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Abstract—There are two effective approaches to improve
the performance of an automatic speech recognizer with the
front-end processing under noisy condition, one is retraining
the acoustic model with the enhanced features, the other is
joint-training the acoustic model with the front-end processing
model. However, in real life, the automatic speech recognition
(ASR) systems are always located in cloud servers but the
front-end processing models run locally, which results in the
impracticality of the retraining and joint-training strategy for
ASR. In this paper, we investigate whether the independent front-
end processing can directly improve the performance of a speech
recognizer without retraining and joint-training. Three common-
used enhancement methods are evaluated in different time-
frequency (T-F) domains. Our experiments on CHiME-3 reveal
that, with appropriate T-F domains and enhancement methods,
the front-end processing can make 35.30% and 11.78% relative
word-error-rate (WER) reduction for the Gaussian Mixed Model
based (GMM-based) and Deep Neural Network based (DNN-
based) recognizer, respectively. For the DNN-based ASR system,
we propose using masking-based methods in log-fbank domain
to do front-end processing. We find that masking based methods,
in general, are better than spectral mapping based methods
with respect to WER reduction. In addition, the phases of noisy
speech are useless and even harmful to reduce the WER. For
generalization capability, the front-end processing can improve
the multi-conditional trained ASR system under both matched
and unmatched noise condition.

I. INTRODUCTION

Monaural speech enhancement aims at separating speech
from the noisy backgrounds by using one microphone. To im-
prove the speech intelligibility and quality, many enhancement
methods have been systematically evaluated and successfully
utilized. For this purpose, the deep learning based methods
significantly improve the enhancement performance [1]. From
the perspective of deep learning, training targets, learning
machines and input features are three important elements. 1)
Considering the training targets, speech enhancement meth-
ods can be divided into three groups, i.e., masking-based,
mapping-based and signal approximation based methods. The
masking-based methods try to predict a mask computed from
premixed noise and clean speech. Wang et al. proposed the
ideal ratio mask (IRM) in [2], which is frequently used in the
supervised speech enhancement. Erdogan et al. argued that the

phase-sensitive mask (PSM) will lead to higher signal-noise-
ratio (SNR) [3]. Williamson et al. found that enhancement
performance can be further improved by employing the com-
plex ideal ratio mask (cIRM) as the training target [4]. The
mapping-based methods try to enhance speech by finding a
mapping function between noisy feature and spectrum of the
clean speech [5]. The idea of signal approximation (SA) is
to train a ratio mask estimator that minimizes the difference
between the spectral magnitude of clean speech and that of the
estimated speech [6]. 2) For learning machines, deep neural
networks (DNNs) are employed to predict ideal masks [2], [4].
Lu et al. used a deep denoising auto-encoder (DDAE) to obtain
a clean Mel frequency power spectrogram (fbank) from a noisy
one [7]. In [8], [9], convolutional neural networks (CNNs)
have been introduced. Besides the feed-forward networks,
recurrent networks (RNNs) have also became a popular choice
in the speech enhancement community [3]. 3) As for input
features, Wang et al. proposed a complementary feature [10]
and Chen et al. found multi-resolution cochleagram is a better
feature in low signal-noise-ratio conditions [11].

Although deep learning based enhancement methods have
successfully improved the speech intelligibility and quality,
it is not so straight-forward to improve the performance of
an ASR system. Compared with human listeners, current
ASR systems are more sensitive to the noise interfering and
the speech distortion. To improve the robustness of an ASR
system, the multi-conditional training strategy is proposed
in speech recognition community, which performs acoustic
modeling on both clean and noisy utterances. However, This
strategy is shown to be effective in matched noise condi-
tion but gives an unremarkable performance for the unseen
noise [12]. To overcome this issue, there are two strategies
introduced to involve the front-end processing in the ASR
system. 1) The first one is using an enhancement model to
enhance both training and test sets and retraining the acoustic
model with enhanced features [13], [14]. Han et al. retrained
the acoustic model with features enhanced by a DNN-based
spectral feature mapping model. Weninger et al. proposed
a framework based on Long Short-Term Memory (LSTM)
RNNs [15] to enhance the noisy speech in the CHiME-2
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and achieved 6.83% improvement by retraining the acoustic
model [14]. 2) The second one is joint-training the front-end
enhancement model with the back-end acoustic model [16],
[17]. Wang developed a joint training framework and achieve
10.63% relative improvement on the CHiME-2 dataset (task-
2), which is the best performance on this dataset [16]. Liu et

al. proposed an adversarial joint training method and achieve
11.54% relative improvement on the test set of the CHiME-4
challenge [17].

All the above strategies require retraining or joint-training
the acoustic model, which are time-consuming and impracti-
cable in real life. Compared with speech enhancement, speech
recognition needs handcrafted annotations which make the
collection of training data hard and expensive. In real life,
the ASR systems are always deployed in cloud servers but
the front-end processing models run locally, which results in
the impracticality of the retraining and joint-training strategy
for ASR. A preferred choice is to train the front-end enhance-
ment model and the back-end acoustic model independently.
Therefore, we investigate whether the deep learning based
enhancement methods can directly improve the performance
of a multi-conditional trained recognizer without retraining or
joint-training under the real noisy condition. In this paper,
three common-used enhancement methods in different time-
frequency (T-F) domains are investigated on the CHiME-3
challenge [18].

The contributions of this paper are as follows:
1) We systematically compare the enhancement methods

in different T-F domains, and find that the indepen-
dent front-end processing can make significant WER
reduction for both the GMM-based and DNN-based
ASR system. We also find the masking based front-
end processing is, in general, more appropriate than
the spectral mapping based for an ASR system with
respect to WER reduction. And we suggest employing
the masking-based method combined with log-fbank
domain as the front-end processing for a DNN-based
ASR system.

2) We evaluate the effect of noisy phases with respect to
WER reduction, and find, with the noisy phases, the
front-end processing does not improve the performance
of the multi-conditional trained recognizer anymore.

3) We compare the multi-conditional training strategy and
the front-end processing under unseen noise condition,
and find the front-end processing has stronger general-
ization capability .

II. RELATED WORK

Without retraining and joint-training, the performance of
ASR under the reverberant and simulated noise conditions
have been investigated. Wang et al. evaluated a masking-based
method on the simulated noisy dataset which is derived from
Google Voice dataset. For the multi-conditional trained recog-
nizer, Wang’s methods gave unremarkable improvement [19].
Li et al. proposed an ideal binary mask based enhancement
method to improve the noise robustness of a speech recognizer,

however, without retraining the acoustic model, Li’s method
even degraded the WER [20]. Xie et al. investigated the
effectiveness of the front-end processing under the reverberant
condition [21]. There still lacks of a work to systematically
examine different enhancement methods and T-F domains
for the multi-conditional trained recognizer under real noisy
condition.

III. SPEECH ENHANCEMENT METHODS

For enhancement methods, ratio masking, direct mapping
and signal approximation are three popular choices. All these
methods can be performed in different T-F domains, such as
power spectrogram, log-fbank domain and etc. In this inves-
tigation, we wonder which combination of the enhancement
methods and T-F domains is the most appropriate for the multi-
conditional trained recognizer. Therefore, we fix our learning
machines and focus on the enhancement methods and T-F
domains.

A. Enhancement Methods

1) Ratio Masking: The ratio masking-based methods try
to learn a mapping function from the noisy features to the
T-F masks of the clean speech. The training target of these
methods is defined as:

min

�

1

T

1

F

TX

t=1

FX

f=1

(RM(t, f)� f�(t, f ;yt))
2 (1)

where T indicates the total frames of the utterance and F
represents the number of frequency bins. yt is the input feature
of the enhancement model f�(·), which is extracted from noisy
speech at frame t. The enhancement model is parameterized by
�. RM(t, f) is the desired ratio mask at time t and frequency
f which is defined as:

RM(t, f) =
S(t, f)

Y (t, f)
(2)

where S(t, f) and Y (t, f) are the T-F representations of
clean and noisy speech, respectively, at each T-F unit. Ratio
masks can be defined in different T-F domains, when it
comes to short-time Fourier Transform spectral magnitude
(FFT domain), such ratio mask is also called FFT-MASK in
[2] and SMM in [1], which is called fft masking in this
paper. As the ratio masks are not well bounded, we clip them
to [0, 1] for the training stability as the same manner in [2].

2) Direct Mapping: Mapping-based methods train the en-
hancement model f� to predict the T-F representation of the
clean speech from the noisy feature directly. The optimization
objective of direct mapping is defined as:

min

�

1

T

1

F

TX

t=1

FX

f=1

(S(t, f)� f�(t, f ;yt))
2 (3)

Mapping based methods can be defined in any proper T-
F domain, when it is trained to predict the log compressed
spectral magnitude, this method is also called FFT-MAG [22]
which is called log-fft mapping in this paper.
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Fig. 1. The extraction pipeline of the investigated domains. The dashed
and solid rectangles represent T-F domains and speech processing operations,
respectively.

TABLE I
THE INPUT FEATURES, OUTPUT DOMAINS AND ENHANCEMENT METHODS

OF THE EVALUATED METHODS.

Evaluated Method Input Feature Output Domain Enhancement Method

log-fbank mapping log-fbank log-fbank mapping
log-fbank SA log-fbank log-fbank SA
log-fbank masking log-fbank log-fbank ratio masking

log-fft mapping [22] log-FFT log-FFT mapping
log-fft SA log-FFT log-FFT SA
log-fft masking log-FFT log-FFT ratio masking

fft mapping log-FFT FFT mapping
fft SA [23] log-FFT FFT SA
fft masking [2] log-FFT FFT ratio masking

3) Signal Approximation: SA-based methods implicitly
learn ratio mask from noisy features. Different from the
masking-based methods which directly reduce the training loss
between the desired mask and the predicted one, SA-based
methods reduce the loss between the T-F representations of
the target speech and the estimated one. SA-based optimization
objective is defined as:

min

�

1

T

1

F

TX

t=1

FX

f=1

(S(t, f)� Y (t, f)� f�(t, f ;yt))
2 (4)

where � is the element-wise multiplication. The output of
f�(yn) is restricted to the range [0, 1] and bounded as the
ratio mask. In [23], the FFT domain is employed to improve
Source-to-Distortion-Ratio (SDR), which is called fft SA in
this paper.

B. T-F Domains

The above enhancement methods can be performed on
different T-F domains. In the speech recognition, the log-fbank
is found to provide better results compared to mel-frequency
cepstral coefficients (MFCC) and log FFT bins [24], so we
investigate the enhancement performance on the log-fbank do-
main. As the log-fbank features can be directly extracted from
the FFT domain, we also perform speech enhancement on the
FFT domain and its logarithmic counterpart. The extraction
pipeline of the investigated domains is demonstrated in Fig.1.
The settings (including input features, output domains and
enhancement methods) of the evaluated methods are shown
in Table I.

IV. EXPERIMENTS

We perform our investigation on the CHiME-3 Challenge
[18] which provides multi-channel data for distant-talking
automatic speech recognition. There are 7138 clean utterances,
7138 simulated noisy utterances and 1600 real noisy utterances
in the training set while there are 410 clean utterance, 1640
simulated noisy utterances and 1640 real noisy utterances in
the development set. For the test set, there are 330 clean
utterance, 1320 simulated noisy utterances and 1320 real noisy
utterances. All the utterances are sampled to 16kHz. We also
expand the training set by mixing the clean utterances and the
noise records in training set at 0dB, 3dB and 6dB.

A. Speech Recognizer Training

1) Acoustic Model: In the training phase of the acoustic
model, we follow the recipe in CHiME-3 challenge to build
our baseline. There are two differences between our training
and the official training in [18]. First, we train the acoustic
model with multi-conditional training strategy (MCT) [12],
i.e., we train the GMM-based and DNN-based acoustic model
with the clean utterances, the simulated noisy utterances in
the fifth channel, the real noisy utterances in the fifth channel
and the real close-talking utterances in channel zero while
the official training is only performed on simulated and real
noisy utterances in fifth channel. The intuition behind this
MCT is that the front-end processing tries to reconstruct the
clean features, only training the acoustic model with the noisy
utterances is obviously unreasonable. Second, we train the
acoustic model with log-fbank features instead of MFCC.
The log-fbank feature has been widely used in robust speech
recognition community [25] and is found to provide better
results compared to MFCC and log FFT bins [24]. With the
MCT strategy and log-fbank feature, our DNN-based ASR
gets lower WER in both development and test dataset than
the official GMM-based and DNN-based baseline (seen in
table II, III, IV and V). The DNN-based acoustic model is
a DNN with 7 hidden layers followed by a sigmoid activation
function. After pre-training with the Restricted Boltzmann
Machines, the model is fine-tuned by minimizing the cross-
entropy loss. We call the official trained acoustic model as
Baseline (official) and our multi-conditional trained
one as Baseline (MCT).

2) Language Model: As the same manners in [18], we
employ the WSJ 5k trigram language model and the Kaldi
WFST decoder for decoding in all the experiments. Once
completing the training, the ASR will be fixed and fed with
the enhanced features estimated by the various front-end
processing methods.

B. Enhancement Model Training

1) Learning Machine: For the front-end processing, we em-
ploy a 4-layer RNN with 512 bidirectional LSTM cells in each
layer. In speech enhancement community, RNNs with LSTM
cells have been widely employed to leverage the sequential
information of speech signals and shown superior performance
as compared with DNNs and CNNs [3], [21]. Considering
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the value range of the training targets, the last RNN layer is
followed by a dense layer with softplus activations for the fft
mapping methods. And the sigmoid function is employed
for the masking-based and the SA-based methods. The linear
activation function is used for other enhancement algorithms.

2) Training Target: In the training phase of the front-end
models, the input features extracted from the simulated. The
real noisy utterances are fed to the models and the correspond-
ing training targets are estimated. All the features are extracted
with the window length of 20 ms and the shift length of 10 ms.
The hamming window is employed to achieve the periodicity
assumption for the Fourier transformation. For the simulated
noisy utterances, we can directly extract the clean targets
from their corresponding clean counterparts, however, for the
real noisy utterances, the training targets are not so straight-
forward due to the synchronisation issue of the close-talking
and the distant-talking microphones. To get the training targets,
we align the close-talking and distant-talking utterances by
calculating the cross-correlation coefficients. This alignment
processing can be performed by solving as following:

i⇤ = argmax

i
C(X,

!i
Y ) = argmax

i

TX

t=1

FP
f=1

X(t, f) ·
!i
Y (t, f)

kX(t, ·)k2 · k
!i
Y (t, ·)k2

(5)

where X is the feature of the close-talking utterance, and
!i
Y

represents the i-frame recurrent shifted feature of the distant-
talking utterance. We try all valuable i to find the optimal i⇤

which can maximize C(X,
!i
Y ). For the CHiME-3 challenge,

the synchronisation between the close-talking microphone and
the distant-talking microphones is only approximate ±20 ms,
so the set of [�2,�1, 0, 1, 2] is enough for i. After the
alignment, we use the close-talking utterances and the i⇤ frame
shifted distant-talking utterances to obtain the training targets
for the real noisy utterances.

3) Evaluation Method: In evaluating phase, the WER is
calculated for the simulated and real noisy utterances in devel-
opment and test set. Note that the utterances in development
set do not appear in the training phase. Different methods
are evaluated on the log-fbank domain, log-FFT domain,
and FFT domain, respectively. The front-end processing is
also performed on the clean and close-talking utterances to
find whether it will lead to a degradation on the relatively
clean utterances. To evaluate the affect of noisy phases, the
ASR is also fed with the synthesized waveforms which are
reconstructed from the noisy phases and the estimated spectral
magnitudes via the inverse STFT.

V. RESULTS AND DISCUSSIONS

Table II and IV show the WERs of GMM-based and DNN-
based ASR on the development set. And the results on the
test set are given in Table III and V. The columns with
dt_

*

and et_

*

show the results of development and test
set, respectively. The WERs of utterances recorded in booth
and real noisy environments are given in columns

*

_bth

TABLE II
THE WERS (%) OF GMM-BASED ASR ON DEVELOPMENT SET

Methods dt bth dt close dt simu dt real dt avg

Baseline (official) [18] - - 18.30 18.70 18.50
Baseline (MCT) 5.63 7.52 20.26 21.29 20.78

log-fbank mapping 6.31 7.60 16.87 16.48 16.68
log-fbank SA 5.68 6.98 14.99 15.28 15.14
log-fbank masking 5.74 7.15 15.15 15.54 15.35

log-fft mapping [22] 6.31 8.25 18.99 19.71 19.35
+noisy phases 6.42 8.13 18.00 19.76 18.88

log-fft SA 5.93 7.37 17.40 17.87 17.64
+noisy phases 5.94 7.30 16.56 17.56 17.06

log-fft masking 5.78 7.44 16.66 17.54 17.10
+noisy phases 6.11 7.30 16.27 16.92 16.60

fft mapping 6.03 7.60 17.89 17.06 17.48
+noisy phases 6.36 7.54 17.02 16.94 16.98

fft SA [23] 6.12 7.36 17.12 17.78 17.45
+noisy phases 6.31 7.39 16.85 17.58 17.22

fft masking [2] 5.56 7.09 14.48 16.19 15.34
+noisy phases 5.99 7.26 14.51 16.39 15.45

TABLE III
THE WERS (%) OF GMM-BASED ASR ON TEST SET

Methods et bth et close et simu et real et avg

Baseline (official) [18] - - 21.50 33.40 27.45
Baseline (MCT) 5.60 14.31 25.00 38.39 31.70

log-fbank mapping 6.39 11.05 18.40 28.56 23.48
log-fbank SA 5.81 9.99 16.88 25.87 21.38
log-fbank masking 5.85 10.04 16.98 25.65 21.32

log-fft mapping [22] 6.13 12.14 22.22 30.26 26.24
+noisy phases 6.52 12.20 20.73 30.34 25.54

log-fft SA 6.01 11.07 19.83 28.18 24.01
+noisy phases 5.85 11.04 18.77 27.88 23.33

log-fft masking 5.85 11.56 19.54 27.94 23.74
+noisy phases 5.66 11.45 18.69 27.85 23.27

fft mapping 5.96 11.77 21.21 28.64 24.93
+noisy phases 6.26 11.94 20.45 28.12 24.29

fft SA [23] 5.90 11.58 20.62 29.73 25.18
+noisy phases 5.98 11.69 19.74 29.39 24.57

fft masking [2] 5.73 10.22 16.16 24.84 20.50
+noisy phases 5.77 14.38 17.06 27.67 22.37

and
*

_real. The columns
*

_close represent the results
of close-talking utterances in channel zero and the WERs of
simulated noisy speech in fifth channel are shown in columns
*

_simu. The rows marked by +noisy phases indicate
that we reconstruct waveforms in time domain and extract the
ASR features on the waveforms. We investigate this because
the ASR systems are always located in cloud servers and need
waveforms as input for many real-life scenarios. The average
performances of simulated and real noisy utterances are given
in the

*

_avg columns.
For the GMM-based ASR (seen in Table II and III), the

masking-based method in the FFT domain achieves the best
performance, 35.30% relative improvement from 31.70% to
20.50%, on the noisy (including both simulated and real
noisy utterances) test set. SA in the log-fbank domain gets
the lowest WER on the noisy development set. It seems
that the mapping-based method is not a good choice for
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TABLE IV
THE WERS (%) OF DNN-BASED ASR ON DEVELOPMENT SET

Methods dt bth dt close dt simu dt real dt avg

Baseline (official) [18] - - 14.30 16.13 15.22
Baseline (MCT) 3.42 4.92 12.68 14.19 13.44

log-fbank mapping 4.04 5.18 13.64 14.40 14.02
log-fbank SA 3.36 4.77 12.30 12.95 12.63
log-fbank masking 3.36 4.73 12.08 12.70 12.39

log-fft mapping [22] 3.92 5.94 16.57 16.14 16.36
+noisy phases 3.98 5.93 16.49 16.09 16.29

log-fft SA 3.47 5.04 14.84 14.72 14.78
+noisy phases 3.89 5.08 14.66 14.34 14.50

log-fft masking 3.50 5.13 14.59 14.17 14.38
+noisy phases 3.69 5.18 14.49 13.97 14.23

fft mapping 3.82 5.28 15.09 14.60 14.85
+noisy phases 4.13 5.38 14.96 14.16 14.56

fft SA [23] 3.70 5.09 14.51 14.39 14.45
+noisy phases 3.82 5.08 14.50 14.22 14.36

fft masking [2] 3.38 4.93 12.09 13.42 12.76
+noisy phases 3.57 5.02 13.08 14.49 13.79

TABLE V
THE WERS (%) OF DNN-BASED ASR ON TEST SET

Methods et bth et close et simu et real et avg

Baseline (official) [18] - - 21.51 33.43 27.47
Baseline (MCT) 4.03 8.11 15.14 25.44 20.29

log-fbank mapping 4.58 8.36 15.10 26.34 20.72
log-fbank SA 4.09 7.13 13.78 22.73 18.26
log-fbank masking 3.92 7.12 13.44 22.26 17.85

log-fft mapping [22] 4.52 9.74 19.38 25.87 22.63
+noisy phases 4.76 10.07 19.35 25.90 22.63

log-fft SA 4.11 8.03 17.25 24.78 21.02
+noisy phases 4.20 8.17 16.81 24.20 20.51

log-fft masking 4.09 8.73 17.26 24.89 21.08
+noisy phases 4.30 8.93 17.08 24.70 20.89

fft mapping 4.31 9.23 18.44 25.68 22.06
+noisy phases 4.50 9.47 18.43 25.49 21.96

fft SA [23] 4.15 8.75 17.53 26.59 22.06
+noisy phases 4.48 8.97 17.34 26.09 21.27

fft masking [2] 4.15 7.46 13.65 22.26 17.96
+noisy phases 4.09 8.51 15.73 26.32 21.03

the automatic speech recognition purpose. When noisy phase
is involved, the masking-based method in the FFT domain
degrades significantly on test set. Although the methods in
the log-FFT domain are affected slightly by noisy phase, its
performances are much worse than the methods in the FFT
domain.

For the DNN-based ASR (seen in Table IV and V), the
masking-based method in the log-fbank domain is a good
choice and achieves 7.78% and 11.78% relative improve-
ment on the noisy development and test set respectively.
The masking-based method in the FFT domain gets lower
WER than all methods in the log-FFT domain, but it is
significantly degraded by noisy phase. The mapping-based
front-end processing and the methods in the log-FFT domain
do not improve the performance of ASR anymore.

From the results of the GMM-based and DNN-based ASR,
we find that the masking-based methods, in general, are more

appropriate than the mapping-based and SA-based methods
with respect to the WER reduction. The results also reveal that
the phases from noisy speech are not helpful to improving the
performance of a ASR system.

Fig. 2. The WERs (%) of the masking-based methods under the unmatched
noise condition with DNN-based ASR.

These front-end processing methods make very little degra-
dation on the relatively clean speech utterances (see the
*

_clean and
*

_close columns). Surprisingly, some meth-
ods can even improve the performance of ASR for the close-
talking utterances in test set, which is possibly because the
close-talking utterances are not very clean but slightly noisy.

To evaluate the generalization capability , we calculate
WERs of noisy utterances interfered by babble noise which
does not appear in ASR and enhancement model training
data. We only evaluate the masking-based methods under the
unmatched noise condition as they get better performance
under the matched situation. From Table V and Fig.2, we
can find the masking-based method in the log-fbank domain
achieves the best performance for the unseen babble noise,
which also gets the lowest WER under the noise matched
condition. We find the ASR with MCT strategy does not
generalize well for the unseen noise [12] while the front-end
processing efficiently leverages the information of noise and
performs better under the unmatched condition.

VI. CONCLUSIONS

In this paper, we investigate the independent front-end
processing for robust speech recognition without retraining or
joint-training on the CHiME-3 challenge. The masking-based,
mapping-based and SA-based methods are evaluated in the
log-fbank, log-FFT and FFT domain, respectively. According
to this investigation, we suggest employing the masking-based
methods as the front-end processing for a multi-conditional
trained recognizer rather than the mapping-based methods.
For the DNN-based ASR system, we find the ratio masking
in the log-fbank domain is a good choice for both matched
and unmatched noise conditions. We suggest feeding the
recognizer with enhanced features directly and discarding the
noisy phases. We find the front-end processing has stronger
generalization capability than the multi-conditional training
strategy under unseen noise condition.
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