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Abstract— Deep learning is known for its flexibility and 
infinite potential to approximate any function. Is it possible to 
approximate image compression using deep learning? The 
answer is yes. This article compares three major deep learning 
techniques used in image compression now and proposed an 
approach with deeper learned transformer and improved 
optimization goal, which achieved improved peak signal-to-noise 
ratio (PSNR) and multi-scale structural similarity (MS-SSIM) 
under very low bits per pixel (bpp). Experimental results show 
that the proposed approach outperformed BPG (RGB 4:4:4) in 
natural scene images compression, and is capable to handle 
arbitrary image shapes, which makes it applicable to practical 
image compression workloads. 

I. INTRODUCTION 

Traditional image compression methods have a long history 
of development and are quite mature and complex now. From 
widely used JPEG to its successor JPEG2000 [1], and the 
latest state-of-the-art BPG [2], traditional lossy image 
compression methods have improved a lot in both 
reconstructive quality and compression ratio, it seemed hard 
to exceed BPG in a short time. 

Different from traditional image compression methods, 
deep learning approach seems simpler. Deep learning 
approaches may use only deep neural networks to 
approximate any function it needs for image compression. By 
adjusting network structures, optimization goals, and 
optimization methods, the performance of such approximation 
can see improvement towards theoretical optimal status. 

Regarding using deep learning to approximate lossy image 
compression, there have been several milestone research work 
conducted these years.  

There are three major deep learning techniques used in 
image compression recently. The most important one is deep 
convolutional autoencoder. The second is generative 
adversarial networks (GAN); and the third is super resolution 
using deep neural networks. 

Deep convolutional autoencoder, represented by variational 
autoencoder applied to end-to-end image compression [3], 
outperformed the other two approaches, because its 
optimization goal can be set directly to minimize the 
difference between original image and reconstructed image, 
together with compressed file size, using metrics like mean 
square error (MSE), peak-signal-to-noise-ratio (PSNR), multi-
scale structural similarity (MS-SSIM), and bits per pixel (bpp). 
This ensures that the deep neural network is always trained 
toward a correct direction. To the best of our knowledge, 

there are two deep convolutional autoencoder based 
approaches that already outperform BPG using deep learning. 
The first is by combining hierarchical entropy model with 
autoregressive priors [4]. The second is by context-adaptive 
entropy [5]. 

GAN is good at generating images similar to original 
images, but it is not designed to minimize the difference in a 
controlled way. There are no explicit metrics to tell the 
difference between original images and reconstructed images, 
and the discriminator has to learn to distinguish arbitrary 
reconstructed images from all original images, which is much 
more complex than using autoencoder, which just need to 
compare one pair of images with explicit metrics. 
Experimental results have shown that GAN-based image 
compression often come with some visible difference in 
details, although it is impressive in compression ratio and 
image sharpness [6]. 

Super resolution using deep neural networks, represented 
by enhanced deep residual networks for single image super 
resolution (EDSR) [7], is the most limited approach because it 
is supervised learning, which needs both low-resolution image 
and corresponding high-resolution image as training data. 
Since low-resolution images are often achieved by traditional 
methods, such as bicubic down-sampling, or using some deep 
neural networks that approximate bicubic down-sampling, the 
accuracy of compressed data representation is limited by the 
traditional approach it used as reference, which makes it not 
as competitive as autoencoder in image quality, and not as 
competitive as GAN in compression ratio. 

Here we propose an improved deep convolutional 
autoencoder for end-to-end lossy image compression, which 
is optimized for RMSE (Root Mean Square Error) and bpp 
(bit per pixel), and also has deeper and doubled network 
structure. Our approach is different from previous work that 
set optimization goals only on MSE (Mean Square Error) and 
bpp [3], or MS-SSIM and bpp [8], or a choice between 
optimal MSE and optimal MS-SSIM (multi-scale structural 
similarity) [5]. Experimental results showed that our proposed 
approach outperformed previous state-of-the-art artificial 
neural network (ANN)-based image compression approaches 
represented by Ballé [3], as well as BPG (RGB 4:4:4). 

II. IMPROVED OPTIMIZATION GOAL 

One contribution of our work is the improved optimization 
goal. Since optimization goal has substantial influence on the 
performance of a trained ANN, we are especially interested in 
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modifying the optimization goal, and look for better 
performance. As proved by previous experiments by Ballé [8], 
if the autoencoder was optimized for MSE, the result was 
better than JPEG2000, and just slightly weaker than BPG. If 
the autoencoder was optimized for MS-SSIM, the result was 
similar in overall fidelity, but varied for images with different 
local contrast. Although experimental results exceeded their 
previous ANN approaches, none of them exceeded BPG. 
Even in the latest two approaches that outperformed BPG, 
none of these results were achieved by improving the 
optimization goal. Here we tried to improve the optimization 
goal. 

Optimization goal, i.e. objective function or loss function 
of a variational autoencoder [3] can be expressed as (1), with 
the total loss (denoted by ℒ), of encoder (denoted by 𝑔#), 
decoder (denoted by 𝑔$ ), and the discrete probability 
distribution of the quantized vector (denoted by 𝑃&). 

When encoding the input image (denoted by 𝑥), the input 
image 𝑥 is first transformed by encoder 𝑔# into a continuous-
valued vector (denoted by 𝑦	in Fig. 1, Fig.2 and Fig. 3), and 
then quantized into a discrete-valued vector (denoted by 𝑞) 
through a uniform scalar quantizer, which round each element 
to the nearest integer (denoted by Q), and finally use an 
entropy encoder to encode the quantized vector 𝑞 to generate 
the compressed file.  

When decoding the compressed file, first use an entropy 
decoder to decode the compressed file into quantized vector 𝑞, 
then reinterpret the quantized vector 𝑞 from discrete-valued 
vector to continuous-valued vector (denoted by 𝑦+	in Fig. 1, 
Fig. 2 and Fig. 3) using interpreter function (denoted by I), 
then use decoder 𝑔$ to synthesis reconstructed image (denoted 
by 𝑥+). 

The loss function equals to the entropy of the discrete 
probability distribution of the quantized vector, plus the 
distance (denoted by 𝑑 ) between input image 𝑥 and 
reconstructed image 𝑥+  multiplied by Lagrange multiplier 
lambda (denoted by 𝜆). 

 

ℒ.𝑔#,𝑔$,𝑃&0 	= 	−𝔼.log78𝑃&90 	+ 	𝜆𝔼[𝑑(𝑥, 𝑥+)] 

where 𝑞 = 	𝑄(𝑔#(𝑥)) 

and 𝑥+ = 	𝑔$(𝐼(𝑞)) 
 

In our approach, we leave the entropy part unchanged, and 
modify the distance part. Originally in Ballé's design [3], the 
distance function is just the MSE of perceptual space, which 
can be expressed as (2), where 𝑥 denote input image and 	𝑥+ 
denote reconstructed image. The problem of using MSE as the 
measurement of distance is that if we make a single very bad 
prediction, the squaring will make the error even worse and it 
may skew the metric towards overestimating the model's 
badness. That is a particularly problematic behavior if we 
have noisy data. On the other hand, if all the errors are small, 
or rather, smaller than 1, then the opposite effect is felt: we 
may underestimate the model's badness. 

 
𝑑A(𝑥, 𝑥+) 	= 	𝑀𝑆𝐸	 = 	‖𝑥, 𝑥+‖77 

 
In our approach, we use RMSE instead of MSE as the 

measurement of distortion as in (3). The major advantage of 
RMSE is that it is at the same scale as the target. In case of 
noisy data, RMSE is much smaller than MSE, which can 
prevent overestimating the model's badness, and in case of 
small error less than 1, RMSE is much larger than MSE, 
which can prevent underestimating the model's badness. 

 

𝑑F(𝑥, 𝑥+) 	= 	𝑅𝑀𝑆𝐸	 = 	H‖𝑥, 𝑥+‖77 

 

III. DEEPER LEARNED TRANSFORMER 

The original analysis transform network and synthesis 
transform network designed by Ballé [3] each contains only 3 
convolutional layers, with kernel size of 9 x 9, 5 x5 and 5x5, 
as shown in Fig. 1, where ¯ denotes down-scaling,  denotes 
up-scaling, GDN stands for generalized divisive 
normalization, and IGDN stands for inverse generalized 
divisive normalization. GDN and IGDN are inspired by 
models of neurons in biological visual systems, and effective 
in Gaussianizing image densities [10]. Besides, y denotes the 
transformed continuous-valued vector, it is then quantized by 
a uniform scalar quantizer (i.e. each element is rounded to the 
nearest integer) to generate the quantized vector 𝑞, and y_tilde 
denotes a continuous-valued vector reinterpreted from 
discrete elements of quantized vector 𝑞, as mentioned in (1). 

Inspired by progressive growing generative adversarial 
network (PGGAN) [9], we modify the network structure of 
autoencoder-like transformer, to make it deeper. As is shown 
in Fig. 2, we reduce the kernel size to 3x3, and add three more 
layers in the encoder, i.e. analysis transform. The benefit of 
doing this is that the encoder is capable to capture larger 
spatial features as the network become deeper. However, 
there is also minor disadvantage for doing so, which is the 
information loss during down-scaling, which may cause it 
harder to preserve enough information before entropy coding. 
The decoder part, i.e. synthesis transform, has a similar 
structure as the encoder, but with opposite directions.  

(2) 

(1) 

(3) 

 

Fig. 1   Ballé’s network structure for analysis transform (encoder, 
on the top) and synthesis transform (decoder, at the bottom) [3].  
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However, single layer of convolution does not provide 
enough trainable parameters and structures to learn complex 
feature representations before down-scaling. That is why 
PGGAN uses two fully connected convolutional layers before 
each down-scaling step. Therefore, we doubled the 
convolutional layers before each GDN and IGDN in our 
structure, as in Fig. 3, which allows the network to learn more 
features before losing information during down-scaling. 
 

As PGGAN outperforms previous GAN approaches in 
generative tasks, we expect such deeper network structure 
would also boost the performance of autoencoder, which was 
supported by experimental results. 

Although not directly compared in this paper, the 
experimental results of the deeper network design in Fig. 2 
and Fig. 3 were better than that of the previous shallower 
network structure in Fig. 1, which can be concluded from the 
improvements of our approach over BPG (RGB 4:4:4), which 
was not achieved by Ballé’s approach [3]. 

IV. EXPERIMENTS 

Our modifications and experiments are based on a Python 
implementation [11] of Ballé’s work in 2017 [3]. The 
performance of the original implementation was slightly 
better than JPEG 2000, but significantly worse than BPG 
(RGB 4:4:4), which can also be inferred from the original 
paper [3], so we didn’t include it in our experimental results 
in this paper.  

We trained the autoencoder with 139 high resolution sRGB 
images of natural scenes from CLIC [12] professional training 
dataset. Each image was cropped to 1024x1024. For each 
iteration the model was trained with a batch of 8 randomly 
cropped 256x256 patches truncated to RGB format. For quick 
comparison between different model configurations, the early 
stage models were trained for only 10K iterations, and there 

had been hundreds of such quick and small experiments. Then 
several outstanding models were selected, and continued to be 
trained to 50K iterations, and came to second round of 
selection. The third round was 250K iterations, and the final 
stage models were trained to 1M iterations. 

Our approaches were evaluated using Kodak True Color 
Image Suite [13], for the average of PSNR, MS-SSIM, and 
bpp on all 24 images, in comparison with BPG (RGB 4:4:4). 
The results showed that our proposed approach with improved 
optimization goal as described in (3) and deeper network 
structures as described in Fig. 3 has achieved better 
performance than BPG (RGB 4:4:4) in terms of subjective 
fidelity in sharpness and details. 

Fig. 4 shows one of the original lossless pictures from 
Kodak True Color Image Suite, and we can see clear details 
of the trees on the top right corner and the wall tiles on the 
bottom right corner, especially the transition of shadows 
between trees (marked with a blue box), and the sharp edges 
of each wall tile (marked with a blue box), which was 
compared to the compressed pictures later. 

Fig. 5 shows the picture compressed by BGP (RGB 4:4:4), 
and we can see significant blurred effect on the trees and wall 
tiles when comparing with the original picture. The shadows 
of the trees become flat blocks (marked with a red box), and 

 

Fig. 2   Our deeper network structure for analysis transform 
(encoder, on the top) and synthesis transform (decoder, at the 

bottom). 

 

Fig. 4   Original picture. Blue box areas are used to compare 
compression results of BPG (RGB 4:4:4) and that of our approach. 

 

Fig. 3   Our deeper and doubled network structure for analysis 
transform (encoder, on the top) and synthesis transform (decoder, at 

the bottom). 

 

Fig. 5   Picture compressed with BPG (RGB 4:4:4), QP = 42, 
compression level = 9, bpp = 0.835. Red box areas look blurred. 

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China 

55



the edges of the wall tiles almost disappear (marked with a 
red box). However, the bpp of this compressed picture is 
0.835, relatively higher than that of our approach which is 
shown next. 

Fig. 6 shows the picture compressed by our approach, 
where the details of the trees and wall tiles (marked with 
green boxes) are well preserved when comparing with the 
original picture, and is much sharper and clearer than that of 
the picture compressed by BPG (RGB 4:4:4), even though the 
bpp is at only 0.561, significantly lower than that of BPG 
(RGB 4:4:4).  

The major reason for such significant improvement in 
sharpness and detail fidelity is that our approach provides a 
non-linear transformer implemented as deep neural network 
which is better than the linear integer transformer used in 
BPG in terms of transforming from intensity domain to 
frequency domain. 

In plain areas, such as pure color walls, we did not see 
much differences regarding color or luminance between the 
original picture, the picture compressed by BPG (RGB 4:4:4) 
and that by our approach. Both BPG (RGB 4:4:4) and our 
approach performed very well on these plain areas. 

Regarding objective quality, we have compared our 

approach with BPG (RGB 4:4:4) on PSNR and MS-SSIM at 
comparable bpp, and our approach is superior in both metrics. 
From Fig. 7 we can see that the PSNR of our approach (red 
line) is consistently higher than that of BPG (RGB 4:4:4) by 
around 1%, when bpp raised from 0.1 to 0.4. Although PSNR 
under 30 is still not considered good quality, it is acceptable 
for the compression ratio between 60 and 240.  

The most impressive improvement is on MS-SSIM, which 
we can see from Fig. 8 that the MS-SSIM of our approach 
(red line) is consistently higher than that of BPG (RGB 4:4:4) 
by around 23% at the same bpp. This means our approach can 
preserve significantly more structural information than BPG 
(RGB 4:4:4) with the same compression ratio. 

V. CONCLUSIONS 

 We proposed an improved variational autoencoder with 
better optimization goal and deeper learned transformer, that 
outperforms BPG (RGB 4:4:4) in both PSNR and MS-SSIM 
at comparable bpp. With the same compression ratio, our 
approach achieved around 1% improvement on PSNR and 
23% improvement on MS-SSIM over BPG (RGB 4:4:4), 
which was not achieved by Ballé [3].  

Future work includes improvement with network structure, 
optimization on encoding and decoding time, and learned 
compression in the YCbCr color domain. This end-to-end 
image compression approach may also be applied to intra 
frame coding in video compression. 
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Fig. 6   Picture compressed with our approach, bpp = 0.561. Green 
box areas are still very sharp.  
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represents average rescaled MS-SSIM over 24 Kodak images, and 
the horizontal axis represents average bpp (bit per pixel) over 24 
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Fig. 7   PSNR (dB) vs bpp on Kodak dataset. The vertical axis 
represents average PSNR over 24 Kodak images, the horizontal axis 

represents average bpp (bit per pixel) over 24 Kodak images. 
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