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Abstract—We propose TLMS (Trainable Least Mean
Squares) and TNLMS (Trainable Normalized LMS)
algorithms, which use different step size parameter
at each iteration determined by machine learning ap-
proach. It has been known that LMS algorithm can
achieve fast convergence and small steady-state error
simultaneously by dynamically controlling the step size
compared as a fix step size, however, in conventional
variable step size approaches, the step size parameter
has been controlled in rather heuristic manners. In this
study, based on the concept of differential program-
ming, we unfold the iterative process of LMS or NLMS
algorithms, and obtain a multilayer signal-flow graph
similar to a neural network, where each layer has a step
size of each iteration of LMS or NLMS algorithm as an
independent learnable parameter. Then, we optimize
the step size parameters of all iterations by using
a machine learning approach, such as the stochastic
gradient descent. Numerical experiments demonstrate
the performance of the proposed TLMS and TNLMS
algorithms under various conditions.

I. Introduction
In gradient descent based iterative algorithms, such as

LMS (Least Mean Squares) algorithm[1], how to choose a
step size parameter is one of crucial issues, because the se-
lection has a huge impact on the convergence performance
of the algorithm. Generally speaking, faster convergence
requires larger step size, while stable convergence and
lower steady state error require smaller step size. Thus,
faster convergence and lower steady state error are con-
flicting requirements for iterative algorithms with a fixed
step size parameter. It is known that both requirements
can be simultaneously achieved by using larger step size
for the initial stage of the iteration process and decreasing
it as the iterative process goes on[2], however, the profile
of the variable step size parameter has been determined
in rather heuristic manner in existing work, because the
appropriate choice of the step size profile intricately 　
depends on various factors. NLMS (Normalized LMS)
algorithm [3] can achieve faster convergence than LMS
algorithms by taking advantage of the size of filter input
signal, but in practical implementation, the choice of the
step size is still of great importance for NLMS as well.
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In the field of machine learning, deep learning [4] us-
ing DNN (deep neural network) has been drawing much
attention due to its promising performance in various
applications such as image and voice recognitions. One of
breakthroughs made by studies on deep learning is the
optimization recipe of large number of parameters in a
multilayer network (or graph) via gradient descent method
based on backpropagation algorithm[5]. By generalizing
this computational recipe, K. Gregor and Y. Lecun have
been proposing a theoretical framework called differen-
tiable programming, where differentiable parameters in a
a computational graph are optimized based on gradient
descent based algorithms used in deep learning[6]. Here,
one of key issues is that the concept of differentiable
programming is applicable not only for neural networks
but also any algorithms which can be represented by
differentiable computational graphs.

As for a preceding work on the application of the idea
of differentiable programming to existing signal processing
algorithms other than [6], TISTA (Trainable Iterative
Shrinkage Thresholding Algorithm)[7],[8] has been pro-
posed recently. TISTA obtains the computation graph by
unfolding ISTA (Iterative Shrinkage Thresholding Algo-
rithm), which solves the ℓ1 − ℓ2 optimization problem in
compressed sensing, and the coefficient of ℓ1 regulariza-
tion term in the optimization problem is treated as an
independent parameter for each iteration and is optimized
by some learning algorithm based on backpropagation.
Here, a learning algorithm named incremental training is
employed to cope with the vanishing gradient problem[9]
by learning the computation graph from the input side
with increasing layers to be trained one by one, especially
for the case with deep computation graph generated from
the iterative algorithm with large number of iterations.

In this paper, we consider to apply the idea of differ-
ential programming to LMS and NLMS algorithms, and
propose TLMS (Trainable LMS) and TNLMS (Trainable
NLMS) algorithms, where the step size parameter of
each iteration (step size profile) is optimized based on
supervised learning using synthetic training data. In the
proposed method, we firstly obtain a multilayer signal flow
graph similar to neural network by unfolding conventional
LMS and NLMS algorithms. Then, assuming the step size
of each iteration to be a learnable independent variable,
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the step size of each iteration is optimized in the sense
of mean squared error between the adaptive filter output
and the desired filter output using pairs of the input
and the desired output as the training data. Since each
layer of the graph is differentiable with respect to the
learning parameter, we can employ some SGD (stochastic
gradient descent) type algorithm, such as SGD, RMSporp,
and Adam, for the optimization with the incremental
learning. In order to evaluate the performance of the pro-
posed TLMS and TNLMS algorithms, we have conducted
computer simulations. Specifically, the convergence perfor-
mance of the proposed scheme using Adam[10] is evaluated
for the system identification problem, and it has been
confirmed that TLMS and TNLMS algorithms achieves
both faster convergence and low steady state error, while
some instability of TLMS algorithm is observed for the
case with large number of filter taps or highly colored input
signal.

II. Review of LMS and NLMS algorithms

Here, we briefly review LMS and NLM algorithms[11]
considered in this paper.

A. LMS algorithm
　Let x(k) and d(k) ∈ R denote the input signal and the

desired output of the adaptive filter at time k, respectively.
If we define the input signal vector as x(k) = [x(k), x(k−
1), . . . , x(k − N + 1)]T and the coefficient vector of the
adaptive filter as h(k) = [h0(k), h1(k), . . . , hN−1(k)]T ∈
RN , the filter output signal at time k is given by y(k) =
h(k)T x(k). Then, the update equation of LMS algorithm
is given by

h(k + 1) = h(k) + 2αx(k)e(k), (1)

where e(k) = d(k)− y(k) is an error signal.
Then, we review the condition on the step size α that

the average of the filter coefficient vector h(k) obtained by
LMS algorithm converges to the optimum filter coefficient
vector hopt, which minimizes E[e(k)2]. By subtracting
hopt from both sides of (1), we have

h(k + 1)− hopt = (I−2αx(k)xT (k))(h(k)−hopt). (2)

If we assume so called independent assumption,

E
[
(I − 2αx(k)xT (k))(h(k)− hopt)

]
= E

[
I − 2αx(k)xT (k)

]
E [h(k)− hopt] ,

then we can easily show that

0 < α <
1

λmax
(3)

is the condition on the step size for the convergence. Here,
λmax is the maximum eigenvalue of E[x(k)xT (k)]. Note
that this condition does not guarantee the stability of LMS
algorithm.

B. NLMS algorithm
It is known that LMS algorithm suffers from slow rate of

convergence especially for the colored input signal. NLMS
is an improved algorithm by taking advantage of the size
(Euclidian norm) of input signal vector x(k) in the update
equation.

If we assume variable step size of LMS algorithm as
α(k), the error signal between the desired output d(k) and
the filter output obtained by using the filter coefficient
after the (k + 1)-th iteration h(k + 1) is given by

e+(k) = d(k)− hT (k + 1)x(k)
= [1− 2α(k)∥x(k)∥2

2]e(k). (4)

This error signal e+(k) is called a posterior error, and the
update equation of NLMS algorithm can be derived by
setting the step size of LMS algorithm so that the posterior
error to be zero as

α(k) = 1
2∥x(k)∥2

2
. (5)

Thus, the update equation of NLMS algorithm is given by

h(k + 1) = h(k) + x(k)
∥x(k)∥2

2
e(k). (6)

In actual implementations, however, the update equation
of (6) is rarely employed as its form. Instead, by intro-
ducing fixed parameters α, µ > 0, more robust update
equation of

h(k + 1) = h(k) + α
x(k)

∥x(k)∥2
2 + µ

e(k) (7)

is often employed. Here, α can be regarded as a step size
parameter of NLMS algorithm, and hence, we are not free
from the problem of step size selection even for the case
with NLMS algorithm.

III. Proposed TLMS and TNLMS Algorithms
Here, we propose TLMS and TNLMS algorithms, where

step size of each iteration is optimized by supervised learn-
ing using the pair of the input signal and the corresponding
desired signal as training data. In the proposed algorithms,
we treat step size of each iteration (or time) α(k) to be
independent learnable parameter, and optimize it with
some stochastic gradient descent based algorithm.

A. TLMS algorithm
In TLMS algorithm, we firstly set the step size to be

time variant parameter α(k), and consider the update
equation of

h(k + 1) = h(k) + 2α(k)x(k)e(k). (8)

We employ mini-batch learning with size N . Namely,
we define a set of input signal vectors as X =
{x0(k), x1(k), . . . , xN−1(k)}, a set of desired outputs D =
{d0(k), d1(k), . . . , dN−1(k)}, and a set of filter coefficient
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vectorsH = {h0(k), h1(k), . . . , hN−1(k)}. And, we assume
(8) holds for all elements of the sets as

hi(k + 1) = hi(k) + 2α(k)xi(k)ei(k), (i = 0, 1, . . . , N − 1),

where ei(k) = di(k)− yi(k) and yi(k) = xT
i (k)hi(k).

As for the cost function, we use J(k) defined as

J(k) = 1
N
∥d(k)− y(k)∥2

2, (9)

and optimize the step size parameter of each iteration
via incremental training [7] with gradient descent based
method. Here, y(k) = [y0(k), y1(k), . . . , yN−1(k)]T is a
vector composed by filter outputs of all batches at time
k, and d(k) = [d0(k), d1(k), . . . , dN−1(k)]T is a desired
output signal vector.

Then, we describe the gradient descent based approach
in TLMS algorithm assuming the size of batch to be
N = 1 for simplicity. The partial differentiation of the cost
function J(t) at the t-th round of the incremental training
with respect to the step size α(t− τ) is given by

∂J(t)
∂α(t− τ)

=∂J(t)
∂y(t)

∂y(t)
∂y(t− 1)

· · · ∂y(t− τ + 2)
∂y(t− τ + 1)

∂y(t− τ + 1)
∂α(t− τ)

=(−2)τ+1e(t)e(t− τ)xT (t− τ + 1)x(t− τ)

·
t−1∏

k=t−τ+1

[α(k)xT (k + 1)x(k)]. (10)

The step size α(k) of TLMS is updated based on (10). For
example, if we employ SGD for the optimization algorithm
of the step size, the update equation can be written as

α(k)← α(k)− β
∂J

∂α(k)
, (11)

where β is a leaning rate. Also, we employ a hard limitter
to keep α(k) ≥ 0.

B. TNLMS algorithm
By setting µ = 0 and the step sizeα to be time variant

parameter in the update equation of NLM algorithm (7),
we have

h(k + 1) = h(k) + α(k) x(k)
∥x(k)∥2

2
e(k). (12)

TNLMS employs the same cost function as TLMS of (9).
Then, the partial differentiation of the cost function J(t)
at the t-th incremental training round with respect to the
step size α(t− τ) is given by

∂J(t)
∂α(t− τ)

=∂J(t)
∂y(t)

∂y(t)
∂y(t− 1)

· · · ∂y(t− τ + 2)
∂y(t− τ + 1)

∂y(t− τ + 1)
∂α(t− τ)

=e(t)e(t− τ)xT (t− τ + 1) x(t− τ)
∥x(t− τ)∥2

2

·
t−1∏

k=t−τ+1

[
α(k)xT (k + 1) x(k)

∥x(k)∥2
2

]
. (13)

The step size of TNLMS also can be updated by SGD as
in (11), and the hard limitter will be employed to keep
α(k) ≥ 0.

α(0)

α(1)

α(t-2)

α(t-1)

E(t)

Training
Data

x(0),d(0),h(0)

x(1),d(1)
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x(t-1),d(t-1)

x(t),d(t)

h(1)

h(2)

h(t-2)

h(t-1)

h(t)

Fig. 1. Flow of proposed step size optimization of TLMS and TNLMS
algorithms

At the end of this section, we summarize the flow of
the proposed step size optimization based on incremental
training of TLMS and TNLMS algorithms in Fig. 1.

IV. Numerical Results
We have conducted numerical experiments of system

identification in order to evaluate the performance of the
proposed TLMS and TNLMS algorithms in comparison
with that of conventional LMS and NLMS algorithms.

A. Experimental Setup
We consider a system identification problem with the

desired output of d(k) = wT x(k) + v(k), where w =
[w0, w1, . . . , wL−1]T (wi ∈ N (0, 1)) is a true unknown
filter coefficient vector, x(k) is a filter input vector, and
v(k) ∈ N (0, 0.1) is an additive white Gaussian measure-
ment noise. For the generation of the filter input vector, we
have generated a sample x̃ = [x̃0, x̃1, . . . , x̃M+L−1]T from
multi dimensional Gaussian distribution having zero-mean
and covariance matrix of

Σ =


r0,0 r0,1 . . . r0,M+L−1
r1,0 r1,1 . . . r1,M+L−1

...
...

. . .
...

rM+L−1,0 rM+L−1,1 . . . rM+L−1,M+L−1

 ,

and set x(k) = [x̃k+L−1, x̃k+L−2, . . . , x̃k]T . It should be
noted that ri,j is the correlation coefficient of x̃i and x̃j ,
and thus ri,j = C |i−j|. The number of samples of x̃ for each
incremental training round is set to be 10, 000, and batch
size to be N = 1, 000. Also, the initial value of the step
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Fig. 2. Learning curve of TLMS (C = 0, L = 3)

size of time k is set to be α(k) = α0 · 0.9k, where α0 = 0.1
for TLMS and α0 = 1 for TNLMS. We have employed
Adam[10] as the optimization algorithm with the learning
rates of 0.001 for TLMS and 0.01 for TNLMS.

B. Performance of TLMS Algorithm
Figures 2 and 3 show the learning curve of the proposed

TLMS algorithm and the corresponding step size profile
obtained by the proposed learning method with the input
correlation coefficient of C = 0 and the number of taps of
the filter of L = 3. For comparison purpose, the perfor-
mance of the conventional LMS algorithm with fixed step
size parameter is also plotted in the same figures. In Fig.
2, the proposed TLMS achieves comparable convergence
rate to the conventional LMS with the step size of 0.15 or
0.2 while achieving lower steady state error. In Fig. 3, the
learned step size with the proposed method decreases as
the iteration goes, which coincides with the conventional
heuristic approach qualitatively, while this profile is rather
different from the one obtained in [7]. From these results,
we can see that the proposed approach is valid for the case
with white input signal.

Figures 4 and 5 show the learning curve and the cor-
responding step size profile for the case with the colored
input signal, where we set C = 0.3. In Fig. 4, it seems that
the step size of 0.15 to be close to the maximum value for
convergence of the fixed step size LMS algorithm, while
the proposed TLMS simultaneously achieves comparable
convergence rate as the case with step size of 0.15 and
lower steady state error. From Fig. 5, we can see that
the step size profile obtained in this colored input case
is similar to that with the case of white input signal.

Figures 6 and 7 show the learning curves and the
corresponding step size profiles for the case with much
higher input signal correlation (C = 0.8). In this case,
the learning curve of the proposed approach is rather un-
stable, and the obtained step size profile has complicated
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Fig. 3. Step size profile of TLMS (C = 0, L = 3)
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Fig. 4. Learning curve of TLMS (C = 0.3, L = 3)

form. The reason for the performance degradation will be
that, with this highly colored input scenario, the number
of iterations of 200 will not be enough for LMS based
algorithm, and thus the proposed method fails to learn
the appropriate step size profile.

Finally, we have changed the number of filter taps to be
L = 10. Figures 8 and 9 show the learning curves and the
corresponding step size profiles for L = 10 and C = 0.8.
The performance of the proposed approach is unstable in
this scenario as well. The reason could be that, because
of the increase in the number of unknown parameters,
the required number of iterations also increases, which
results in poor learning results. Thus, the differentiable
programming approach might not be suited for iterative
algorithms which requires hundreds of iterations, or some
more sophisticated learning algorithm might be required
for such iterative algorithms.
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Fig. 5. Step size profile of TLMS (C = 0.3, L = 3)
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Fig. 6. Learning curve of TLMS (C = 0.8, L = 3)

C. Performance of TNLMS Algorithm

Figures 10 – 17 show the learning curves of the proposed
TNLMS algorithm and the corresponding step size profiles
obtained by the proposed learning method with the input
correlation coefficient of C = 0, 0.3, 0.8 and the number
of taps of L = 3, 10. For comparison purpose, the perfor-
mance of the conventional NLMS algorithm with fixed step
size parameter is also plotted in the same figures. From
Figs. 2, 4, 6, and 8, unlike the case with TLMS algorithm,
we can see that the proposed TNLMS achieves stable and
fast convergence with the lowest steady state error for all
the parameter settings. This will be because of the fact
that NLMS requires much smaller number of iterations
than that of LMS algorithms, and hence the proposed
approach can successfully learn the appropriate step size
profiles. In Figs. 3, 5, 7, and 9, the step size profiles of
TNLMS is rather different from those of TLMS, while the
profiles of TNLMS with different system parameters are
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Fig. 7. Step size profile of TLMS (C = 0.8, L = 3)
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Fig. 8. Learning curve of TLMS (C = 0.3, L = 10)

quite similar. The reasoning of the shape of the step size
profile and the investigation of the performance sensitivity
on the profile will be our future work.

V. Conclusion
We have proposed TLMS and TNLMS algorithms,

which can optimize step size parameter of each iteration
via incremental learning based on the idea of differentiable
programming. The performance of the proposed algo-
rithms is evaluated via numerical experiments of the sys-
tem identification, and we have confirmed that proposed
approach can achieve faster convergence rate and lower
steady state error simultaneously especially for TNLMS
algorithm. Also, we have noticed that the proposed TLMS
algorithm suffers from unstable convergence behavior due
to failure in learning the step size parameter for the
case with highly colored input signals or larger number
of unknown filter coefficients. The future work includes
the improvement of the performance of TLMS and the
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Fig. 9. Step size profile of TLMS (C = 0.3, L = 10)
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Fig. 10. Learning curve of TNLMS (C = 0, L = 3)

investigation of some other iterative algorithms suited for
differentiable programming approach.
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Fig. 13. Step size profile of TNLMS (C = 0.3, L = 3)
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Fig. 14. Learning curve of TNLMS (C = 0.8, L = 3)
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Fig. 15. Step size profile of TNLMS (C = 0.8, L = 3)
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Fig. 16. Learning curve of TNLMS (C = 0.3, L = 10)
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Fig. 17. Step size profile of TNLMS (C = 0.3, L = 10)
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