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Abstract—The Lhasa dialect is the most important Tibetan
dialect and has the largest number of speakers in Tibet and
massive written scripts in the long history. Studying how to
apply speech recognition techniques to Lhasa dialect has spe-
cial meaning for preserving Tibet’s unique linguistic diversity.
Previous research on Tibetan speech recognition focussed on
selecting phone-level acoustic modeling units and incorporating
tonal information but paid less attention to the problem of limited
data. In this paper, we focus on training End-to-End ASR systems
for Lhasa dialect using transformer-based models. To solve the
low-resource data problem, we investigate effective initialization
strategies and introduce highly compressed and reliable sub-
character units for acoustic modeling which have never been
used before. We jointly training the transformer-based End-to-
End acoustic model with two different acoustic unit sets and
introduce an error-correction dictionary to further improve the
system performance. Experiments show our proposed method
can effectively modeling low-resource Lhasa dialect compared to
DNN-HMM baseline systems.

I. INTRODUCTION

Tibet’s culture is undergoing drastic modernization transfor-
mations in the twenty-first century. How to preserve Tibet’s
unique linguistic diversity is a very challenging topic today.
Among the numerous spoken forms of the Tibetic language
family, there are three major dialects: Lhasa Tibetan, Khams
Tibetan, and Amdo Tibetan. The Lhasa (the central Tibetan
dialect) is the most influential dialect and has the largest
number of speakers. Most of the classic Tibetan manuscripts
were written with this language in the long history. For this
reason, studying how to apply natural language processing
and speech recognition techniques to Lhasa dialect has drawn
increasing attention.

Conventional automatic speech recognition (ASR) systems
(GMM-HMM [1] and DNN-HMM [2]) require independently
optimized components: acoustic model, lexicon and language
model. The previous works on Tibetan speech recognition
research focussed on selecting acoustic modeling units [3],
incorporating effective tonal information [4], using the lattice-
free maximum mutual information (LFMMI) [5] and transfer-
learning [6] to enhance Tibetan ASR systems. However, the
improvement is still limited due to the low-resource data
problem. It is necessary to study novel acoustic modeling

techniques for Tibetan to further promote the performance of
Tibetan speech recognition.

The End-to-End neural network model simplified the ASR
system construction, and solved the sequence labeling problem
between variable-length speech frame inputs and label outputs
(phone, character, syllable, word, etc.) and achieved promising
results on ASR tasks. Various types of End-to-End model
have been studied in recent years, i.e. connectionist temporal
classification (CTC) [7], [8], attention-based encoder-decoder
(Attention) End-to-End models [9], [10], End-to-End LFMMI
[11] and End-to-End models jointly trained with CTC and
Attention objectives (CTC/Attention) [12], [13], [14], [15].
Recently, the transformer [16] has been applied to End-to-End
speech recognition tasks [17], [18], [19], [20] and achieved
promising results.

In this paper, we establish ASR systems for Lhasa dialect
using the state-of-the-art the transformer-based End-to-End
acoustic model. To use the low-resource data: We developed an
effective model initialization method. Secondly, we discovered
a set of highly compressed and reliable modeling units, which
is first time used for Tibetan language speech recognition to
our best knowledge. We also jointly training the transformer-
based End-to-End acoustic model with two different acoustic
unit sets. Finally, an error-correction dictionary is introduced
to further improve the system performance.

The rest of this paper is organized as follows. The related
works are overviewed in Section II. In Section III, the task
data and the baseline systems of this paper are introduced. In
Section IV, the proposed method for our task is explained and
evaluated. This paper concludes in Section V.

II. RELATED WORKS

Several areas most related to our research are listed as
follows.

A. Background knowledges of Lhasa Tibetan language

As we introduced in Section I. Tibetan language belongs to
the Sino-Tibetan family. It has three dialects, including Lhasa
Tibetan, Khams Tibetan, and Amdo Tibetan.

As shown in Figure 2, a typical Lhasa Tibetan character
has a set of basic components: root-script (Root.), pre-script
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Fig. 1. Geological distribution of three major Tibetan dialects.

(Pre.), super-script (Super.), sub-script (Sub.), vowels (Vo.) and
post-scripts (Post.) to express a wide range of grammatical
categories and speech changes, e.g., number, tense and case,
resulting in extremely large vocabularies.

Fig. 2. The structure of a character in the Lhasa Tibetan writing systems.

As shown in Figure 2, the phone set can be defined
differently by different combinations of these components,
which will influence the speech recognition performance. And
the initials come from the pronunciation of these components.
For Lhasa dialect, the real initials are 28. Tibetan finals are
determined by the possible combination of the character vowel
and its post-scripts.

In our previous reseach [4], [3], we choose the initial/final
based non-tonal phone set as acoustic modeling unit. The
non-tonal phone set was built by referring to the previous
phonological studies of Lhasa spoken language [21]. There
are totally 29 initial consonants and 48 final units without
considering the tones.

Since Lhasa Tibetan has no conclusive tonal pattern yet,
a four-tone pattern is designed based on the four contour
contrasts scheme [4]. The 48 non-tonal finals are extended
to 192 tonal finals. The 29 initials are kept unchanged. Since
the pitch-related features are still under-development, we only
use the filter-bank feature in this paper.

B. State-of-the-art End-to-End ASR systems with transformer

Recently, the transformer-based model [16] has been suc-
cessfully applied to various of ASR tasks [17], [20], [18]
and showed promising results. The transformer-based model
for ASR task maps an input speech feature sequenceto
a sequence of intermediate representations in the encoder.
Then, the decoder then generates an output sequence of
symbols (phonemes, syllables, words, sub-words or words)
given the intermediate representations. The biggest difference
with those commonly used End-to-End models [9], [10] is
the transformer-based acoustic model totally relies on no-
recurrence components [16]: multi-head self-attention (MHA),
positional-encoding (PE) and position-wise feed-forward net-
works (PFFN).

Fig. 3. The structure of transformer model.

As showin in Figure 3, for blocks in the encoders and
decoders, they are defined as follows:

1. The encoder-block has MHA and PFFN layer
consequently. Residual connections are used around each
of the MHA and PFFN layers. Residual dropout [22] is
introduced to each residual connection.

2. The decoder-block is similar to the encoder-block except
inserting one MHA layer to perform attention over the
output of the encoder-block stack.

3. PEs are added to the input at the bottoms of these
encoder-block and decoder-block stacks, providing
information about the relative or absolute position of the
tokens in the sequence.

In this paper, we build End-to-End ASR systems for Lhasa
dialect based on this transformer model.

III. TASK DESCRIPTION AND BASELINE SYSTEMS

A. Data sets

Our speech corpus has 35.82 hours speech signal data which
was collected from 23 Tibetan Lhasa native speakers, includ-
ing 13 males and 10 females. All the speakers are college
students whose mother tongue is Lhasa dialect. The speech
signal is sampled at 16KHz with 16-bit quantization. For the
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purpose of building a practical ASR system, the recording
scripts consist of mainly declarative sentences covering wide
topics. There are totally more than 38,700 sentences in the
corpus.

TABLE I
SPEECH CORPUS OF LHASA DIALECT

Datasets #Speakers #Utterances Hours
Training (Lhasa-TRN) 10M + 7F 36,090 31.9
Development (Lhasa-DEV) 3M + 3F 1,700 1.5
Testing (Lhasa-TST) 3M + 3F 2,664 2.4

B. Baseline system description

We train the baseline model using the 31.9 hours of training
data (Lhasa-TRN). We first trained a GMM-HMM model us-
ing the MFCC feature with linear discriminant analysis (LDA),
a maximum likelihood linear transform (MLLT) and feature
space maximum likelihood linear regression (fMLLR)-based
speaker adaptive training (SAT). We choose the initial/final
based phone set (29 initals and 192 tonal finals) as acoustic
modeling units following [4] and they clustered into 3320 tied-
triphone states during training the GMM-HMM model.

Then, we train a DNN model with five hidden layers each
comprising 2048 hidden nodes. The output layer had about
3320 nodes that corresponded to the tied-triphone states of
the GMM-HMM model. We used 40-dim filter-bank features
together with its 1st and 2nd order derivatives to train DNN
model. All these features are mean and variance normalized
(CMVN) per speaker. The filter-bank features of both the
previous and subsequent five frames (11 frames of features
in total) are added when inputting them into the DNNs.
The DNN model is initialized using unsupervised pre-training
and supervised fine-tuning using standard stochastic gradient
descent (SGD) based on the cross-entropy loss criterion. The
hyperparameters are adjusted based on the development set
(Lhasa-DEV). All these were implemented using the Kaldi
toolkit [23]. For testing, we decoded the sentences from test
set (Lhasa-TST) with trigram character-based language model
in the WFST decoding framework and evaluated our models
using the character error rate (CER%). The ASR performance
is 35.9% of CER%.

IV. THE LOW-RESOURCE LHASA DIALECT END-TO-END
ASR SYSTEMS

A. Training baseline End-to-End ASR systems

We used the implementation of the transformer-based neural
machine translation (NMT) [16] in tensor2tensor 1 for all our
experiments. The training and testing settings are similar to
[20] and they are listed in Table II.

We used 120-dim filter-bank features (40-dim static +∆
+∆∆), which are mean and variance normalized per speaker,
and 4 frames were spliced (3 left, 1 current and 0 right). Speed-
perturbation [24] is not used to save training time. We trained

1https://github.com/tensorflow/tensor2tensor

TABLE II
MAJOR EXPERIMENTAL SETTINGS

Model structure
Attention-heads 8
Hidden-units 512
Encoder-blocks 6
Decoder-blocks 6
Residual-drop 0.3
Attention-drop 0.0

Training
Max-length 5000
Tokens/batch 10000
Epochs 30
Label-smooth 0.1
GPUs (K40m) 4
Warmup-steps 12000
Steps 300000
Optimizer Adam

Testing
Ave. chkpoints last 20
Batch-size 100
Beam-size 13
Length-penalty 0.6
GPUs (K40m) 4

the transformer-based acoustic models using the training set
(Lhasa-TRN) of Lhasa dialect. We use 2072 characters as the
basic acoustic units.

For testing, we decoded the sentences from test set (Lhasa-
TST) without language model and evaluated our models using
the character error rate (CER%).

However, the performance was rather poor (97.2% of CER%
on Lhasa-TST) if the transformer-based acoustic model is
trained with a random initialization from scratch. The reason
for the poor performance could be the training data is too few
but the parameters of the transformer-based acoustic model
are relatively large (more than 200M) in this work. In next
subsections, we introduce the proposed methods to effectively
use the low-resource data.

B. Effective model initalization schemes

To compensate for the low-resourced training data, we
proposed to use a well-trained transformer model to initialize
our model. Its softmax layer is replaced by the language-
specific softmax layer which is initialized randomly. All the
existing languages in the world are so different in pronun-
ciation, grammar, and syntax. We believe using the model
well-trained from languages similar to Lhasa Tibetan dialect
(e.g., Mandarin in Figure 4) can effectively initialize the model
training process.

Fig. 4. A brief summary of language family tree.

In this paper, we use a Mandarin transformer-based model
(8 head-attention, 6 encoder-blocks and 6 decoder-blocks with
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512 nodes) trained from 178 hours of speech data selected
from AIShell dataset [25] with the CER of 9.0%.

Through this initialization method, the transformer can
converge very well. The CER% on Lhasa-TST reduced from
97.2% to 38.9%, which is very close to the ASR performance
of DNN-HMM baseline (35.9%). Impressed by the effective-
ness, we conduct this initialization method for all following
experiments in the next subsection. However, when we use
the same Mandarin transform-based model to initialize the
Japanese model also using 31 hours data from CSJ corpus
[26], there is only a little improvement from 55.1% CER% to
50.0%. It shows that selecting the language specified model
for initialing training low-resource model should be worth
investigation.

We also observed that we can’t initialize the target system
(filter-bank) using a transformer-based model trained from
a different feature (filter-bank with pitch feature [27]). The
CER% on Lhasa-TST had a sharp increase to 59.4%. It means
that this method is feature dependent.

C. The highly compressed sub-character units
A Tibetan character is further segmented to a sequence

of sub-character tokens as shown in Figure 5. The vertically
stacking components (super-script, root-script, sub-script and
vowels) in a character are seperated and regarded as individual
units. The boundary mark between two successive characters is
also regarded as an individual unit. We name this sub-character
unit set “basic-57.” We got confirmations from the linguists
that the original characters can be easily recovered as long as
the boundary marks exist.

Fig. 5. Segmenting characters to sub-character units.

Several modeling units were compared on Lhasa di-
alect ASR tasks, including phones, characters and the sub-
characters. As alternatives to the basic-57, the word-piece-
model (WPM)[28] is also used to segment the characters with
predefined unit number (100, 300, 500, 700, and 900). We used
the sentence-piece toolkit 2 as the sub-character segmenter.
We compare the ASR performances of following transformer
systems modeled with different acoustic units with the DNN-
HMM system as shown in Table III.

The model trained with the basic-57 unit
(Sub-char. transformer) achieved the closest performance

2https://github.com/google/sentencepiece

TABLE III
ASR PERFORMANCE (CER%) OF TRANSFORMER-BASED MODELS

TRAINED WITH DIFFERENT UNITS COMPARED WITH THE PHONE-BASED
DNN-HMM BASELINE SYSTEM

Network #unit CER% on Lhasa-TST
Phone DNN-HMM Senone 3320 35.9%

Char. transformer Char. 2072 38.9%
Sub-char. transformer Basic 57 37.3%

WPM 100 40.5%
WPM 300 39.4%
WPM 500 39.8%
WPM 700 40.7%
WPM 900 39.4%

Multi-unit transformer Basic 57+Char. 2072 36.3%
+ error-correction dictionary 35.3%

with the baseline (DNN-HMM) model, and significantly
(two-tailed t-test at p-value < 0.05) outperformed the
character-based model (Char. transformer). The transformer
models trained with other sub-character unit sets generated
by WPM model can’t outperform the basic-57 based
transformer. The small performance gap between the basic-57
based transformer and baseline DNN-HMM system can
be compensated with the acceleration on the training and
decoding speed. The acceleration comes from two parts: the
first part is the simplified training and decoding schemes by
using End-to-End training. The other part comes from the
highly compressed sub-character-based acoustic units, which
shows its reliability and advantages compared with previous
units.

D. Multi-unit Training and Error-correction Dictionary

In our experiment, we also find that joint train-
ing the transformer model with two different units (Ba-
sic 57 and Char. 2072) together using the multilin-
gual training method described in [18]. This model
(Multi-unit transformer) can significant improve the system
performance of Sub-char. transformer. Further improvement
can be achieved by introducing an error-correction dictionary,
which is statistically generated by comparing the recognition
result and oracle on training data using SCTK. Based on
these two techniques, our proposed Sub-char. units can make
the transformer-based End-to-End ASR system outperform the
DNN-HMM baseline model.

V. CONCLUSION

In this paper, we focus on training transformer-based End-
to-End ASR systems for Lhasa dialect. To effectively making
use of the low-resource data, we investigate effective initaliza-
tion strategies, a compressed acoustic modeling unit set, multi-
unit training and error-correction dictionary. Experiments show
our proposed method can effectively modeling low-resource
Lhasa dialect and outperforms conventional DNN-HMM base-
lines. We believe that our work will promote the existing
speech recognition research on Tibetan language.
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