training process took 50
epochs for Scene Flow and 1000 epochs for KITTI.

B. Model Design Analysis

To verify the effectiveness of our design, we present an
ablation study to compare a series of different model variants.
We apply the Scene Flow dataset [24] for the experiments,
which contains 35, 454 training and 4, 370 testing images with
540 × 960. As shown in [17] and [18], the large dataset
used to train the model without over-fitting, it could help
to evaluate the model correctly. Moreover, the Scene Flow
dataset has dense ground truth and removes any discrepancies
which caused by wrong labels. To evaluate different model
variants, we first train each model for 50 epochs to obtain the
models, then verify the models from the test images, the result
as shown in Tab. I and Fig. 5.

As shown in Tab. I and Fig. 5, the multi-scale fusion 2D con-
volution and multi-scale residual 3D convolution architectures
perform excellent performance and significantly outperform
single scale 2D and 3D convolution architectures. Compared

with the stereo matching method based on 2D convolution
architectures, the 3D convolution architectures need more
computational cost both in the training process and predic-
tion process. However, 3D convolution architectures largely
promote the performance at the same time. Moreover, we
proposed the multi-scale residual 3D convolution architectures
are easy to train and convergence.

C. Experiment with KITTI

To evaluate the performance of our model, we fine-tune the
model which pre-trained on Scene Flow for a further 1000
epochs on KITTI 2012 and 2015 respectively. The KITTI 2012
and 2015 are real-world datasets with challenging and varied
road scene, which contain 194 training stereo image pairs in
the KITTI 2012 and 200 training stereo image pairs in the
KITTI 2015 with sparse ground-truth disparities. Moreover,
the datasets prepare another 194 testing image pairs in the
KITTI 2012 and 200 testing image pairs in the KITTI 2015
without ground-truth disparities. To prevent our model form
over-fitting on the KITTI, we divided the whole training data
into a training set 80% and a validation set 20%. We show the
representative results of our method in Fig. 6. In addition, we
evaluate the performance of our model with the state-of-art
methods on the KITTI server in Tab. II and Tab. III.

As shown in Fig. 6, our method could predict dense and
clean disparity maps. MSDC-Net benefited from the Dense
block has strong features extraction ability, compared to other
methods. Thus, MSDC-Net could obtain more robust results,
even in ill-posed regions. Our approach outperforms previous
deep learning methods, which produce noisy and inaccuracy
disparity maps. For this reason, these algorithms do not use
multi-scale feature extraction and fusion architecture. More-
over, the layers of these algorithms are often more shallow
but have more parameters; it maybe limits the performance in
the matching task.

As shown in Tab. II and Tab. III, Our model is better than
GC-Net, SGM-Net, etc., which were reported by the KITTI
evaluation server. Our method not only achieves state of the
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Fig. 6: KITTI 2012 and 2015 test data qualitative results. From left: left stereo input image, disparity prediction, error map.

TABLE II: Results on KITTI 2012 stereo benchmark. (different pixels threshold, as of 29 June 2019)

2 pixels (%) 3 pixels (%) 4 pixels (%) 5 pixels (%)

Method Out-Noc Out-All Out-Noc Out-All Out-Noc Out-All Out-Noc Out-All Avg-Noc Avg-All

L-ResMatch [15] 3.64 % 5.06 % 2.27 % 3.40 % 1.76 % 2.67 % 1.50 % 2.26 % 0.7 px 1.0 px
MC-CNN-acrt [16] 3.90 % 5.45 % 2.37 % 3.63 % 1.90 % 2.85 % 1.64 % 2.39 % 0.7 px 0.9 px

GC-NET [17] 2.71 % 3.46 % 1.77 % 2.30 % 1.36 % 1.77 % 1.12 % 1.46 % 0.6 px 0.7 px
SsSMnet [19] 3.34 % 4.24 % 2.30 % 3.00 % 1.82 % 2.39 % 1.53 % 2.01 % 0.7 px 0.8 px
SGM-Net [20] 3.60 % 5.15 % 2.29 % 3.50 % 1.82 % 2.39 % 1.60 % 2.36 % 0.7 px 0.9 px

MSDC-Net 2.78 % 3.47 % 1.64 % 2.12 % 1.22 % 1.58 % 0.98 % 1.26 % 0.5 px 0.6 px

TABLE III: Results on KITTI 2015 stereo benchmark. (as of 29 June 2019)

All pixels (%) Non-Occluded pixels (%)

Method D1-bg D1-fg D1-all D1-bg D1-fg D1-all Runtime

L-ResMatch [15] 2.72 % 6.95 % 3.42 % 2.35 % 5.76 % 2.91 % 48s
MC-CNN-acrt [16] 2.89 % 8.88 % 3.89 % 2.48 % 7.64 % 3.33 % 67s

GC-NET [17] 2.21 % 6.16 % 2.87 % 2.02 % 5.58 % 2.61 % 0.9s
PSMNet [18] 1.86 % 4.62 % 2.32 % 1.71 % 4.31 % 2.14 % 0.41s
SsSMnet [19] 2.70 % 6.92 % 3.40 % 2.46 % 6.13 % 3.06 % 0.8s
SGM-Net [20] 2.66 % 8.64 % 3.66 % 2.23 % 7.44 % 3.09 % 67s

MSDC-Net 1.96 % 3.77 % 2.26 % 1.83 % 3.57 % 2.12 % 0.7s

art results for both KITTI 2012 and 2015 benchmarks but also
a little better than most competing approaches in the non-
occluded region. Compared to other methods, our architecture
more explicitly leverages different scale geometry by 2D and
3D modules, resulting in an improvement in performance.

IV. CONCLUSIONS

In this work, we propose a highly efficient network archi-
tecture for stereo matching. The proposed framework consists
of two main modules: the multi-scale fusion 2D convolution
module and the multi-scale residual 3D convolution module.
The multi-scale fusion 2D convolution module incorporates
different levels of feature maps to form a cost volume. The
multi-scale residual 3D convolution module further learns to
regularize the cost volume via repeated top-down/bottom-up
processes. The proposed method has been verified through
the different experiments. Experimental results show that the
proposed method could predict a dense, clean and precise
disparity map from image pairs. For future work, we are
interested in exploring the potential of generative adversarial
networks and explicit semantics to improve our disparity map
prediction in the visual occlusion region.
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